This source file includes following definitions.
- MSCMalloc
- MSCRealloc
- MSCFree
- AcquireAlignedMemory
- AllocationPolicy
- InsertFreeBlock
- RemoveFreeBlock
- AcquireBlock
- AcquireMagickMemory
- AcquireQuantumMemory
- AcquireVirtualMemory
- CopyMagickMemory
- DestroyMagickMemory
- ExpandHeap
- GetMagickMemoryMethods
- GetVirtualMemoryBlob
- RelinquishAlignedMemory
- RelinquishMagickMemory
- RelinquishVirtualMemory
- ResetMagickMemory
- ResizeBlock
- ResizeMagickMemory
- ResizeQuantumMemory
- SetMagickMemoryMethods
#include "magick/studio.h"
#include "magick/blob.h"
#include "magick/blob-private.h"
#include "magick/exception.h"
#include "magick/exception-private.h"
#include "magick/memory_.h"
#include "magick/memory-private.h"
#include "magick/resource_.h"
#include "magick/semaphore.h"
#include "magick/string_.h"
#include "magick/utility-private.h"
#define BlockFooter(block,size) \
((size_t *) ((char *) (block)+(size)-2*sizeof(size_t)))
#define BlockHeader(block) ((size_t *) (block)-1)
#define BlockSize 4096
#define BlockThreshold 1024
#define MaxBlockExponent 16
#define MaxBlocks ((BlockThreshold/(4*sizeof(size_t)))+MaxBlockExponent+1)
#define MaxSegments 1024
#define MemoryGuard ((0xdeadbeef << 31)+0xdeafdeed)
#define NextBlock(block) ((char *) (block)+SizeOfBlock(block))
#define NextBlockInList(block) (*(void **) (block))
#define PreviousBlock(block) ((char *) (block)-(*((size_t *) (block)-2)))
#define PreviousBlockBit 0x01
#define PreviousBlockInList(block) (*((void **) (block)+1))
#define SegmentSize (2*1024*1024)
#define SizeMask (~0x01)
#define SizeOfBlock(block) (*BlockHeader(block) & SizeMask)
typedef enum
{
UndefinedVirtualMemory,
AlignedVirtualMemory,
MapVirtualMemory,
UnalignedVirtualMemory
} VirtualMemoryType;
typedef struct _DataSegmentInfo
{
void
*allocation,
*bound;
MagickBooleanType
mapped;
size_t
length;
struct _DataSegmentInfo
*previous,
*next;
} DataSegmentInfo;
typedef struct _MagickMemoryMethods
{
AcquireMemoryHandler
acquire_memory_handler;
ResizeMemoryHandler
resize_memory_handler;
DestroyMemoryHandler
destroy_memory_handler;
} MagickMemoryMethods;
struct _MemoryInfo
{
char
filename[MaxTextExtent];
VirtualMemoryType
type;
size_t
length;
void
*blob;
size_t
signature;
};
typedef struct _MemoryPool
{
size_t
allocation;
void
*blocks[MaxBlocks+1];
size_t
number_segments;
DataSegmentInfo
*segments[MaxSegments],
segment_pool[MaxSegments];
} MemoryPool;
#if defined _MSC_VER
static void* MSCMalloc(size_t size)
{
return malloc(size);
}
static void* MSCRealloc(void* ptr, size_t size)
{
return realloc(ptr, size);
}
static void MSCFree(void* ptr)
{
free(ptr);
}
#endif
static MagickMemoryMethods
memory_methods =
{
#if defined _MSC_VER
(AcquireMemoryHandler) MSCMalloc,
(ResizeMemoryHandler) MSCRealloc,
(DestroyMemoryHandler) MSCFree
#else
(AcquireMemoryHandler) malloc,
(ResizeMemoryHandler) realloc,
(DestroyMemoryHandler) free
#endif
};
#if defined(MAGICKCORE_ZERO_CONFIGURATION_SUPPORT)
static MemoryPool
memory_pool;
static SemaphoreInfo
*memory_semaphore = (SemaphoreInfo *) NULL;
static volatile DataSegmentInfo
