/* [<][>][^][v][top][bottom][index][help] */
DEFINITIONS
This source file includes following definitions.
- Ascii85Tuple
- Ascii85Initialize
- Ascii85Flush
- Ascii85Encode
- MagickMax
- MagickMin
- HuffmanDecodeImage
- HuffmanEncodeImage
- LZWEncodeImage
- PackbitsEncodeImage
- AcquireZIPMemory
- RelinquishZIPMemory
- ZLIBEncodeImage
- ZLIBEncodeImage
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% CCCC OOO M M PPPP RRRR EEEEE SSSSS SSSSS %
% C O O MM MM P P R R E SS SS %
% C O O M M M PPPP RRRR EEE SSS SSS %
% C O O M M P R R E SS SS %
% CCCC OOO M M P R R EEEEE SSSSS SSSSS %
% %
% %
% MagickCore Image Compression/Decompression Methods %
% %
% Software Design %
% John Cristy %
% May 1993 %
% %
% %
% Copyright 1999-2013 ImageMagick Studio LLC, a non-profit organization %
% dedicated to making software imaging solutions freely available. %
% %
% You may not use this file except in compliance with the License. You may %
% obtain a copy of the License at %
% %
% http://www.imagemagick.org/script/license.php %
% %
% Unless required by applicable law or agreed to in writing, software %
% distributed under the License is distributed on an "AS IS" BASIS, %
% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
% See the License for the specific language governing permissions and %
% limitations under the License. %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
*/
/*
Include declarations.
*/
#include "magick/studio.h"
#include "magick/attribute.h"
#include "magick/blob.h"
#include "magick/blob-private.h"
#include "magick/color-private.h"
#include "magick/cache.h"
#include "magick/compress.h"
#include "magick/constitute.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/image-private.h"
#include "magick/list.h"
#include "magick/memory_.h"
#include "magick/monitor.h"
#include "magick/monitor-private.h"
#include "magick/option.h"
#include "magick/pixel-accessor.h"
#include "magick/resource_.h"
#include "magick/string_.h"
#if defined(MAGICKCORE_ZLIB_DELEGATE)
#include "zlib.h"
#endif
/*
Typedef declarations.
*/
struct _Ascii85Info
{
ssize_t
offset,
line_break;
unsigned char
buffer[10];
};
typedef struct HuffmanTable
{
size_t
id,
code,
length,
count;
} HuffmanTable;
/*
Huffman coding declarations.
*/
#define TWId 23
#define MWId 24
#define TBId 25
#define MBId 26
#define EXId 27
static const HuffmanTable
MBTable[]=
{
{ MBId, 0x0f, 10, 64 }, { MBId, 0xc8, 12, 128 },
{ MBId, 0xc9, 12, 192 }, { MBId, 0x5b, 12, 256 },
{ MBId, 0x33, 12, 320 }, { MBId, 0x34, 12, 384 },
{ MBId, 0x35, 12, 448 }, { MBId, 0x6c, 13, 512 },
{ MBId, 0x6d, 13, 576 }, { MBId, 0x4a, 13, 640 },
{ MBId, 0x4b, 13, 704 }, { MBId, 0x4c, 13, 768 },
{ MBId, 0x4d, 13, 832 }, { MBId, 0x72, 13, 896 },
{ MBId, 0x73, 13, 960 }, { MBId, 0x74, 13, 1024 },
{ MBId, 0x75, 13, 1088 }, { MBId, 0x76, 13, 1152 },
