root/magick/segment.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. Classify
  2. ConsolidateCrossings
  3. DefineRegion
  4. DerivativeHistogram
  5. GetImageDynamicThreshold
  6. InitializeHistogram
  7. InitializeList
  8. MeanStability
  9. Stability
  10. InitializeIntervalTree
  11. ActiveNodes
  12. FreeNodes
  13. OptimalTau
  14. ScaleSpace
  15. SegmentImage
  16. ZeroCrossHistogram

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%               SSSSS  EEEEE   GGGG  M   M  EEEEE  N   N  TTTTT               %
%               SS     E      G      MM MM  E      NN  N    T                 %
%                SSS   EEE    G GGG  M M M  EEE    N N N    T                 %
%                  SS  E      G   G  M   M  E      N  NN    T                 %
%               SSSSS  EEEEE   GGGG  M   M  EEEEE  N   N    T                 %
%                                                                             %
%                                                                             %
%    MagickCore Methods to Segment an Image with Thresholding Fuzzy c-Means   %
%                                                                             %
%                              Software Design                                %
%                                   Cristy                                    %
%                                April 1993                                   %
%                                                                             %
%                                                                             %
%  Copyright 1999-2015 ImageMagick Studio LLC, a non-profit organization      %
%  dedicated to making software imaging solutions freely available.           %
%                                                                             %
%  You may not use this file except in compliance with the License.  You may  %
%  obtain a copy of the License at                                            %
%                                                                             %
%    http://www.imagemagick.org/script/license.php                            %
%                                                                             %
%  Unless required by applicable law or agreed to in writing, software        %
%  distributed under the License is distributed on an "AS IS" BASIS,          %
%  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   %
%  See the License for the specific language governing permissions and        %
%  limitations under the License.                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  Segment segments an image by analyzing the histograms of the color
%  components and identifying units that are homogeneous with the fuzzy
%  c-means technique.  The scale-space filter analyzes the histograms of
%  the three color components of the image and identifies a set of
%  classes.  The extents of each class is used to coarsely segment the
%  image with thresholding.  The color associated with each class is
%  determined by the mean color of all pixels within the extents of a
%  particular class.  Finally, any unclassified pixels are assigned to
%  the closest class with the fuzzy c-means technique.
%
%  The fuzzy c-Means algorithm can be summarized as follows:
%
%    o Build a histogram, one for each color component of the image.
%
%    o For each histogram, successively apply the scale-space filter and
%      build an interval tree of zero crossings in the second derivative
%      at each scale.  Analyze this scale-space ``fingerprint'' to
%      determine which peaks and valleys in the histogram are most
%      predominant.
%
%    o The fingerprint defines intervals on the axis of the histogram.
%      Each interval contains either a minima or a maxima in the original
%      signal.  If each color component lies within the maxima interval,
%      that pixel is considered ``classified'' and is assigned an unique
%      class number.
%
%    o Any pixel that fails to be classified in the above thresholding
%      pass is classified using the fuzzy c-Means technique.  It is
%      assigned to one of the classes discovered in the histogram analysis
%      phase.
%
%  The fuzzy c-Means technique attempts to cluster a pixel by finding
%  the local minima of the generalized within group sum of squared error
%  objective function.  A pixel is assigned to the closest class of
%  which the fuzzy membership has a maximum value.
%
%  Segment is strongly based on software written by Andy Gallo,
%  University of Delaware.
%
%  The following reference was used in creating this program:
%
%    Young Won Lim, Sang Uk Lee, "On The Color Image Segmentation
%    Algorithm Based on the Thresholding and the Fuzzy c-Means
%    Techniques", Pattern Recognition, Volume 23, Number 9, pages
%    935-952, 1990.
%
%
*/

#include "magick/studio.h"
#include "magick/cache.h"
#include "magick/color.h"
#include "magick/colormap.h"
#include "magick/colorspace.h"
#include "magick/colorspace-private.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/image.h"
#include "magick/image-private.h"
#include "magick/memory_.h"
#include "magick/monitor.h"
#include "magick/monitor-private.h"
#include "magick/quantize.h"
#include "magick/quantum.h"
#include "magick/quantum-private.h"
#include "magick/resource_.h"
#include "magick/segment.h"
#include "magick/string_.h"
#include "magick/thread-private.h"

/*
  Define declarations.
*/
#define MaxDimension  3
#define DeltaTau  0.5f
#if defined(FastClassify)
#define WeightingExponent  2.0
#define SegmentPower(ratio) (ratio)
#else
#define WeightingExponent  2.5
#define SegmentPower(ratio) pow(ratio,(double) (1.0/(weighting_exponent-1.0)));
#endif
#define Tau  5.2f

/*
  Typedef declarations.
*/
typedef struct _ExtentPacket
{
  MagickRealType
    center;

  ssize_t
    index,
    left,
    right;
} ExtentPacket;

typedef struct _Cluster
{
  struct _Cluster
    *next;

  ExtentPacket
    red,
    green,
    blue;

  ssize_t
    count,
    id;
} Cluster;

typedef struct _IntervalTree
{
  MagickRealType
    tau;

  ssize_t
    left,
    right;

  MagickRealType
    mean_stability,
    stability;

  struct _IntervalTree
    *sibling,
    *child;
} IntervalTree;

typedef struct _ZeroCrossing
{
  MagickRealType
    tau,
    histogram[256];

  short
    crossings[256];
} ZeroCrossing;

/*
  Constant declarations.
*/
static const int
  Blue = 2,
  Green = 1,
  Red = 0,
  SafeMargin = 3,
  TreeLength = 600;

/*
  Method prototypes.
*/
static MagickRealType
  OptimalTau(const ssize_t *,const double,const double,const double,
    const double,short *);

static ssize_t
  DefineRegion(const short *,ExtentPacket *);

static void
  InitializeHistogram(const Image *,ssize_t **,ExceptionInfo *),
  ScaleSpace(const ssize_t *,const MagickRealType,MagickRealType *),
  ZeroCrossHistogram(MagickRealType *,const MagickRealType,short *);