*free_segments = (DataSegmentInfo *) NULL;
static MagickBooleanType
ExpandHeap(size_t);
#endif
MagickExport void *AcquireAlignedMemory(const size_t count,const size_t quantum)
{
#define AlignedExtent(size,alignment) \
(((size)+((alignment)-1)) & ~((alignment)-1))
size_t
alignment,
extent,
size;
void
*memory;
size=count*quantum;
if ((count == 0) || (quantum != (size/count)))
{
errno=ENOMEM;
return((void *) NULL);
}
memory=NULL;
alignment=CACHE_LINE_SIZE;
extent=AlignedExtent(size,alignment);
if ((size == 0) || (alignment < sizeof(void *)) || (extent < size))
return((void *) NULL);
#if defined(MAGICKCORE_HAVE_POSIX_MEMALIGN)
if (posix_memalign(&memory,alignment,extent) != 0)
memory=NULL;
#elif defined(MAGICKCORE_HAVE__ALIGNED_MALLOC)
memory=_aligned_malloc(extent,alignment);
#else
{
void
*p;
extent=(size+alignment-1)+sizeof(void *);
if (extent > size)
{
p=malloc(extent);
if (p != NULL)
{
memory=(void *) AlignedExtent((size_t) p+sizeof(void *),alignment);
*((void **) memory-1)=p;
}
}
}
#endif
return(memory);
}
#if defined(MAGICKCORE_ZERO_CONFIGURATION_SUPPORT)
static inline size_t AllocationPolicy(size_t size)
{
register size_t
blocksize;
assert(size != 0);
assert(size % (4*sizeof(size_t)) == 0);
if (size <= BlockThreshold)
return(size/(4*sizeof(size_t)));
if (size > (size_t) (BlockThreshold*(1L << (MaxBlockExponent-1L))))
return(MaxBlocks-1L);
blocksize=BlockThreshold/(4*sizeof(size_t));
for ( ; size > BlockThreshold; size/=2)
blocksize++;
assert(blocksize > (BlockThreshold/(4*sizeof(size_t))));
assert(blocksize < (MaxBlocks-1L));
return(blocksize);
}
static inline void InsertFreeBlock(void *block,const size_t i)
{
register void
*next,
*previous;
size_t
size;
size=SizeOfBlock(block);
previous=(void *) NULL;
next=memory_pool.blocks[i];
while ((next != (void *) NULL) && (SizeOfBlock(next) < size))
{
previous=next;
next=NextBlockInList(next);
}
PreviousBlockInList(block)=previous;
NextBlockInList(block)=next;
if (previous != (void *) NULL)
NextBlockInList(previous)=block;
else
memory_pool.blocks[i]=block;
if (next != (void *) NULL)
PreviousBlockInList(next)=block;
}
static inline void RemoveFreeBlock(void *block,const size_t i)
{
register void
*next,
*previous;
next=NextBlockInList(block);
previous=PreviousBlockInList(block);
if (previous == (void *) NULL)
memory_pool.blocks[i]=next;
else
NextBlockInList(previous)=next;
if (next != (void *) NULL)
PreviousBlockInList(next)=previous;
}
static void *AcquireBlock(size_t size)
{
register size_t
i;
register void
*block;
size=(size_t) (size+sizeof(size_t)+6*sizeof(size_t)-1) & -(4U*sizeof(size_t));
i=AllocationPolicy(size);
block=memory_pool.blocks[i];
while ((block != (void *) NULL) && (SizeOfBlock(block) < size))
block=NextBlockInList(block);
if (block == (void *) NULL)
{
i++;
while (memory_pool.blocks[i] == (void *) NULL)
i++;
block=memory_pool.blocks[i];
if (i >= MaxBlocks)
return((void *) NULL);
}
assert((*BlockHeader(NextBlock(block)) & PreviousBlockBit) == 0);
assert(SizeOfBlock(block) >= size);
RemoveFreeBlock(block,AllocationPolicy(SizeOfBlock(block)));
if (SizeOfBlock(block) > size)