{ MBId, 0x77, 13, 1216 }, { MBId, 0x52, 13, 1280 },
{ MBId, 0x53, 13, 1344 }, { MBId, 0x54, 13, 1408 },
{ MBId, 0x55, 13, 1472 }, { MBId, 0x5a, 13, 1536 },
{ MBId, 0x5b, 13, 1600 }, { MBId, 0x64, 13, 1664 },
{ MBId, 0x65, 13, 1728 }, { MBId, 0x00, 0, 0 }
};
static const HuffmanTable
EXTable[]=
{
{ EXId, 0x08, 11, 1792 }, { EXId, 0x0c, 11, 1856 },
{ EXId, 0x0d, 11, 1920 }, { EXId, 0x12, 12, 1984 },
{ EXId, 0x13, 12, 2048 }, { EXId, 0x14, 12, 2112 },
{ EXId, 0x15, 12, 2176 }, { EXId, 0x16, 12, 2240 },
{ EXId, 0x17, 12, 2304 }, { EXId, 0x1c, 12, 2368 },
{ EXId, 0x1d, 12, 2432 }, { EXId, 0x1e, 12, 2496 },
{ EXId, 0x1f, 12, 2560 }, { EXId, 0x00, 0, 0 }
};
static const HuffmanTable
MWTable[]=
{
{ MWId, 0x1b, 5, 64 }, { MWId, 0x12, 5, 128 },
{ MWId, 0x17, 6, 192 }, { MWId, 0x37, 7, 256 },
{ MWId, 0x36, 8, 320 }, { MWId, 0x37, 8, 384 },
{ MWId, 0x64, 8, 448 }, { MWId, 0x65, 8, 512 },
{ MWId, 0x68, 8, 576 }, { MWId, 0x67, 8, 640 },
{ MWId, 0xcc, 9, 704 }, { MWId, 0xcd, 9, 768 },
{ MWId, 0xd2, 9, 832 }, { MWId, 0xd3, 9, 896 },
{ MWId, 0xd4, 9, 960 }, { MWId, 0xd5, 9, 1024 },
{ MWId, 0xd6, 9, 1088 }, { MWId, 0xd7, 9, 1152 },
{ MWId, 0xd8, 9, 1216 }, { MWId, 0xd9, 9, 1280 },
{ MWId, 0xda, 9, 1344 }, { MWId, 0xdb, 9, 1408 },
{ MWId, 0x98, 9, 1472 }, { MWId, 0x99, 9, 1536 },
{ MWId, 0x9a, 9, 1600 }, { MWId, 0x18, 6, 1664 },
{ MWId, 0x9b, 9, 1728 }, { MWId, 0x00, 0, 0 }
};
static const HuffmanTable
TBTable[]=
{
{ TBId, 0x37, 10, 0 }, { TBId, 0x02, 3, 1 }, { TBId, 0x03, 2, 2 },
{ TBId, 0x02, 2, 3 }, { TBId, 0x03, 3, 4 }, { TBId, 0x03, 4, 5 },
{ TBId, 0x02, 4, 6 }, { TBId, 0x03, 5, 7 }, { TBId, 0x05, 6, 8 },
{ TBId, 0x04, 6, 9 }, { TBId, 0x04, 7, 10 }, { TBId, 0x05, 7, 11 },
{ TBId, 0x07, 7, 12 }, { TBId, 0x04, 8, 13 }, { TBId, 0x07, 8, 14 },
{ TBId, 0x18, 9, 15 }, { TBId, 0x17, 10, 16 }, { TBId, 0x18, 10, 17 },
{ TBId, 0x08, 10, 18 }, { TBId, 0x67, 11, 19 }, { TBId, 0x68, 11, 20 },
{ TBId, 0x6c, 11, 21 }, { TBId, 0x37, 11, 22 }, { TBId, 0x28, 11, 23 },
{ TBId, 0x17, 11, 24 }, { TBId, 0x18, 11, 25 }, { TBId, 0xca, 12, 26 },
{ TBId, 0xcb, 12, 27 }, { TBId, 0xcc, 12, 28 }, { TBId, 0xcd, 12, 29 },
{ TBId, 0x68, 12, 30 }, { TBId, 0x69, 12, 31 }, { TBId, 0x6a, 12, 32 },
{ TBId, 0x6b, 12, 33 }, { TBId, 0xd2, 12, 34 }, { TBId, 0xd3, 12, 35 },
{ TBId, 0xd4, 12, 36 }, { TBId, 0xd5, 12, 37 }, { TBId, 0xd6, 12, 38 },
{ TBId, 0xd7, 12, 39 }, { TBId, 0x6c, 12, 40 }, { TBId, 0x6d, 12, 41 },
{ TBId, 0xda, 12, 42 }, { TBId, 0xdb, 12, 43 }, { TBId, 0x54, 12, 44 },
{ TBId, 0x55, 12, 45 }, { TBId, 0x56, 12, 46 }, { TBId, 0x57, 12, 47 },
{ TBId, 0x64, 12, 48 }, { TBId, 0x65, 12, 49 }, { TBId, 0x52, 12, 50 },
{ TBId, 0x53, 12, 51 }, { TBId, 0x24, 12, 52 }, { TBId, 0x37, 12, 53 },
{ TBId, 0x38, 12, 54 }, { TBId, 0x27, 12, 55 }, { TBId, 0x28, 12, 56 },
{ TBId, 0x58, 12, 57 }, { TBId, 0x59, 12, 58 }, { TBId, 0x2b, 12, 59 },