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+   C l a s s i f y                                                           %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  Classify() defines one or more classes.  Each pixel is thresholded to
%  determine which class it belongs to.  If the class is not identified it is
%  assigned to the closest class based on the fuzzy c-Means technique.
%
%  The format of the Classify method is:
%
%      MagickBooleanType Classify(Image *image,short **extrema,
%        const MagickRealType cluster_threshold,
%        const MagickRealType weighting_exponent,
%        const MagickBooleanType verbose)
%
%  A description of each parameter follows.
%
%    o image: the image.
%
%    o extrema:  Specifies a pointer to an array of integers.  They
%      represent the peaks and valleys of the histogram for each color
%      component.
%
%    o cluster_threshold:  This MagickRealType represents the minimum number of
%      pixels contained in a hexahedra before it can be considered valid
%      (expressed as a percentage).
%
%    o weighting_exponent: Specifies the membership weighting exponent.
%
%    o verbose:  A value greater than zero prints detailed information about
%      the identified classes.
%
*/
static MagickBooleanType Classify(Image *image,short **extrema,
  const MagickRealType cluster_threshold,
  const MagickRealType weighting_exponent,const MagickBooleanType verbose)
{
#define SegmentImageTag  "Segment/Image"

  CacheView
    *image_view;

  Cluster
    *cluster,
    *head,
    *last_cluster,
    *next_cluster;

  ExceptionInfo
    *exception;

  ExtentPacket
    blue,
    green,
    red;

  MagickOffsetType
    progress;

  MagickRealType
    *free_squares;

  MagickStatusType
    status;

  register ssize_t
    i;

  register MagickRealType
    *squares;

  size_t
    number_clusters;

  ssize_t
    count,
    y;

  /*
    Form clusters.
  */
  cluster=(Cluster *) NULL;
  head=(Cluster *) NULL;
  (void) ResetMagickMemory(&red,0,sizeof(red));
  (void) ResetMagickMemory(&green,0,sizeof(green));
  (void) ResetMagickMemory(&blue,0,sizeof(blue));
  while (DefineRegion(extrema[Red],&red) != 0)
  {
    green.index=0;
    while (DefineRegion(extrema[Green],&green) != 0)
    {
      blue.index=0;
      while (DefineRegion(extrema[Blue],&blue) != 0)
      {
        /*
          Allocate a new class.
        */
        if (head != (Cluster *) NULL)
          {
            cluster->next=(Cluster *) AcquireMagickMemory(
              sizeof(*cluster->next));
            cluster=cluster->next;
          }
        else
          {
            cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster));
            head=cluster;
          }
        if (cluster == (Cluster *) NULL)
          ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
            image->filename);
        /*
          Initialize a new class.
        */
        cluster->count=0;
        cluster->red=red;
        cluster->green=green;
        cluster->blue=blue;
        cluster->next=(Cluster *) NULL;
      }
    }
  }
  if (head == (Cluster *) NULL)
    {
      /*
        No classes were identified-- create one.
      */
      cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster));
      if (cluster == (Cluster *) NULL)
        ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
          image->filename);
      /*
        Initialize a new class.
      */
      cluster->count=0;
      cluster->red=red;
      cluster->green=green;
      cluster->blue=blue;
      cluster->next=(Cluster *) NULL;
      head=cluster;
    }
  /*
    Count the pixels for each cluster.
  */
  status=MagickTrue;
  count=0;
  progress=0;
  exception=(&image->exception);
  image_view=AcquireVirtualCacheView(image,exception);
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    register const PixelPacket
      *p;

    register ssize_t
      x;

    p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
    if (p == (const PixelPacket *) NULL)
      break;
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next)
        if (((ssize_t) ScaleQuantumToChar(GetPixelRed(p)) >=
             (cluster->red.left-SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(GetPixelRed(p)) <=
             (cluster->red.right+SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(GetPixelGreen(p)) >=
             (cluster->green.left-SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(GetPixelGreen(p)) <=
             (cluster->green.right+SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(GetPixelBlue(p)) >=
             (cluster->blue.left-SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(GetPixelBlue(p)) <=
             (cluster->blue.right+SafeMargin)))
          {
            /*
              Count this pixel.
            */
            count++;
            cluster->red.center+=(MagickRealType) ScaleQuantumToChar(GetPixelRed(p));
            cluster->green.center+=(MagickRealType)
              ScaleQuantumToChar(GetPixelGreen(p));
            cluster->blue.center+=(MagickRealType) ScaleQuantumToChar(GetPixelBlue(p));
            cluster->count++;
            break;
          }
      p++;
    }
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