{
size_t
blocksize;
void
*next;
next=(char *) block+size;
blocksize=SizeOfBlock(block)-size;
*BlockHeader(next)=blocksize;
*BlockFooter(next,blocksize)=blocksize;
InsertFreeBlock(next,AllocationPolicy(blocksize));
*BlockHeader(block)=size | (*BlockHeader(block) & ~SizeMask);
}
assert(size == SizeOfBlock(block));
*BlockHeader(NextBlock(block))|=PreviousBlockBit;
memory_pool.allocation+=size;
return(block);
}
#endif
MagickExport void *AcquireMagickMemory(const size_t size)
{
register void
*memory;
#if !defined(MAGICKCORE_ZERO_CONFIGURATION_SUPPORT)
memory=memory_methods.acquire_memory_handler(size == 0 ? 1UL : size);
#else
if (memory_semaphore == (SemaphoreInfo *) NULL)
ActivateSemaphoreInfo(&memory_semaphore);
if (free_segments == (DataSegmentInfo *) NULL)
{
LockSemaphoreInfo(memory_semaphore);
if (free_segments == (DataSegmentInfo *) NULL)
{
register ssize_t
i;
assert(2*sizeof(size_t) > (size_t) (~SizeMask));
(void) ResetMagickMemory(&memory_pool,0,sizeof(memory_pool));
memory_pool.allocation=SegmentSize;
memory_pool.blocks[MaxBlocks]=(void *) (-1);
for (i=0; i < MaxSegments; i++)
{
if (i != 0)
memory_pool.segment_pool[i].previous=
(&memory_pool.segment_pool[i-1]);
if (i != (MaxSegments-1))
memory_pool.segment_pool[i].next=(&memory_pool.segment_pool[i+1]);
}
free_segments=(&memory_pool.segment_pool[0]);
}
UnlockSemaphoreInfo(memory_semaphore);
}
LockSemaphoreInfo(memory_semaphore);
memory=AcquireBlock(size == 0 ? 1UL : size);
if (memory == (void *) NULL)
{
if (ExpandHeap(size == 0 ? 1UL : size) != MagickFalse)
memory=AcquireBlock(size == 0 ? 1UL : size);
}
UnlockSemaphoreInfo(memory_semaphore);
#endif
return(memory);
}
MagickExport void *AcquireQuantumMemory(const size_t count,const size_t quantum)
{
size_t
size;
size=count*quantum;
if ((count == 0) || (quantum != (size/count)))
{
errno=ENOMEM;
return((void *) NULL);
}
return(AcquireMagickMemory(size));
}
MagickExport MemoryInfo *AcquireVirtualMemory(const size_t count,
const size_t quantum)
{
MemoryInfo
*memory_info;
size_t
length;
length=count*quantum;
if ((count == 0) || (quantum != (length/count)))
{
errno=ENOMEM;
return((MemoryInfo *) NULL);
}
memory_info=(MemoryInfo *) MagickAssumeAligned(AcquireAlignedMemory(1,
sizeof(*memory_info)));
if (memory_info == (MemoryInfo *) NULL)
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
(void) ResetMagickMemory(memory_info,0,sizeof(*memory_info));
memory_info->length=length;
memory_info->signature=MagickSignature;
if (AcquireMagickResource(MemoryResource,length) != MagickFalse)
{
memory_info->blob=AcquireAlignedMemory(1,length);
if (memory_info->blob != NULL)
memory_info->type=AlignedVirtualMemory;
else
RelinquishMagickResource(MemoryResource,length);
}
if ((memory_info->blob == NULL) &&
(AcquireMagickResource(MapResource,length) != MagickFalse))
{
memory_info->blob=MapBlob(-1,IOMode,0,length);
if (memory_info->blob != NULL)
memory_info->type=MapVirtualMemory;
else
RelinquishMagickResource(MapResource,length);
}
if ((memory_info->blob == NULL) &&
(AcquireMagickResource(DiskResource,length) != MagickFalse))
{
int