{ TBId, 0x2c, 12, 60 }, { TBId, 0x5a, 12, 61 }, { TBId, 0x66, 12, 62 },
{ TBId, 0x67, 12, 63 }, { TBId, 0x00, 0, 0 }
};
static const HuffmanTable
TWTable[]=
{
{ TWId, 0x35, 8, 0 }, { TWId, 0x07, 6, 1 }, { TWId, 0x07, 4, 2 },
{ TWId, 0x08, 4, 3 }, { TWId, 0x0b, 4, 4 }, { TWId, 0x0c, 4, 5 },
{ TWId, 0x0e, 4, 6 }, { TWId, 0x0f, 4, 7 }, { TWId, 0x13, 5, 8 },
{ TWId, 0x14, 5, 9 }, { TWId, 0x07, 5, 10 }, { TWId, 0x08, 5, 11 },
{ TWId, 0x08, 6, 12 }, { TWId, 0x03, 6, 13 }, { TWId, 0x34, 6, 14 },
{ TWId, 0x35, 6, 15 }, { TWId, 0x2a, 6, 16 }, { TWId, 0x2b, 6, 17 },
{ TWId, 0x27, 7, 18 }, { TWId, 0x0c, 7, 19 }, { TWId, 0x08, 7, 20 },
{ TWId, 0x17, 7, 21 }, { TWId, 0x03, 7, 22 }, { TWId, 0x04, 7, 23 },
{ TWId, 0x28, 7, 24 }, { TWId, 0x2b, 7, 25 }, { TWId, 0x13, 7, 26 },
{ TWId, 0x24, 7, 27 }, { TWId, 0x18, 7, 28 }, { TWId, 0x02, 8, 29 },
{ TWId, 0x03, 8, 30 }, { TWId, 0x1a, 8, 31 }, { TWId, 0x1b, 8, 32 },
{ TWId, 0x12, 8, 33 }, { TWId, 0x13, 8, 34 }, { TWId, 0x14, 8, 35 },
{ TWId, 0x15, 8, 36 }, { TWId, 0x16, 8, 37 }, { TWId, 0x17, 8, 38 },
{ TWId, 0x28, 8, 39 }, { TWId, 0x29, 8, 40 }, { TWId, 0x2a, 8, 41 },
{ TWId, 0x2b, 8, 42 }, { TWId, 0x2c, 8, 43 }, { TWId, 0x2d, 8, 44 },
{ TWId, 0x04, 8, 45 }, { TWId, 0x05, 8, 46 }, { TWId, 0x0a, 8, 47 },
{ TWId, 0x0b, 8, 48 }, { TWId, 0x52, 8, 49 }, { TWId, 0x53, 8, 50 },
{ TWId, 0x54, 8, 51 }, { TWId, 0x55, 8, 52 }, { TWId, 0x24, 8, 53 },
{ TWId, 0x25, 8, 54 }, { TWId, 0x58, 8, 55 }, { TWId, 0x59, 8, 56 },
{ TWId, 0x5a, 8, 57 }, { TWId, 0x5b, 8, 58 }, { TWId, 0x4a, 8, 59 },
{ TWId, 0x4b, 8, 60 }, { TWId, 0x32, 8, 61 }, { TWId, 0x33, 8, 62 },
{ TWId, 0x34, 8, 63 }, { TWId, 0x00, 0, 0 }
};
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% A S C I I 8 5 E n c o d e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ASCII85Encode() encodes data in ASCII base-85 format. ASCII base-85
% encoding produces five ASCII printing characters from every four bytes of
% binary data.
%
% The format of the ASCII85Encode method is:
%
% void Ascii85Encode(Image *image,const size_t code)
%
% A description of each parameter follows:
%
% o code: a binary unsigned char to encode to ASCII 85.
%
% o file: write the encoded ASCII character to this file.
%
%
*/
#define MaxLineExtent 36
static char *Ascii85Tuple(unsigned char *data)
{
static char
tuple[6];
register ssize_t
i,
x;
size_t
code,
quantum;
code=((((size_t) data[0] << 8) | (size_t) data[1]) << 16) |
((size_t) data[2] << 8) | (size_t) data[3];
if (code == 0L)
{
tuple[0]='z';
tuple[1]='\0';
return(tuple);
}
quantum=85UL*85UL*85UL*85UL;
for (i=0; i < 4; i++)
{
x=(ssize_t) (code/quantum);
code-=quantum*x;
tuple[i]=(char) (x+(int) '!');
quantum/=85L;
}
tuple[4]=(char) ((code % 85L)+(int) '!');
tuple[5]='\0';
return(tuple);
}
MagickExport void Ascii85Initialize(Image *image)
{
/*
Allocate image structure.