#if defined(MAGICKCORE_OPENMP_SUPPORT)
        #pragma omp critical (MagickCore_Classify)
#endif
        proceed=SetImageProgress(image,SegmentImageTag,progress++,
          2*image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
  image_view=DestroyCacheView(image_view);
  /*
    Remove clusters that do not meet minimum cluster threshold.
  */
  count=0;
  last_cluster=head;
  next_cluster=head;
  for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster)
  {
    next_cluster=cluster->next;
    if ((cluster->count > 0) &&
        (cluster->count >= (count*cluster_threshold/100.0)))
      {
        /*
          Initialize cluster.
        */
        cluster->id=count;
        cluster->red.center/=cluster->count;
        cluster->green.center/=cluster->count;
        cluster->blue.center/=cluster->count;
        count++;
        last_cluster=cluster;
        continue;
      }
    /*
      Delete cluster.
    */
    if (cluster == head)
      head=next_cluster;
    else
      last_cluster->next=next_cluster;
    cluster=(Cluster *) RelinquishMagickMemory(cluster);
  }
  number_clusters=(size_t) count;
  if (verbose != MagickFalse)
    {
      /*
        Print cluster statistics.
      */
      (void) FormatLocaleFile(stdout,"Fuzzy C-means Statistics\n");
      (void) FormatLocaleFile(stdout,"===================\n\n");
      (void) FormatLocaleFile(stdout,"\tCluster Threshold = %g\n",(double)
        cluster_threshold);
      (void) FormatLocaleFile(stdout,"\tWeighting Exponent = %g\n",(double)
        weighting_exponent);
      (void) FormatLocaleFile(stdout,"\tTotal Number of Clusters = %.20g\n\n",
        (double) number_clusters);
      /*
        Print the total number of points per cluster.
      */
      (void) FormatLocaleFile(stdout,"\n\nNumber of Vectors Per Cluster\n");
      (void) FormatLocaleFile(stdout,"=============================\n\n");
      for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next)
        (void) FormatLocaleFile(stdout,"Cluster #%.20g = %.20g\n",(double)
          cluster->id,(double) cluster->count);
      /*
        Print the cluster extents.
      */
      (void) FormatLocaleFile(stdout,
        "\n\n\nCluster Extents:        (Vector Size: %d)\n",MaxDimension);
      (void) FormatLocaleFile(stdout,"================");
      for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next)
      {
        (void) FormatLocaleFile(stdout,"\n\nCluster #%.20g\n\n",(double)
          cluster->id);
        (void) FormatLocaleFile(stdout,
          "%.20g-%.20g  %.20g-%.20g  %.20g-%.20g\n",(double)
          cluster->red.left,(double) cluster->red.right,(double)
          cluster->green.left,(double) cluster->green.right,(double)
          cluster->blue.left,(double) cluster->blue.right);
      }
      /*
        Print the cluster center values.
      */
      (void) FormatLocaleFile(stdout,
        "\n\n\nCluster Center Values:        (Vector Size: %d)\n",MaxDimension);
      (void) FormatLocaleFile(stdout,"=====================");
      for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next)
      {
        (void) FormatLocaleFile(stdout,"\n\nCluster #%.20g\n\n",(double)
          cluster->id);
        (void) FormatLocaleFile(stdout,"%g  %g  %g\n",(double)
          cluster->red.center,(double) cluster->green.center,(double)
          cluster->blue.center);
      }
      (void) FormatLocaleFile(stdout,"\n");
    }
  if (number_clusters > 256)
    ThrowBinaryException(ImageError,"TooManyClusters",image->filename);
  /*
    Speed up distance calculations.
  */
  squares=(MagickRealType *) AcquireQuantumMemory(513UL,sizeof(*squares));
  if (squares == (MagickRealType *) NULL)
    ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
      image->filename);
  squares+=255;
  for (i=(-255); i <= 255; i++)
    squares[i]=(MagickRealType) i*(MagickRealType) i;
  /*
    Allocate image colormap.
  */
  if (AcquireImageColormap(image,number_clusters) == MagickFalse)
    ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
      image->filename);
  i=0;
  for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next)
  {
    image->colormap[i].red=ScaleCharToQuantum((unsigned char)
      (cluster->red.center+0.5));
    image->colormap[i].green=ScaleCharToQuantum((unsigned char)
      (cluster->green.center+0.5));
    image->colormap[i].blue=ScaleCharToQuantum((unsigned char)
      (cluster->blue.center+0.5));
    i++;
  }
  /*
    Do course grain classes.
  */
  exception=(&image->exception);
  image_view=AcquireAuthenticCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(progress,status) \
    magick_threads(image,image,image->rows,1)
#endif
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    Cluster
      *cluster;

    register const PixelPacket
      *restrict p;

    register IndexPacket
      *restrict indexes;

    register ssize_t
      x;

    register PixelPacket
      *restrict q;

    if (status == MagickFalse)
      continue;
    q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
    if (q == (PixelPacket *) NULL)
      {
        status=MagickFalse;
        continue;
      }
    indexes=GetCacheViewAuthenticIndexQueue(image_view);
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      SetPixelIndex(indexes+x,0);
      for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next)
      {
        if (((ssize_t) ScaleQuantumToChar(q->red) >=
             (cluster->red.left-SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(q->red) <=
             (cluster->red.right+SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(q->green) >=
             (cluster->green.left-SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(q->green) <=
             (cluster->green.right+SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(q->blue) >=
             (cluster->blue.left-SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(q->blue) <=
             (cluster->blue.right+SafeMargin)))
          {
            /*
              Classify this pixel.
            */
            SetPixelIndex(indexes+x,cluster->id);
            break;
          }
      }
      if (cluster == (Cluster *) NULL)
        {
          MagickRealType
            distance_squared,
            local_minima,
            numerator,
            ratio,
            sum;

          register ssize_t
            j,
            k;

          /*
            Compute fuzzy membership.
          */
          local_minima=0.0;
          for (j=0; j < (ssize_t) image->colors; j++)
          {
            sum=0.0;
            p=image->colormap+j;
            distance_squared=squares[(ssize_t) ScaleQuantumToChar(q->red)-
              (ssize_t) ScaleQuantumToChar(GetPixelRed(p))]+
              squares[(ssize_t) ScaleQuantumToChar(q->green)-
              (ssize_t) ScaleQuantumToChar(GetPixelGreen(p))]+
              squares[(ssize_t) ScaleQuantumToChar(q->blue)-
              (ssize_t) ScaleQuantumToChar(GetPixelBlue(p))];
            numerator=distance_squared;
            for (k=0; k < (ssize_t) image->colors; k++)
            {
              p=image->colormap+k;
              distance_squared=squares[(ssize_t) ScaleQuantumToChar(q->red)-
                (ssize_t) ScaleQuantumToChar(GetPixelRed(p))]+
                squares[(ssize_t) ScaleQuantumToChar(q->green)-
                (ssize_t) ScaleQuantumToChar(GetPixelGreen(p))]+
                squares[(ssize_t) ScaleQuantumToChar(q->blue)-
                (ssize_t) ScaleQuantumToChar(GetPixelBlue(p))];
              ratio=numerator/distance_squared;
              sum+=SegmentPower(ratio);
            }
            if ((sum != 0.0) && ((1.0/sum) > local_minima))
              {
                /*
                  Classify this pixel.
                */
                local_minima=1.0/sum;
                SetPixelIndex(indexes+x,j);
              }
          }
        }
      q++;
    }
    if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
      status=MagickFalse;
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

#if defined(MAGICKCORE_OPENMP_SUPPORT)
        #pragma omp critical (MagickCore_Classify)
#endif
        proceed=SetImageProgress(image,SegmentImageTag,progress++,
          2*image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
  image_view=DestroyCacheView(image_view);
  status&=SyncImage(image);
  /*
    Relinquish resources.
  */
  for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster)
  {
    next_cluster=cluster->next;
    cluster=(Cluster *) RelinquishMagickMemory(cluster);
  }
  squares-=255;
  free_squares=squares;
  free_squares=(MagickRealType *) RelinquishMagickMemory(free_squares);
  return(MagickTrue);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+   C o n s o l i d a t e C r o s s i n g s                                   %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  ConsolidateCrossings() guarantees that an even number of zero crossings
%  always lie between two crossings.
%
%  The format of the ConsolidateCrossings method is:
%
%      ConsolidateCrossings(ZeroCrossing *zero_crossing,
%        const size_t number_crossings)
%
%  A description of each parameter follows.
%
%    o zero_crossing: Specifies an array of structures of type ZeroCrossing.
%
%    o number_crossings: This size_t specifies the number of elements
%      in the zero_crossing array.
%
*/
static void ConsolidateCrossings(ZeroCrossing *zero_crossing,
  const size_t number_crossings)
{
  register ssize_t
    i,
    j,
    k,
    l;

  ssize_t
    center,
    correct,
    count,
    left,
    right;