file;
file=AcquireUniqueFileResource(memory_info->filename);
if (file == -1)
RelinquishMagickResource(DiskResource,length);
else
{
if ((lseek(file,length-1,SEEK_SET) < 0) || (write(file,"",1) != 1))
RelinquishMagickResource(DiskResource,length);
else
{
if (AcquireMagickResource(MapResource,length) == MagickFalse)
RelinquishMagickResource(DiskResource,length);
else
{
memory_info->blob=MapBlob(file,IOMode,0,length);
if (memory_info->blob != NULL)
memory_info->type=MapVirtualMemory;
else
{
RelinquishMagickResource(MapResource,length);
RelinquishMagickResource(DiskResource,length);
}
}
}
(void) close(file);
}
}
if (memory_info->blob == NULL)
{
memory_info->blob=AcquireMagickMemory(length);
if (memory_info->blob != NULL)
memory_info->type=UnalignedVirtualMemory;
}
if (memory_info->blob == NULL)
memory_info=RelinquishVirtualMemory(memory_info);
return(memory_info);
}
MagickExport void *CopyMagickMemory(void *destination,const void *source,
const size_t size)
{
register const unsigned char
*p;
register unsigned char
*q;
assert(destination != (void *) NULL);
assert(source != (const void *) NULL);
p=(const unsigned char *) source;
q=(unsigned char *) destination;
if (((q+size) < p) || (q > (p+size)))
switch (size)
{
default: return(memcpy(destination,source,size));
case 8: *q++=(*p++);
case 7: *q++=(*p++);
case 6: *q++=(*p++);
case 5: *q++=(*p++);
case 4: *q++=(*p++);
case 3: *q++=(*p++);
case 2: *q++=(*p++);
case 1: *q++=(*p++);
case 0: return(destination);
}
return(memmove(destination,source,size));
}
MagickExport void DestroyMagickMemory(void)
{
#if defined(MAGICKCORE_ZERO_CONFIGURATION_SUPPORT)
register ssize_t
i;
if (memory_semaphore == (SemaphoreInfo *) NULL)
ActivateSemaphoreInfo(&memory_semaphore);
LockSemaphoreInfo(memory_semaphore);
for (i=0; i < (ssize_t) memory_pool.number_segments; i++)
if (memory_pool.segments[i]->mapped == MagickFalse)
memory_methods.destroy_memory_handler(
memory_pool.segments[i]->allocation);
else
(void) UnmapBlob(memory_pool.segments[i]->allocation,
memory_pool.segments[i]->length);
free_segments=(DataSegmentInfo *) NULL;
(void) ResetMagickMemory(&memory_pool,0,sizeof(memory_pool));
UnlockSemaphoreInfo(memory_semaphore);
DestroySemaphoreInfo(&memory_semaphore);
#endif
}
#if defined(MAGICKCORE_ZERO_CONFIGURATION_SUPPORT)
static MagickBooleanType ExpandHeap(size_t size)
{
DataSegmentInfo
*segment_info;
MagickBooleanType
mapped;
register ssize_t
i;
register void
*block;
size_t
blocksize;
void
*segment;
blocksize=((size+12*sizeof(size_t))+SegmentSize-1) & -SegmentSize;
assert(memory_pool.number_segments < MaxSegments);
segment=MapBlob(-1,IOMode,0,blocksize);
mapped=segment != (void *) NULL ? MagickTrue : MagickFalse;
if (segment == (void *) NULL)
segment=(void *) memory_methods.acquire_memory_handler(blocksize);
if (segment == (void *) NULL)
return(MagickFalse);
segment_info=(DataSegmentInfo *) free_segments;
free_segments=segment_info->next;
segment_info->mapped=mapped;
segment_info->length=blocksize;
segment_info->allocation=segment;
segment_info->bound=(char *) segment+blocksize;