*/
if (image->ascii85 == (Ascii85Info *) NULL)
image->ascii85=(Ascii85Info *) AcquireMagickMemory(sizeof(*image->ascii85));
if (image->ascii85 == (Ascii85Info *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
(void) ResetMagickMemory(image->ascii85,0,sizeof(*image->ascii85));
image->ascii85->line_break=MaxLineExtent << 1;
image->ascii85->offset=0;
}
MagickExport void Ascii85Flush(Image *image)
{
register char
*tuple;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(image->ascii85 != (Ascii85Info *) NULL);
if (image->ascii85->offset > 0)
{
image->ascii85->buffer[image->ascii85->offset]='\0';
image->ascii85->buffer[image->ascii85->offset+1]='\0';
image->ascii85->buffer[image->ascii85->offset+2]='\0';
tuple=Ascii85Tuple(image->ascii85->buffer);
(void) WriteBlob(image,(size_t) image->ascii85->offset+1,
(const unsigned char *) (*tuple == 'z' ? "!!!!" : tuple));
}
(void) WriteBlobByte(image,'~');
(void) WriteBlobByte(image,'>');
(void) WriteBlobByte(image,'\n');
}
MagickExport void Ascii85Encode(Image *image,const unsigned char code)
{
register char
*q;
register unsigned char
*p;
ssize_t
n;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
assert(image->ascii85 != (Ascii85Info *) NULL);
image->ascii85->buffer[image->ascii85->offset]=code;
image->ascii85->offset++;
if (image->ascii85->offset < 4)
return;
p=image->ascii85->buffer;
for (n=image->ascii85->offset; n >= 4; n-=4)
{
for (q=Ascii85Tuple(p); *q != '\0'; q++)
{
image->ascii85->line_break--;
if ((image->ascii85->line_break < 0) && (*q != '%'))
{
(void) WriteBlobByte(image,'\n');
image->ascii85->line_break=2*MaxLineExtent;
}
(void) WriteBlobByte(image,(unsigned char) *q);
}
p+=8;
}
image->ascii85->offset=n;
p-=4;
for (n=0; n < 4; n++)
image->ascii85->buffer[n]=(*p++);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% H u f f m a n D e c o d e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% HuffmanDecodeImage() uncompresses an image via Huffman-coding.
%
% The format of the HuffmanDecodeImage method is:
%
% MagickBooleanType HuffmanDecodeImage(Image *image)
%
% A description of each parameter follows:
%
% o image: the image.
%
*/
static inline size_t MagickMax(const size_t x,const size_t y)
{
if (x > y)
return(x);
return(y);
}
static inline size_t MagickMin(const size_t x,const size_t y)
{
if (x < y)
return(x);
return(y);
}
MagickExport MagickBooleanType HuffmanDecodeImage(Image *image)
{
#define HashSize 1021
#define MBHashA 293
#define MBHashB 2695
#define MWHashA 3510
#define MWHashB 1178
#define InitializeHashTable(hash,table,a,b) \
{ \
entry=table; \
while (entry->code != 0) \
{ \
hash[((entry->length+a)*(entry->code+b)) % HashSize]=(HuffmanTable *) entry; \
entry++; \
} \
}
#define InputBit(bit) \
{ \
if ((mask & 0xff) == 0) \
{ \
byte=ReadBlobByte(image); \
if (byte == EOF) \
break; \
mask=0x80; \
} \
runlength++; \
bit=(size_t) ((byte & mask) != 0 ? 0x01 : 0x00); \
mask>>=1; \
if (bit != 0) \
runlength=0; \
}
CacheView
*image_view;
const HuffmanTable
*entry;
ExceptionInfo
*exception;
HuffmanTable
**mb_hash,
**mw_hash;
IndexPacket
index;
int
byte;
MagickBooleanType
proceed;
register IndexPacket
*indexes;
register ssize_t
i;
register unsigned char
*p;
size_t
bit,
code,
mask,
length,
null_lines,
runlength;
ssize_t
count,
y;
unsigned char
*scanline;
unsigned int
bail,
color;
/*
Allocate buffers.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
mb_hash=(HuffmanTable **) AcquireQuantumMemory(HashSize,sizeof(*mb_hash));
mw_hash=(HuffmanTable **) AcquireQuantumMemory(HashSize,sizeof(*mw_hash));
scanline=(unsigned char *) AcquireQuantumMemory((size_t) image->columns,
sizeof(*scanline));
if ((mb_hash == (HuffmanTable **) NULL) ||
(mw_hash == (HuffmanTable **) NULL) ||
(scanline == (unsigned char *) NULL))
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
image->filename);
/*
Initialize Huffman tables.
*/
for (i=0; i < HashSize; i++)
{
mb_hash[i]=(HuffmanTable *) NULL;
mw_hash[i]=(HuffmanTable *) NULL;
}
InitializeHashTable(mw_hash,TWTable,MWHashA,MWHashB);
InitializeHashTable(mw_hash,MWTable,MWHashA,MWHashB);
InitializeHashTable(mw_hash,EXTable,MWHashA,MWHashB);
InitializeHashTable(mb_hash,TBTable,MBHashA,MBHashB);
InitializeHashTable(mb_hash,MBTable,MBHashA,MBHashB);
InitializeHashTable(mb_hash,EXTable,MBHashA,MBHashB);
/*
Uncompress 1D Huffman to runlength encoded pixels.