  /*
    Consolidate zero crossings.
  */
  for (i=(ssize_t) number_crossings-1; i >= 0; i--)
    for (j=0; j <= 255; j++)
    {
      if (zero_crossing[i].crossings[j] == 0)
        continue;
      /*
        Find the entry that is closest to j and still preserves the
        property that there are an even number of crossings between
        intervals.
      */
      for (k=j-1; k > 0; k--)
        if (zero_crossing[i+1].crossings[k] != 0)
          break;
      left=MagickMax(k,0);
      center=j;
      for (k=j+1; k < 255; k++)
        if (zero_crossing[i+1].crossings[k] != 0)
          break;
      right=MagickMin(k,255);
      /*
        K is the zero crossing just left of j.
      */
      for (k=j-1; k > 0; k--)
        if (zero_crossing[i].crossings[k] != 0)
          break;
      if (k < 0)
        k=0;
      /*
        Check center for an even number of crossings between k and j.
      */
      correct=(-1);
      if (zero_crossing[i+1].crossings[j] != 0)
        {
          count=0;
          for (l=k+1; l < center; l++)
            if (zero_crossing[i+1].crossings[l] != 0)
              count++;
          if (((count % 2) == 0) && (center != k))
            correct=center;
        }
      /*
        Check left for an even number of crossings between k and j.
      */
      if (correct == -1)
        {
          count=0;
          for (l=k+1; l < left; l++)
            if (zero_crossing[i+1].crossings[l] != 0)
              count++;
          if (((count % 2) == 0) && (left != k))
            correct=left;
        }
      /*
        Check right for an even number of crossings between k and j.
      */
      if (correct == -1)
        {
          count=0;
          for (l=k+1; l < right; l++)
            if (zero_crossing[i+1].crossings[l] != 0)
              count++;
          if (((count % 2) == 0) && (right != k))
            correct=right;
        }
      l=(ssize_t) zero_crossing[i].crossings[j];
      zero_crossing[i].crossings[j]=0;
      if (correct != -1)
        zero_crossing[i].crossings[correct]=(short) l;
    }
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+   D e f i n e R e g i o n                                                   %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  DefineRegion() defines the left and right boundaries of a peak region.
%
%  The format of the DefineRegion method is:
%
%      ssize_t DefineRegion(const short *extrema,ExtentPacket *extents)
%
%  A description of each parameter follows.
%
%    o extrema:  Specifies a pointer to an array of integers.  They
%      represent the peaks and valleys of the histogram for each color
%      component.
%
%    o extents:  This pointer to an ExtentPacket represent the extends
%      of a particular peak or valley of a color component.
%
*/
static ssize_t DefineRegion(const short *extrema,ExtentPacket *extents)
{
  /*
    Initialize to default values.
  */
  extents->left=0;
  extents->center=0.0;
  extents->right=255;
  /*
    Find the left side (maxima).
  */
  for ( ; extents->index <= 255; extents->index++)
    if (extrema[extents->index] > 0)
      break;
  if (extents->index > 255)
    return(MagickFalse);  /* no left side - no region exists */
  extents->left=extents->index;
  /*
    Find the right side (minima).
  */
  for ( ; extents->index <= 255; extents->index++)
    if (extrema[extents->index] < 0)
      break;
  extents->right=extents->index-1;
  return(MagickTrue);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+   D e r i v a t i v e H i s t o g r a m                                     %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  DerivativeHistogram() determines the derivative of the histogram using
%  central differencing.
%
%  The format of the DerivativeHistogram method is:
%
%      DerivativeHistogram(const MagickRealType *histogram,
%        MagickRealType *derivative)
%
%  A description of each parameter follows.
%
%    o histogram: Specifies an array of MagickRealTypes representing the number
%      of pixels for each intensity of a particular color component.
%
%    o derivative: This array of MagickRealTypes is initialized by
%      DerivativeHistogram to the derivative of the histogram using central
%      differencing.
%
*/
static void DerivativeHistogram(const MagickRealType *histogram,
  MagickRealType *derivative)
{
  register ssize_t
    i,
    n;

  /*
    Compute endpoints using second order polynomial interpolation.
  */
  n=255;
  derivative[0]=(-1.5*histogram[0]+2.0*histogram[1]-0.5*histogram[2]);
  derivative[n]=(0.5*histogram[n-2]-2.0*histogram[n-1]+1.5*histogram[n]);
  /*
    Compute derivative using central differencing.
  */
  for (i=1; i < n; i++)
    derivative[i]=(histogram[i+1]-histogram[i-1])/2.0;
  return;
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+  G e t I m a g e D y n a m i c T h r e s h o l d                            %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  GetImageDynamicThreshold() returns the dynamic threshold for an image.
%
%  The format of the GetImageDynamicThreshold method is:
%
%      MagickBooleanType GetImageDynamicThreshold(const Image *image,
%        const double cluster_threshold,const double smooth_threshold,
%        MagickPixelPacket *pixel,ExceptionInfo *exception)
%
%  A description of each parameter follows.
%
%    o image: the image.
%
%    o cluster_threshold:  This MagickRealType represents the minimum number of
%      pixels contained in a hexahedra before it can be considered valid
%      (expressed as a percentage).
%
%    o smooth_threshold: the smoothing threshold eliminates noise in the second
%      derivative of the histogram.  As the value is increased, you can expect a
%      smoother second derivative.
%
%    o pixel: return the dynamic threshold here.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType GetImageDynamicThreshold(const Image *image,
  const double cluster_threshold,const double smooth_threshold,
  MagickPixelPacket *pixel,ExceptionInfo *exception)
{
  Cluster
    *background,
    *cluster,
    *object,
    *head,
    *last_cluster,
    *next_cluster;

  ExtentPacket
    blue,
    green,
    red;

  MagickBooleanType
    proceed;

  MagickRealType
    threshold;

  register const PixelPacket
    *p;

  register ssize_t
    i,
    x;

  short
    *extrema[MaxDimension];

  ssize_t
    count,
    *histogram[MaxDimension],
    y;