i=(ssize_t) memory_pool.number_segments-1;
for ( ; (i >= 0) && (memory_pool.segments[i]->allocation > segment); i--)
memory_pool.segments[i+1]=memory_pool.segments[i];
memory_pool.segments[i+1]=segment_info;
memory_pool.number_segments++;
size=blocksize-12*sizeof(size_t);
block=(char *) segment_info->allocation+4*sizeof(size_t);
*BlockHeader(block)=size | PreviousBlockBit;
*BlockFooter(block,size)=size;
InsertFreeBlock(block,AllocationPolicy(size));
block=NextBlock(block);
assert(block < segment_info->bound);
*BlockHeader(block)=2*sizeof(size_t);
*BlockHeader(NextBlock(block))=PreviousBlockBit;
return(MagickTrue);
}
#endif
MagickExport void GetMagickMemoryMethods(
AcquireMemoryHandler *acquire_memory_handler,
ResizeMemoryHandler *resize_memory_handler,
DestroyMemoryHandler *destroy_memory_handler)
{
assert(acquire_memory_handler != (AcquireMemoryHandler *) NULL);
assert(resize_memory_handler != (ResizeMemoryHandler *) NULL);
assert(destroy_memory_handler != (DestroyMemoryHandler *) NULL);
*acquire_memory_handler=memory_methods.acquire_memory_handler;
*resize_memory_handler=memory_methods.resize_memory_handler;
*destroy_memory_handler=memory_methods.destroy_memory_handler;
}
MagickExport void *GetVirtualMemoryBlob(const MemoryInfo *memory_info)
{
assert(memory_info != (const MemoryInfo *) NULL);
assert(memory_info->signature == MagickSignature);
return(memory_info->blob);
}
MagickExport void *RelinquishAlignedMemory(void *memory)
{
if (memory == (void *) NULL)
return((void *) NULL);
#if defined(MAGICKCORE_HAVE_POSIX_MEMALIGN)
free(memory);
#elif defined(MAGICKCORE_HAVE__ALIGNED_MALLOC)
_aligned_free(memory);
#else
free(*((void **) memory-1));
#endif
return(NULL);
}
MagickExport void *RelinquishMagickMemory(void *memory)
{
if (memory == (void *) NULL)
return((void *) NULL);
#if !defined(MAGICKCORE_ZERO_CONFIGURATION_SUPPORT)
memory_methods.destroy_memory_handler(memory);
#else
LockSemaphoreInfo(memory_semaphore);
assert((SizeOfBlock(memory) % (4*sizeof(size_t))) == 0);
assert((*BlockHeader(NextBlock(memory)) & PreviousBlockBit) != 0);
if ((*BlockHeader(memory) & PreviousBlockBit) == 0)
{
void
*previous;
previous=PreviousBlock(memory);
RemoveFreeBlock(previous,AllocationPolicy(SizeOfBlock(previous)));
*BlockHeader(previous)=(SizeOfBlock(previous)+SizeOfBlock(memory)) |
(*BlockHeader(previous) & ~SizeMask);
memory=previous;
}
if ((*BlockHeader(NextBlock(NextBlock(memory))) & PreviousBlockBit) == 0)
{
void
*next;
next=NextBlock(memory);
RemoveFreeBlock(next,AllocationPolicy(SizeOfBlock(next)));
*BlockHeader(memory)=(SizeOfBlock(memory)+SizeOfBlock(next)) |
(*BlockHeader(memory) & ~SizeMask);
}
*BlockFooter(memory,SizeOfBlock(memory))=SizeOfBlock(memory);
*BlockHeader(NextBlock(memory))&=(~PreviousBlockBit);
InsertFreeBlock(memory,AllocationPolicy(SizeOfBlock(memory)));
UnlockSemaphoreInfo(memory_semaphore);
#endif
return((void *) NULL);
}
MagickExport MemoryInfo *RelinquishVirtualMemory(MemoryInfo *memory_info)
{
assert(memory_info != (MemoryInfo *) NULL);
assert(memory_info->signature == MagickSignature);
if (memory_info->blob != (void *) NULL)