*/
byte=0;
mask=0;
null_lines=0;
runlength=0;
while (runlength < 11)
InputBit(bit);
do { InputBit(bit); } while ((int) bit == 0);
image->x_resolution=204.0;
image->y_resolution=196.0;
image->units=PixelsPerInchResolution;
exception=(&image->exception);
image_view=AcquireAuthenticCacheView(image,exception);
for (y=0; ((y < (ssize_t) image->rows) && (null_lines < 3)); )
{
register PixelPacket
*restrict q;
register ssize_t
x;
/*
Initialize scanline to white.
*/
p=scanline;
for (x=0; x < (ssize_t) image->columns; x++)
*p++=(unsigned char) 0;
/*
Decode Huffman encoded scanline.
*/
color=MagickTrue;
code=0;
count=0;
length=0;
runlength=0;
x=0;
for ( ; ; )
{
if (byte == EOF)
break;
if (x >= (ssize_t) image->columns)
{
while (runlength < 11)
InputBit(bit);
do { InputBit(bit); } while ((int) bit == 0);
break;
}
bail=MagickFalse;
do
{
if (runlength < 11)
InputBit(bit)
else
{
InputBit(bit);
if ((int) bit != 0)
{
null_lines++;
if (x != 0)
null_lines=0;
bail=MagickTrue;
break;
}
}
code=(code << 1)+(size_t) bit;
length++;
} while (code == 0);
if (bail != MagickFalse)
break;
if (length > 13)
{
while (runlength < 11)
InputBit(bit);
do { InputBit(bit); } while ((int) bit == 0);
break;
}
if (color != MagickFalse)
{
if (length < 4)
continue;
entry=mw_hash[((length+MWHashA)*(code+MWHashB)) % HashSize];
}
else
{
if (length < 2)
continue;
entry=mb_hash[((length+MBHashA)*(code+MBHashB)) % HashSize];
}
if (entry == (const HuffmanTable *) NULL)
continue;
if ((entry->length != length) || (entry->code != code))
continue;
switch (entry->id)
{
case TWId:
case TBId:
{
count+=(ssize_t) entry->count;
if ((x+count) > (ssize_t) image->columns)
count=(ssize_t) image->columns-x;
if (count > 0)
{
if (color != MagickFalse)
{
x+=count;
count=0;
}
else
for ( ; count > 0; count--)
scanline[x++]=(unsigned char) 1;
}
color=(unsigned int)
((color == MagickFalse) ? MagickTrue : MagickFalse);
break;
}
case MWId:
case MBId:
case EXId:
{
count+=(ssize_t) entry->count;
break;
}
default:
break;
}
code=0;
length=0;
}
/*
Transfer scanline to image pixels.
*/
p=scanline;
q=QueueCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
if (q == (PixelPacket *) NULL)
break;
indexes=GetCacheViewAuthenticIndexQueue(image_view);
for (x=0; x < (ssize_t) image->columns; x++)
{
index=(IndexPacket) (*p++);
SetPixelIndex(indexes+x,index);
SetPixelRGBO(q,image->colormap+(ssize_t) index);
}
if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
break;
proceed=SetImageProgress(image,LoadImageTag,y,image->rows);
if (proceed == MagickFalse)
break;
y++;
}
image_view=DestroyCacheView(image_view);
image->rows=(size_t) MagickMax((size_t) y-3,1);
image->compression=FaxCompression;
/*
Free decoder memory.
*/
mw_hash=(HuffmanTable **) RelinquishMagickMemory(mw_hash);
mb_hash=(HuffmanTable **) RelinquishMagickMemory(mb_hash);
scanline=(unsigned char *) RelinquishMagickMemory(scanline);
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% H u f f m a n E n c o d e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% HuffmanEncodeImage() compresses an image via Huffman-coding.
%
% The format of the HuffmanEncodeImage method is:
%
% MagickBooleanType HuffmanEncodeImage(const ImageInfo *image_info,
% Image *image,Image *inject_image)
%
% A description of each parameter follows:
%
% o image_info: the image info..
%
% o image: the image.
%
% o inject_image: inject into the image stream.