  /*
    Allocate histogram and extrema.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  GetMagickPixelPacket(image,pixel);
  for (i=0; i < MaxDimension; i++)
  {
    histogram[i]=(ssize_t *) AcquireQuantumMemory(256UL,sizeof(**histogram));
    extrema[i]=(short *) AcquireQuantumMemory(256UL,sizeof(**histogram));
    if ((histogram[i] == (ssize_t *) NULL) || (extrema[i] == (short *) NULL))
      {
        for (i-- ; i >= 0; i--)
        {
          extrema[i]=(short *) RelinquishMagickMemory(extrema[i]);
          histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]);
        }
        (void) ThrowMagickException(exception,GetMagickModule(),
          ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
        return(MagickFalse);
      }
  }
  /*
    Initialize histogram.
  */
  InitializeHistogram(image,histogram,exception);
  (void) OptimalTau(histogram[Red],Tau,0.2f,DeltaTau,
    (smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Red]);
  (void) OptimalTau(histogram[Green],Tau,0.2f,DeltaTau,
    (smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Green]);
  (void) OptimalTau(histogram[Blue],Tau,0.2f,DeltaTau,
    (smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Blue]);
  /*
    Form clusters.
  */
  cluster=(Cluster *) NULL;
  head=(Cluster *) NULL;
  (void) ResetMagickMemory(&red,0,sizeof(red));
  (void) ResetMagickMemory(&green,0,sizeof(green));
  (void) ResetMagickMemory(&blue,0,sizeof(blue));
  while (DefineRegion(extrema[Red],&red) != 0)
  {
    green.index=0;
    while (DefineRegion(extrema[Green],&green) != 0)
    {
      blue.index=0;
      while (DefineRegion(extrema[Blue],&blue) != 0)
      {
        /*
          Allocate a new class.
        */
        if (head != (Cluster *) NULL)
          {
            cluster->next=(Cluster *) AcquireMagickMemory(
              sizeof(*cluster->next));
            cluster=cluster->next;
          }
        else
          {
            cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster));
            head=cluster;
          }
        if (cluster == (Cluster *) NULL)
          {
            (void) ThrowMagickException(exception,GetMagickModule(),
              ResourceLimitError,"MemoryAllocationFailed","`%s'",
              image->filename);
            return(MagickFalse);
          }
        /*
          Initialize a new class.
        */
        cluster->count=0;
        cluster->red=red;
        cluster->green=green;
        cluster->blue=blue;
        cluster->next=(Cluster *) NULL;
      }
    }
  }
  if (head == (Cluster *) NULL)
    {
      /*
        No classes were identified-- create one.
      */
      cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster));
      if (cluster == (Cluster *) NULL)
        {
          (void) ThrowMagickException(exception,GetMagickModule(),
            ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
          return(MagickFalse);
        }
      /*
        Initialize a new class.
      */
      cluster->count=0;
      cluster->red=red;
      cluster->green=green;
      cluster->blue=blue;
      cluster->next=(Cluster *) NULL;
      head=cluster;
    }
  /*
    Count the pixels for each cluster.
  */
  count=0;
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    p=GetVirtualPixels(image,0,y,image->columns,1,exception);
    if (p == (const PixelPacket *) NULL)
      break;
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next)
        if (((ssize_t) ScaleQuantumToChar(GetPixelRed(p)) >=
             (cluster->red.left-SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(GetPixelRed(p)) <=
             (cluster->red.right+SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(GetPixelGreen(p)) >=
             (cluster->green.left-SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(GetPixelGreen(p)) <=
             (cluster->green.right+SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(GetPixelBlue(p)) >=
             (cluster->blue.left-SafeMargin)) &&
            ((ssize_t) ScaleQuantumToChar(GetPixelBlue(p)) <=
             (cluster->blue.right+SafeMargin)))
          {
            /*
              Count this pixel.
            */
            count++;
            cluster->red.center+=(MagickRealType)
              ScaleQuantumToChar(GetPixelRed(p));
            cluster->green.center+=(MagickRealType)
              ScaleQuantumToChar(GetPixelGreen(p));
            cluster->blue.center+=(MagickRealType)
              ScaleQuantumToChar(GetPixelBlue(p));
            cluster->count++;
            break;
          }
      p++;
    }
    proceed=SetImageProgress(image,SegmentImageTag,(MagickOffsetType) y,
      2*image->rows);
    if (proceed == MagickFalse)
      break;
  }
  /*
    Remove clusters that do not meet minimum cluster threshold.
  */
  count=0;
  last_cluster=head;
  next_cluster=head;
  for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster)
  {
    next_cluster=cluster->next;
    if ((cluster->count > 0) &&
        (cluster->count >= (count*cluster_threshold/100.0)))
      {
        /*
          Initialize cluster.
        */
        cluster->id=count;
        cluster->red.center/=cluster->count;
        cluster->green.center/=cluster->count;
        cluster->blue.center/=cluster->count;
        count++;
        last_cluster=cluster;
        continue;
      }
    /*
      Delete cluster.
    */
    if (cluster == head)
      head=next_cluster;
    else
      last_cluster->next=next_cluster;
    cluster=(Cluster *) RelinquishMagickMemory(cluster);
  }
  object=head;
  background=head;
  if (count > 1)
    {
      object=head->next;
      for (cluster=object; cluster->next != (Cluster *) NULL; )
      {
        if (cluster->count < object->count)
          object=cluster;
        cluster=cluster->next;
      }
      background=head->next;
      for (cluster=background; cluster->next != (Cluster *) NULL; )
      {
        if (cluster->count > background->count)
          background=cluster;
        cluster=cluster->next;
      }
    }
  if (background != (Cluster *) NULL)
    {
      threshold=(background->red.center+object->red.center)/2.0;
      pixel->red=(MagickRealType) ScaleCharToQuantum((unsigned char)
        (threshold+0.5));
      threshold=(background->green.center+object->green.center)/2.0;
      pixel->green=(MagickRealType) ScaleCharToQuantum((unsigned char)
        (threshold+0.5));
      threshold=(background->blue.center+object->blue.center)/2.0;
      pixel->blue=(MagickRealType) ScaleCharToQuantum((unsigned char)
        (threshold+0.5));
    }
  /*
    Relinquish resources.
  */
  for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster)
  {
    next_cluster=cluster->next;
    cluster=(Cluster *) RelinquishMagickMemory(cluster);
  }
  for (i=0; i < MaxDimension; i++)
  {
    extrema[i]=(short *) RelinquishMagickMemory(extrema[i]);
    histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]);
  }
  return(MagickTrue);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+  I n i t i a l i z e H i s t o g r a m                                      %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  InitializeHistogram() computes the histogram for an image.
%
%  The format of the InitializeHistogram method is:
%
%      InitializeHistogram(const Image *image,ssize_t **histogram)
%
%  A description of each parameter follows.
%
%    o image: Specifies a pointer to an Image structure;  returned from
%      ReadImage.
%
%    o histogram: Specifies an array of integers representing the number
%      of pixels for each intensity of a particular color component.
%
*/
static void InitializeHistogram(const Image *image,ssize_t **histogram,
  ExceptionInfo *exception)
{
  register const PixelPacket
    *p;

  register ssize_t
    i,
    x;

  ssize_t
    y;