switch (memory_info->type)
{
case AlignedVirtualMemory:
{
memory_info->blob=RelinquishAlignedMemory(memory_info->blob);
RelinquishMagickResource(MemoryResource,memory_info->length);
break;
}
case MapVirtualMemory:
{
(void) UnmapBlob(memory_info->blob,memory_info->length);
memory_info->blob=NULL;
RelinquishMagickResource(MapResource,memory_info->length);
if (*memory_info->filename != '\0')
{
(void) RelinquishUniqueFileResource(memory_info->filename);
RelinquishMagickResource(DiskResource,memory_info->length);
}
break;
}
case UnalignedVirtualMemory:
default:
{
memory_info->blob=RelinquishMagickMemory(memory_info->blob);
break;
}
}
memory_info->signature=(~MagickSignature);
memory_info=(MemoryInfo *) RelinquishAlignedMemory(memory_info);
return(memory_info);
}
MagickExport void *ResetMagickMemory(void *memory,int byte,const size_t size)
{
assert(memory != (void *) NULL);
return(memset(memory,byte,size));
}
#if defined(MAGICKCORE_ZERO_CONFIGURATION_SUPPORT)
static inline void *ResizeBlock(void *block,size_t size)
{
register void
*memory;
if (block == (void *) NULL)
return(AcquireBlock(size));
memory=AcquireBlock(size);
if (memory == (void *) NULL)
return((void *) NULL);
if (size <= (SizeOfBlock(block)-sizeof(size_t)))
(void) memcpy(memory,block,size);
else
(void) memcpy(memory,block,SizeOfBlock(block)-sizeof(size_t));
memory_pool.allocation+=size;
return(memory);
}
#endif
MagickExport void *ResizeMagickMemory(void *memory,const size_t size)
{
register void
*block;
if (memory == (void *) NULL)
return(AcquireMagickMemory(size));
#if !defined(MAGICKCORE_ZERO_CONFIGURATION_SUPPORT)
block=memory_methods.resize_memory_handler(memory,size == 0 ? 1UL : size);
if (block == (void *) NULL)
memory=RelinquishMagickMemory(memory);
#else
LockSemaphoreInfo(memory_semaphore);
block=ResizeBlock(memory,size == 0 ? 1UL : size);
if (block == (void *) NULL)
{
if (ExpandHeap(size == 0 ? 1UL : size) == MagickFalse)
{
UnlockSemaphoreInfo(memory_semaphore);
memory=RelinquishMagickMemory(memory);
ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
}
block=ResizeBlock(memory,size == 0 ? 1UL : size);
assert(block != (void *) NULL);
}
UnlockSemaphoreInfo(memory_semaphore);
memory=RelinquishMagickMemory(memory);
#endif
return(block);
}
MagickExport void *ResizeQuantumMemory(void *memory,const size_t count,
const size_t quantum)
{
size_t
size;
size=count*quantum;
if ((count == 0) || (quantum != (size/count)))
{
memory=RelinquishMagickMemory(memory);
errno=ENOMEM;
return((void *) NULL);
}
return(ResizeMagickMemory(memory,size));
}
MagickExport void SetMagickMemoryMethods(
AcquireMemoryHandler acquire_memory_handler,
ResizeMemoryHandler resize_memory_handler,
DestroyMemoryHandler destroy_memory_handler)
{
if (acquire_memory_handler != (AcquireMemoryHandler) NULL)
memory_methods.acquire_memory_handler=acquire_memory_handler;
if (resize_memory_handler != (ResizeMemoryHandler) NULL)
memory_methods.resize_memory_handler=resize_memory_handler;
if (destroy_memory_handler != (DestroyMemoryHandler) NULL)
memory_methods.destroy_memory_handler=destroy_memory_handler;
}