%
*/
MagickExport MagickBooleanType HuffmanEncodeImage(const ImageInfo *image_info,
Image *image,Image *inject_image)
{
#define HuffmanOutputCode(entry) \
{ \
mask=one << (entry->length-1); \
while (mask != 0) \
{ \
OutputBit(((entry->code & mask) != 0 ? 1 : 0)); \
mask>>=1; \
} \
}
#define OutputBit(count) \
{ \
if (count > 0) \
byte=byte | bit; \
bit>>=1; \
if ((int) (bit & 0xff) == 0) \
{ \
if (LocaleCompare(image_info->magick,"FAX") == 0) \
(void) WriteBlobByte(image,(unsigned char) byte); \
else \
Ascii85Encode(image,byte); \
byte='\0'; \
bit=(unsigned char) 0x80; \
} \
}
const HuffmanTable
*entry;
ExceptionInfo
*exception;
int
k,
runlength;
Image
*huffman_image;
MagickBooleanType
proceed;
register ssize_t
i,
x;
register const PixelPacket
*p;
register unsigned char
*q;
size_t
mask,
one,
width;
ssize_t
n,
y;
unsigned char
byte,
bit,
*scanline;
/*
Allocate scanline buffer.
*/
assert(image_info != (ImageInfo *) NULL);
assert(image_info->signature == MagickSignature);
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(inject_image != (Image *) NULL);
assert(inject_image->signature == MagickSignature);
one=1;
width=inject_image->columns;
if (LocaleCompare(image_info->magick,"FAX") == 0)
width=(size_t) MagickMax(inject_image->columns,1728);
scanline=(unsigned char *) AcquireQuantumMemory((size_t) width+1UL,
sizeof(*scanline));
if (scanline == (unsigned char *) NULL)
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
inject_image->filename);
(void) ResetMagickMemory(scanline,0,width*sizeof(*scanline));
huffman_image=CloneImage(inject_image,0,0,MagickTrue,&image->exception);
if (huffman_image == (Image *) NULL)
{
scanline=(unsigned char *) RelinquishMagickMemory(scanline);
return(MagickFalse);
}
(void) SetImageType(huffman_image,BilevelType);
byte='\0';
bit=(unsigned char) 0x80;
if (LocaleCompare(image_info->magick,"FAX") != 0)
Ascii85Initialize(image);
else
{
/*
End of line.
*/
for (k=0; k < 11; k++)
OutputBit(0);
OutputBit(1);
}
/*
Compress to 1D Huffman pixels.
*/
exception=(&huffman_image->exception);
q=scanline;
for (y=0; y < (ssize_t) huffman_image->rows; y++)
{
p=GetVirtualPixels(huffman_image,0,y,huffman_image->columns,1,exception);
if (p == (const PixelPacket *) NULL)
break;
for (x=0; x < (ssize_t) huffman_image->columns; x++)
{
*q++=(unsigned char) (GetPixelIntensity(huffman_image,p) >=
((MagickRealType) QuantumRange/2.0) ? 0 : 1);
p++;
}
/*
Huffman encode scanline.
*/
q=scanline;
for (n=(ssize_t) width; n > 0; )
{
/*
Output white run.
*/
for (runlength=0; ((n > 0) && (*q == 0)); n--)
{
q++;
runlength++;
}
if (runlength >= 64)
{
if (runlength < 1792)
entry=MWTable+((runlength/64)-1);
else
entry=EXTable+(MagickMin((size_t) runlength,2560)-1792)/64;
runlength-=(long) entry->count;
HuffmanOutputCode(entry);
}
entry=TWTable+MagickMin((size_t) runlength,63);
HuffmanOutputCode(entry);
if (n != 0)
{
/*
Output black run.
*/
for (runlength=0; ((*q != 0) && (n > 0)); n--)
{
q++;
runlength++;
}
if (runlength >= 64)
{
entry=MBTable+((runlength/64)-1);
if (runlength >= 1792)
entry=EXTable+(MagickMin((size_t) runlength,2560)-1792)/64;
runlength-=(long) entry->count;
HuffmanOutputCode(entry);
}
entry=TBTable+MagickMin((size_t) runlength,63);
HuffmanOutputCode(entry);
}
}
/*
End of line.
*/
for (k=0; k < 11; k++)
OutputBit(0);
OutputBit(1);
q=scanline;
if (GetPreviousImageInList(huffman_image) == (Image *) NULL)
{
proceed=SetImageProgress(huffman_image,LoadImageTag,y,
huffman_image->rows);
if (proceed == MagickFalse)
break;
}
}
/*
End of page.
*/
for (i=0; i < 6; i++)
{
for (k=0; k < 11; k++)
OutputBit(0);
OutputBit(1);
}
/*
Flush bits.
*/
if (((int) bit != 0x80) != 0)
{
if (LocaleCompare(image_info->magick,"FAX") == 0)
(void) WriteBlobByte(image,byte);
else
Ascii85Encode(image,byte);
}
if (LocaleCompare(image_info->magick,"FAX") != 0)
Ascii85Flush(image);
huffman_image=DestroyImage(huffman_image);
scanline=(unsigned char *) RelinquishMagickMemory(scanline);
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% L Z W E n c o d e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% LZWEncodeImage() compresses an image via LZW-coding specific to Postscript
% Level II or Portable Document Format.