  /*
    Initialize histogram.
  */
  for (i=0; i <= 255; i++)
  {
    histogram[Red][i]=0;
    histogram[Green][i]=0;
    histogram[Blue][i]=0;
  }
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    p=GetVirtualPixels(image,0,y,image->columns,1,exception);
    if (p == (const PixelPacket *) NULL)
      break;
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      histogram[Red][(ssize_t) ScaleQuantumToChar(GetPixelRed(p))]++;
      histogram[Green][(ssize_t) ScaleQuantumToChar(GetPixelGreen(p))]++;
      histogram[Blue][(ssize_t) ScaleQuantumToChar(GetPixelBlue(p))]++;
      p++;
    }
  }
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+   I n i t i a l i z e I n t e r v a l T r e e                               %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  InitializeIntervalTree() initializes an interval tree from the lists of
%  zero crossings.
%
%  The format of the InitializeIntervalTree method is:
%
%      InitializeIntervalTree(IntervalTree **list,ssize_t *number_nodes,
%        IntervalTree *node)
%
%  A description of each parameter follows.
%
%    o zero_crossing: Specifies an array of structures of type ZeroCrossing.
%
%    o number_crossings: This size_t specifies the number of elements
%      in the zero_crossing array.
%
*/

static void InitializeList(IntervalTree **list,ssize_t *number_nodes,
  IntervalTree *node)
{
  if (node == (IntervalTree *) NULL)
    return;
  if (node->child == (IntervalTree *) NULL)
    list[(*number_nodes)++]=node;
  InitializeList(list,number_nodes,node->sibling);
  InitializeList(list,number_nodes,node->child);
}

static void MeanStability(IntervalTree *node)
{
  register IntervalTree
    *child;

  if (node == (IntervalTree *) NULL)
    return;
  node->mean_stability=0.0;
  child=node->child;
  if (child != (IntervalTree *) NULL)
    {
      register ssize_t
        count;

      register MagickRealType
        sum;

      sum=0.0;
      count=0;
      for ( ; child != (IntervalTree *) NULL; child=child->sibling)
      {
        sum+=child->stability;
        count++;
      }
      node->mean_stability=sum/(MagickRealType) count;
    }
  MeanStability(node->sibling);
  MeanStability(node->child);
}

static void Stability(IntervalTree *node)
{
  if (node == (IntervalTree *) NULL)
    return;
  if (node->child == (IntervalTree *) NULL)
    node->stability=0.0;
  else
    node->stability=node->tau-(node->child)->tau;
  Stability(node->sibling);
  Stability(node->child);
}

static IntervalTree *InitializeIntervalTree(const ZeroCrossing *zero_crossing,
  const size_t number_crossings)
{
  IntervalTree
    *head,
    **list,
    *node,
    *root;

  register ssize_t
    i;

  ssize_t
    j,
    k,
    left,
    number_nodes;

  /*
    Allocate interval tree.
  */
  list=(IntervalTree **) AcquireQuantumMemory((size_t) TreeLength,
    sizeof(*list));
  if (list == (IntervalTree **) NULL)
    return((IntervalTree *) NULL);
  /*
    The root is the entire histogram.
  */
  root=(IntervalTree *) AcquireMagickMemory(sizeof(*root));
  root->child=(IntervalTree *) NULL;
  root->sibling=(IntervalTree *) NULL;
  root->tau=0.0;
  root->left=0;
  root->right=255;
  for (i=(-1); i < (ssize_t) number_crossings; i++)
  {
    /*
      Initialize list with all nodes with no children.
    */
    number_nodes=0;
    InitializeList(list,&number_nodes,root);
    /*
      Split list.
    */
    for (j=0; j < number_nodes; j++)
    {
      head=list[j];
      left=head->left;
      node=head;
      for (k=head->left+1; k < head->right; k++)
      {
        if (zero_crossing[i+1].crossings[k] != 0)
          {
            if (node == head)
              {
                node->child=(IntervalTree *) AcquireMagickMemory(
                  sizeof(*node->child));
                node=node->child;
              }
            else
              {
                node->sibling=(IntervalTree *) AcquireMagickMemory(
                  sizeof(*node->sibling));
                node=node->sibling;
              }
            node->tau=zero_crossing[i+1].tau;
            node->child=(IntervalTree *) NULL;
            node->sibling=(IntervalTree *) NULL;
            node->left=left;
            node->right=k;
            left=k;
          }
        }
      if (left != head->left)
        {
          node->sibling=(IntervalTree *) AcquireMagickMemory(
            sizeof(*node->sibling));
          node=node->sibling;
          node->tau=zero_crossing[i+1].tau;
          node->child=(IntervalTree *) NULL;
          node->sibling=(IntervalTree *) NULL;
          node->left=left;
          node->right=head->right;
        }
    }
  }
  /*
    Determine the stability: difference between a nodes tau and its child.
  */
  Stability(root->child);
  MeanStability(root->child);
  list=(IntervalTree **) RelinquishMagickMemory(list);
  return(root);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+   O p t i m a l T a u                                                       %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  OptimalTau() finds the optimal tau for each band of the histogram.
%
%  The format of the OptimalTau method is:
%
%    MagickRealType OptimalTau(const ssize_t *histogram,const double max_tau,
%      const double min_tau,const double delta_tau,
%      const double smooth_threshold,short *extrema)
%
%  A description of each parameter follows.
%
%    o histogram: Specifies an array of integers representing the number
%      of pixels for each intensity of a particular color component.
%
%    o extrema:  Specifies a pointer to an array of integers.  They
%      represent the peaks and valleys of the histogram for each color
%      component.
%
*/