%
% The format of the LZWEncodeImage method is:
%
% MagickBooleanType LZWEncodeImage(Image *image,const size_t length,
% unsigned char *restrict pixels)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o length: A value that specifies the number of pixels to compress.
%
% o pixels: the address of an unsigned array of characters containing the
% pixels to compress.
%
*/
MagickExport MagickBooleanType LZWEncodeImage(Image *image,const size_t length,
unsigned char *restrict pixels)
{
#define LZWClr 256UL /* Clear Table Marker */
#define LZWEod 257UL /* End of Data marker */
#define OutputCode(code) \
{ \
accumulator+=code << (32-code_width-number_bits); \
number_bits+=code_width; \
while (number_bits >= 8) \
{ \
(void) WriteBlobByte(image,(unsigned char) (accumulator >> 24)); \
accumulator=accumulator << 8; \
number_bits-=8; \
} \
}
typedef struct _TableType
{
ssize_t
prefix,
suffix,
next;
} TableType;
register ssize_t
i;
size_t
accumulator,
number_bits,
code_width,
last_code,
next_index;
ssize_t
index;
TableType
*table;
/*
Allocate string table.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(pixels != (unsigned char *) NULL);
table=(TableType *) AcquireQuantumMemory(1UL << 12,sizeof(*table));
if (table == (TableType *) NULL)
return(MagickFalse);
/*
Initialize variables.
*/
accumulator=0;
code_width=9;
number_bits=0;
last_code=0;
OutputCode(LZWClr);
for (index=0; index < 256; index++)
{
table[index].prefix=(-1);
table[index].suffix=(short) index;
table[index].next=(-1);
}
next_index=LZWEod+1;
code_width=9;
last_code=(size_t) pixels[0];
for (i=1; i < (ssize_t) length; i++)
{
/*
Find string.
*/
index=(ssize_t) last_code;
while (index != -1)
if ((table[index].prefix != (ssize_t) last_code) ||
(table[index].suffix != (ssize_t) pixels[i]))
index=table[index].next;
else
{
last_code=(size_t) index;
break;
}
if (last_code != (size_t) index)
{
/*
Add string.
*/
OutputCode(last_code);
table[next_index].prefix=(ssize_t) last_code;
table[next_index].suffix=(short) pixels[i];
table[next_index].next=table[last_code].next;
table[last_code].next=(ssize_t) next_index;
next_index++;
/*
Did we just move up to next bit width?
*/
if ((next_index >> code_width) != 0)
{
code_width++;
if (code_width > 12)
{
/*
Did we overflow the max bit width?
*/
code_width--;
OutputCode(LZWClr);
for (index=0; index < 256; index++)
{
table[index].prefix=(-1);
table[index].suffix=index;
table[index].next=(-1);
}
next_index=LZWEod+1;
code_width=9;
}
}
last_code=(size_t) pixels[i];
}
}
/*
Flush tables.
*/
OutputCode(last_code);
OutputCode(LZWEod);
if (number_bits != 0)
(void) WriteBlobByte(image,(unsigned char) (accumulator >> 24));
table=(TableType *) RelinquishMagickMemory(table);
return(MagickTrue);
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% P a c k b i t s E n c o d e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% PackbitsEncodeImage() compresses an image via Macintosh Packbits encoding
% specific to Postscript Level II or Portable Document Format. To ensure
% portability, the binary Packbits bytes are encoded as ASCII Base-85.
%
% The format of the PackbitsEncodeImage method is:
%
% MagickBooleanType PackbitsEncodeImage(Image *image,const size_t length,
% unsigned char *restrict pixels)
%
% A description of each parameter follows:
%
% o image: the image.
%
% o length: A value that specifies the number of pixels to compress.
%
% o pixels: the address of an unsigned array of characters containing the
% pixels to compress.
%
*/
MagickExport MagickBooleanType PackbitsEncodeImage(Image *image,
const size_t length,unsigned char *restrict pixels)
{
int
count;
register ssize_t
i,
j;
unsigned char
*packbits;
/*
Compress pixels with Packbits encoding.
*/
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(pixels != (unsigned char *) NULL);
packbits=(unsigned char *) AcquireQuantumMemory(128UL,sizeof(*packbits));
if (packbits == (unsigned char *) NULL)
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
image->filename);
for (i=(ssize_t) length; i != 0; )
{
switch (i)
{
case 1:
{
i--;
(void) WriteBlobByte(image,(unsigned char) 0);
(void) WriteBlobByte(image,*pixels);
break;
}
case 2:
{
i-=2;
(void) WriteBlobByte(image,(unsigned char) 1);
(void) WriteBlobByte(image,*pixels);
(void) WriteBlobByte(image,pixels[1]);
break;
}
case 3:
{
i-=3;
if ((*pixels == *(pixels+1)) && (*(pixels+1) == *(pixels+2)))
{
(void) WriteBlobByte(image,(unsigned char) ((256-3)+1));
(void) WriteBlobByte(image,*pixels);
break;
}
(void) WriteBlobByte(image,(unsigned char) 2);
(void) WriteBlobByte(image,*pixels);
(void) WriteBlobByte(image,pixels[1]);
(void) WriteBlobByte(image,pixels[2]);
break;
}
default:
{
if ((*pixels == *(pixels+1)) && (*(pixels+1) == *(pixels+2)))
{
/*
Packed run.