static void ActiveNodes(IntervalTree **list,ssize_t *number_nodes,
  IntervalTree *node)
{
  if (node == (IntervalTree *) NULL)
    return;
  if (node->stability >= node->mean_stability)
    {
      list[(*number_nodes)++]=node;
      ActiveNodes(list,number_nodes,node->sibling);
    }
  else
    {
      ActiveNodes(list,number_nodes,node->sibling);
      ActiveNodes(list,number_nodes,node->child);
    }
}

static void FreeNodes(IntervalTree *node)
{
  if (node == (IntervalTree *) NULL)
    return;
  FreeNodes(node->sibling);
  FreeNodes(node->child);
  node=(IntervalTree *) RelinquishMagickMemory(node);
}

static MagickRealType OptimalTau(const ssize_t *histogram,const double max_tau,
  const double min_tau,const double delta_tau,const double smooth_threshold,
  short *extrema)
{
  IntervalTree
    **list,
    *node,
    *root;

  MagickBooleanType
    peak;

  MagickRealType
    average_tau,
    *derivative,
    *second_derivative,
    tau,
    value;

  register ssize_t
    i,
    x;

  size_t
    count,
    number_crossings;

  ssize_t
    index,
    j,
    k,
    number_nodes;

  ZeroCrossing
    *zero_crossing;

  /*
    Allocate interval tree.
  */
  list=(IntervalTree **) AcquireQuantumMemory((size_t) TreeLength,
    sizeof(*list));
  if (list == (IntervalTree **) NULL)
    return(0.0);
  /*
    Allocate zero crossing list.
  */
  count=(size_t) ((max_tau-min_tau)/delta_tau)+2;
  zero_crossing=(ZeroCrossing *) AcquireQuantumMemory((size_t) count,
    sizeof(*zero_crossing));
  if (zero_crossing == (ZeroCrossing *) NULL)
    return(0.0);
  for (i=0; i < (ssize_t) count; i++)
    zero_crossing[i].tau=(-1.0);
  /*
    Initialize zero crossing list.
  */
  derivative=(MagickRealType *) AcquireQuantumMemory(256,sizeof(*derivative));
  second_derivative=(MagickRealType *) AcquireQuantumMemory(256,
    sizeof(*second_derivative));
  if ((derivative == (MagickRealType *) NULL) ||
      (second_derivative == (MagickRealType *) NULL))
    ThrowFatalException(ResourceLimitFatalError,
      "UnableToAllocateDerivatives");
  i=0;
  for (tau=max_tau; tau >= min_tau; tau-=delta_tau)
  {
    zero_crossing[i].tau=tau;
    ScaleSpace(histogram,tau,zero_crossing[i].histogram);
    DerivativeHistogram(zero_crossing[i].histogram,derivative);
    DerivativeHistogram(derivative,second_derivative);
    ZeroCrossHistogram(second_derivative,smooth_threshold,
      zero_crossing[i].crossings);
    i++;
  }
  /*
    Add an entry for the original histogram.
  */
  zero_crossing[i].tau=0.0;
  for (j=0; j <= 255; j++)
    zero_crossing[i].histogram[j]=(MagickRealType) histogram[j];
  DerivativeHistogram(zero_crossing[i].histogram,derivative);
  DerivativeHistogram(derivative,second_derivative);
  ZeroCrossHistogram(second_derivative,smooth_threshold,
    zero_crossing[i].crossings);
  number_crossings=(size_t) i;
  derivative=(MagickRealType *) RelinquishMagickMemory(derivative);
  second_derivative=(MagickRealType *)
    RelinquishMagickMemory(second_derivative);
  /*
    Ensure the scale-space fingerprints form lines in scale-space, not loops.
  */
  ConsolidateCrossings(zero_crossing,number_crossings);
  /*
    Force endpoints to be included in the interval.
  */
  for (i=0; i <= (ssize_t) number_crossings; i++)
  {
    for (j=0; j < 255; j++)
      if (zero_crossing[i].crossings[j] != 0)
        break;
    zero_crossing[i].crossings[0]=(-zero_crossing[i].crossings[j]);
    for (j=255; j > 0; j--)
      if (zero_crossing[i].crossings[j] != 0)
        break;
    zero_crossing[i].crossings[255]=(-zero_crossing[i].crossings[j]);
  }
  /*
    Initialize interval tree.
  */
  root=InitializeIntervalTree(zero_crossing,number_crossings);
  if (root == (IntervalTree *) NULL)
    return(0.0);
  /*
    Find active nodes:  stability is greater (or equal) to the mean stability of
    its children.
  */
  number_nodes=0;
  ActiveNodes(list,&number_nodes,root->child);
  /*
    Initialize extrema.
  */
  for (i=0; i <= 255; i++)
    extrema[i]=0;
  for (i=0; i < number_nodes; i++)
  {
    /*
      Find this tau in zero crossings list.
    */
    k=0;
    node=list[i];
    for (j=0; j <= (ssize_t) number_crossings; j++)
      if (zero_crossing[j].tau == node->tau)
        k=j;
    /*
      Find the value of the peak.
    */
    peak=zero_crossing[k].crossings[node->right] == -1 ? MagickTrue :
      MagickFalse;
    index=node->left;
    value=zero_crossing[k].histogram[index];
    for (x=node->left; x <= node->right; x++)
    {
      if (peak != MagickFalse)
        {
          if (zero_crossing[k].histogram[x] > value)
            {
              value=zero_crossing[k].histogram[x];
              index=x;
            }
        }
      else
        if (zero_crossing[k].histogram[x] < value)
          {
            value=zero_crossing[k].histogram[x];
            index=x;
          }
    }
    for (x=node->left; x <= node->right; x++)
    {
      if (index == 0)
        index=256;
      if (peak != MagickFalse)
        extrema[x]=(short) index;
      else
        extrema[x]=(short) (-index);
    }
  }
  /*
    Determine the average tau.
  */
  average_tau=0.0;
  for (i=0; i < number_nodes; i++)
    average_tau+=list[i]->tau;
  average_tau/=(MagickRealType) number_nodes;
  /*
    Relinquish resources.
  */
  FreeNodes(root);
  zero_crossing=(ZeroCrossing *) RelinquishMagickMemory(zero_crossing);
  list=(IntervalTree **) RelinquishMagickMemory(list);
  return(average_tau);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+   S c a l e S p a c e                                                       %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  ScaleSpace() performs a scale-space filter on the 1D histogram.
%
%  The format of the ScaleSpace method is:
%
%      ScaleSpace(const ssize_t *histogram,const MagickRealType tau,
%        MagickRealType *scale_histogram)
%
%  A description of each parameter follows.
%
%    o histogram: Specifies an array of MagickRealTypes representing the number
%      of pixels for each intensity of a particular color component.
%
*/