*/
count=3;
while (((ssize_t) count < i) && (*pixels == *(pixels+count)))
{
count++;
if (count >= 127)
break;
}
i-=count;
(void) WriteBlobByte(image,(unsigned char) ((256-count)+1));
(void) WriteBlobByte(image,*pixels);
pixels+=count;
break;
}
/*
Literal run.
*/
count=0;
while ((*(pixels+count) != *(pixels+count+1)) ||
(*(pixels+count+1) != *(pixels+count+2)))
{
packbits[count+1]=pixels[count];
count++;
if (((ssize_t) count >= (i-3)) || (count >= 127))
break;
}
i-=count;
*packbits=(unsigned char) (count-1);
for (j=0; j <= (ssize_t) count; j++)
(void) WriteBlobByte(image,packbits[j]);
pixels+=count;
break;
}
}
}
(void) WriteBlobByte(image,(unsigned char) 128); /* EOD marker */
packbits=(unsigned char *) RelinquishMagickMemory(packbits);
return(MagickTrue);
}
#if defined(MAGICKCORE_ZLIB_DELEGATE)
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% %
% Z L I B E n c o d e I m a g e %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% ZLIBEncodeImage compresses an image via ZLIB-coding specific to
% Postscript Level II or Portable Document Format.
%
% The format of the ZLIBEncodeImage method is:
%
% MagickBooleanType ZLIBEncodeImage(Image *image,const size_t length,
% unsigned char *restrict pixels)
%
% A description of each parameter follows:
%
% o file: the address of a structure of type FILE. ZLIB encoded pixels
% are written to this file.
%
% o length: A value that specifies the number of pixels to compress.
%
% o pixels: the address of an unsigned array of characters containing the
% pixels to compress.
%
*/
static voidpf AcquireZIPMemory(voidpf context,unsigned int items,
unsigned int size)
{
(void) context;
return((voidpf) AcquireQuantumMemory(items,size));
}
static void RelinquishZIPMemory(voidpf context,voidpf memory)
{
(void) context;
memory=RelinquishMagickMemory(memory);
}
MagickExport MagickBooleanType ZLIBEncodeImage(Image *image,const size_t length,
unsigned char *restrict pixels)
{
int
status;
register ssize_t
i;
size_t
compress_packets;
unsigned char
*compress_pixels;
z_stream
stream;
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
compress_packets=(size_t) (1.001*length+12);
compress_pixels=(unsigned char *) AcquireQuantumMemory(compress_packets,
sizeof(*compress_pixels));
if (compress_pixels == (unsigned char *) NULL)
ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
image->filename);
stream.next_in=pixels;
stream.avail_in=(unsigned int) length;
stream.next_out=compress_pixels;
stream.avail_out=(unsigned int) compress_packets;
stream.zalloc=AcquireZIPMemory;
stream.zfree=RelinquishZIPMemory;
stream.opaque=(voidpf) NULL;
status=deflateInit(&stream,(int) (image->quality ==
UndefinedCompressionQuality ? 7 : MagickMin(image->quality/10,9)));
if (status == Z_OK)
{
status=deflate(&stream,Z_FINISH);
if (status == Z_STREAM_END)
status=deflateEnd(&stream);
else
(void) deflateEnd(&stream);
compress_packets=(size_t) stream.total_out;
}
if (status != Z_OK)
ThrowBinaryException(CoderError,"UnableToZipCompressImage",image->filename)
else
for (i=0; i < (ssize_t) compress_packets; i++)
(void) WriteBlobByte(image,compress_pixels[i]);
compress_pixels=(unsigned char *) RelinquishMagickMemory(compress_pixels);
return(status == Z_OK ? MagickTrue : MagickFalse);
}
#else
MagickExport MagickBooleanType ZLIBEncodeImage(Image *image,
const size_t magick_unused(length),unsigned char *magick_unused(pixels))
{
assert(image != (Image *) NULL);
assert(image->signature == MagickSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
(void) ThrowMagickException(&image->exception,GetMagickModule(),
MissingDelegateError,"DelegateLibrarySupportNotBuiltIn","`%s' (ZIP)",
image->filename);
return(MagickFalse);
}
#endif