static void ScaleSpace(const ssize_t *histogram,const MagickRealType tau,
  MagickRealType *scale_histogram)
{
  double
    alpha,
    beta,
    *gamma,
    sum;

  register ssize_t
    u,
    x;

  gamma=(double *) AcquireQuantumMemory(256,sizeof(*gamma));
  if (gamma == (double *) NULL)
    ThrowFatalException(ResourceLimitFatalError,"UnableToAllocateGammaMap");
  alpha=1.0/(tau*sqrt(2.0*MagickPI));
  beta=(-1.0/(2.0*tau*tau));
  for (x=0; x <= 255; x++)
    gamma[x]=0.0;
  for (x=0; x <= 255; x++)
  {
    gamma[x]=exp((double) beta*x*x);
    if (gamma[x] < MagickEpsilon)
      break;
  }
  for (x=0; x <= 255; x++)
  {
    sum=0.0;
    for (u=0; u <= 255; u++)
      sum+=(double) histogram[u]*gamma[MagickAbsoluteValue(x-u)];
    scale_histogram[x]=(MagickRealType) (alpha*sum);
  }
  gamma=(double *) RelinquishMagickMemory(gamma);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%  S e g m e n t I m a g e                                                    %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  SegmentImage() segment an image by analyzing the histograms of the color
%  components and identifying units that are homogeneous with the fuzzy
%  C-means technique.
%
%  The format of the SegmentImage method is:
%
%      MagickBooleanType SegmentImage(Image *image,
%        const ColorspaceType colorspace,const MagickBooleanType verbose,
%        const double cluster_threshold,const double smooth_threshold)
%
%  A description of each parameter follows.
%
%    o image: the image.
%
%    o colorspace: Indicate the colorspace.
%
%    o verbose:  Set to MagickTrue to print detailed information about the
%      identified classes.
%
%    o cluster_threshold:  This represents the minimum number of pixels
%      contained in a hexahedra before it can be considered valid (expressed
%      as a percentage).
%
%    o smooth_threshold: the smoothing threshold eliminates noise in the second
%      derivative of the histogram.  As the value is increased, you can expect a
%      smoother second derivative.
%
*/
MagickExport MagickBooleanType SegmentImage(Image *image,
  const ColorspaceType colorspace,const MagickBooleanType verbose,
  const double cluster_threshold,const double smooth_threshold)
{
  ColorspaceType
    previous_colorspace;

  MagickBooleanType
    status;

  register ssize_t
    i;

  short
    *extrema[MaxDimension];

  ssize_t
    *histogram[MaxDimension];

  /*
    Allocate histogram and extrema.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  for (i=0; i < MaxDimension; i++)
  {
    histogram[i]=(ssize_t *) AcquireQuantumMemory(256,sizeof(**histogram));
    extrema[i]=(short *) AcquireQuantumMemory(256,sizeof(**extrema));
    if ((histogram[i] == (ssize_t *) NULL) || (extrema[i] == (short *) NULL))
      {
        for (i-- ; i >= 0; i--)
        {
          extrema[i]=(short *) RelinquishMagickMemory(extrema[i]);
          histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]);
        }
        ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
          image->filename)
      }
  }
  /*
    Initialize histogram.
  */
  previous_colorspace=image->colorspace;
  (void) TransformImageColorspace(image,colorspace);
  InitializeHistogram(image,histogram,&image->exception);
  (void) OptimalTau(histogram[Red],Tau,0.2,DeltaTau,
    smooth_threshold == 0.0 ? 1.0 : smooth_threshold,extrema[Red]);
  (void) OptimalTau(histogram[Green],Tau,0.2,DeltaTau,
    smooth_threshold == 0.0 ? 1.0 : smooth_threshold,extrema[Green]);
  (void) OptimalTau(histogram[Blue],Tau,0.2,DeltaTau,
    smooth_threshold == 0.0 ? 1.0 : smooth_threshold,extrema[Blue]);
  /*
    Classify using the fuzzy c-Means technique.
  */
  status=Classify(image,extrema,cluster_threshold,WeightingExponent,verbose);
  (void) TransformImageColorspace(image,previous_colorspace);
  /*
    Relinquish resources.
  */
  for (i=0; i < MaxDimension; i++)
  {
    extrema[i]=(short *) RelinquishMagickMemory(extrema[i]);
    histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]);
  }
  return(status);
}

/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+   Z e r o C r o s s H i s t o g r a m                                       %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  ZeroCrossHistogram() find the zero crossings in a histogram and marks
%  directions as:  1 is negative to positive; 0 is zero crossing; and -1
%  is positive to negative.
%
%  The format of the ZeroCrossHistogram method is:
%
%      ZeroCrossHistogram(MagickRealType *second_derivative,
%        const MagickRealType smooth_threshold,short *crossings)
%
%  A description of each parameter follows.
%
%    o second_derivative: Specifies an array of MagickRealTypes representing the
%      second derivative of the histogram of a particular color component.
%
%    o crossings:  This array of integers is initialized with
%      -1, 0, or 1 representing the slope of the first derivative of the
%      of a particular color component.
%
*/
static void ZeroCrossHistogram(MagickRealType *second_derivative,
  const MagickRealType smooth_threshold,short *crossings)
{
  register ssize_t
    i;

  ssize_t
    parity;

  /*
    Merge low numbers to zero to help prevent noise.
  */
  for (i=0; i <= 255; i++)
    if ((second_derivative[i] < smooth_threshold) &&
        (second_derivative[i] >= -smooth_threshold))
      second_derivative[i]=0.0;
  /*
    Mark zero crossings.
  */
  parity=0;
  for (i=0; i <= 255; i++)
  {
    crossings[i]=0;
    if (second_derivative[i] < 0.0)
      {
        if (parity > 0)
          crossings[i]=(-1);
        parity=1;
      }
    else
      if (second_derivative[i] > 0.0)
        {
          if (parity < 0)
            crossings[i]=1;
          parity=(-1);
        }
  }
}

/* [<][>][^][v][top][bottom][index][help] */