root/Source/wtf/PartitionAllocTest.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. TestSetup
  2. TestShutdown
  3. GetFullPage
  4. FreeFullPage
  5. CycleFreeCache
  6. CycleGenericFreeCache
  7. TEST
  8. TEST
  9. TEST
  10. TEST
  11. TEST
  12. TEST
  13. TEST
  14. TEST
  15. TEST
  16. TEST
  17. TEST
  18. TEST
  19. TEST
  20. TEST
  21. TEST
  22. TEST
  23. TEST
  24. TEST
  25. TEST
  26. TEST
  27. TEST
  28. TEST

/*
 * Copyright (C) 2013 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google Inc. nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "wtf/PartitionAlloc.h"

#include "wtf/BitwiseOperations.h"
#include "wtf/OwnPtr.h"
#include "wtf/PassOwnPtr.h"
#include <gtest/gtest.h>
#include <stdlib.h>
#include <string.h>

#if OS(POSIX)
#include <sys/mman.h>

#ifndef MAP_ANONYMOUS
#define MAP_ANONYMOUS MAP_ANON
#endif
#endif // OS(POSIX)

#if !defined(MEMORY_TOOL_REPLACES_ALLOCATOR)

namespace {

static const size_t kTestMaxAllocation = 4096;
static SizeSpecificPartitionAllocator<kTestMaxAllocation> allocator;
static PartitionAllocatorGeneric genericAllocator;

static const size_t kTestAllocSize = 16;
#ifdef NDEBUG
static const size_t kPointerOffset = 0;
static const size_t kExtraAllocSize = 0;
#else
static const size_t kPointerOffset = WTF::kCookieSize;
static const size_t kExtraAllocSize = WTF::kCookieSize * 2;
#endif
static const size_t kRealAllocSize = kTestAllocSize + kExtraAllocSize;
static const size_t kTestBucketIndex = kRealAllocSize >> WTF::kBucketShift;

static void TestSetup()
{
    allocator.init();
    genericAllocator.init();
}

static void TestShutdown()
{
    // We expect no leaks in the general case. We have a test for leak
    // detection.
    EXPECT_TRUE(allocator.shutdown());
    EXPECT_TRUE(genericAllocator.shutdown());
}

static WTF::PartitionPage* GetFullPage(size_t size)
{
    size_t realSize = size + kExtraAllocSize;
    size_t bucketIdx = realSize >> WTF::kBucketShift;
    WTF::PartitionBucket* bucket = &allocator.root()->buckets()[bucketIdx];
    size_t numSlots = (bucket->numSystemPagesPerSlotSpan * WTF::kSystemPageSize) / realSize;
    void* first = 0;
    void* last = 0;
    size_t i;
    for (i = 0; i < numSlots; ++i) {
        void* ptr = partitionAlloc(allocator.root(), size);
        EXPECT_TRUE(ptr);
        if (!i)
            first = WTF::partitionCookieFreePointerAdjust(ptr);
        else if (i == numSlots - 1)
            last = WTF::partitionCookieFreePointerAdjust(ptr);
    }
    EXPECT_EQ(WTF::partitionPointerToPage(first), WTF::partitionPointerToPage(last));
    if (bucket->numSystemPagesPerSlotSpan == WTF::kNumSystemPagesPerPartitionPage)
        EXPECT_EQ(reinterpret_cast<size_t>(first) & WTF::kPartitionPageBaseMask, reinterpret_cast<size_t>(last) & WTF::kPartitionPageBaseMask);
    EXPECT_EQ(numSlots, static_cast<size_t>(bucket->activePagesHead->numAllocatedSlots));
    EXPECT_EQ(0, bucket->activePagesHead->freelistHead);
    EXPECT_TRUE(bucket->activePagesHead);
    EXPECT_TRUE(bucket->activePagesHead != &WTF::PartitionRootGeneric::gSeedPage);
    return bucket->activePagesHead;
}

static void FreeFullPage(WTF::PartitionPage* page)
{
    size_t size = page->bucket->slotSize;
    size_t numSlots = (page->bucket->numSystemPagesPerSlotSpan * WTF::kSystemPageSize) / size;
    EXPECT_EQ(numSlots, static_cast<size_t>(abs(page->numAllocatedSlots)));
    char* ptr = reinterpret_cast<char*>(partitionPageToPointer(page));
    size_t i;
    for (i = 0; i < numSlots; ++i) {
        partitionFree(ptr + kPointerOffset);
        ptr += size;
    }
}

static void CycleFreeCache(size_t size)
{
    size_t realSize = size + kExtraAllocSize;
    size_t bucketIdx = realSize >> WTF::kBucketShift;
    WTF::PartitionBucket* bucket = &allocator.root()->buckets()[bucketIdx];
    ASSERT(!bucket->activePagesHead->numAllocatedSlots);

    for (size_t i = 0; i < WTF::kMaxFreeableSpans; ++i) {
        void* ptr = partitionAlloc(allocator.root(), size);
        EXPECT_EQ(1, bucket->activePagesHead->numAllocatedSlots);
        partitionFree(ptr);
        EXPECT_EQ(0, bucket->activePagesHead->numAllocatedSlots);
        EXPECT_NE(-1, bucket->activePagesHead->freeCacheIndex);
    }
}

static void CycleGenericFreeCache(size_t size)
{
    for (size_t i = 0; i < WTF::kMaxFreeableSpans; ++i) {
        void* ptr = partitionAllocGeneric(genericAllocator.root(), size);
        WTF::PartitionPage* page = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr));
        WTF::PartitionBucket* bucket = page->bucket;
        EXPECT_EQ(1, bucket->activePagesHead->numAllocatedSlots);
        partitionFreeGeneric(genericAllocator.root(), ptr);
        EXPECT_EQ(0, bucket->activePagesHead->numAllocatedSlots);
        EXPECT_NE(-1, bucket->activePagesHead->freeCacheIndex);
    }
}

// Check that the most basic of allocate / free pairs work.
TEST(WTF_PartitionAlloc, Basic)
{
    TestSetup();
    WTF::PartitionBucket* bucket = &allocator.root()->buckets()[kTestBucketIndex];
    WTF::PartitionPage* seedPage = &WTF::PartitionRootGeneric::gSeedPage;

    EXPECT_FALSE(bucket->freePagesHead);
    EXPECT_EQ(seedPage, bucket->activePagesHead);
    EXPECT_EQ(0, bucket->activePagesHead->nextPage);

    void* ptr = partitionAlloc(allocator.root(), kTestAllocSize);
    EXPECT_TRUE(ptr);
    EXPECT_EQ(kPointerOffset, reinterpret_cast<size_t>(ptr) & WTF::kPartitionPageOffsetMask);
    // Check that the offset appears to include a guard page.
    EXPECT_EQ(WTF::kPartitionPageSize + kPointerOffset, reinterpret_cast<size_t>(ptr) & WTF::kSuperPageOffsetMask);

    partitionFree(ptr);
    // Expect that the last active page does not get tossed to the freelist.
    EXPECT_FALSE(bucket->freePagesHead);

    TestShutdown();
}

// Check that we can detect a memory leak.
TEST(WTF_PartitionAlloc, SimpleLeak)
{
    TestSetup();
    void* leakedPtr = partitionAlloc(allocator.root(), kTestAllocSize);
    (void)leakedPtr;
    void* leakedPtr2 = partitionAllocGeneric(genericAllocator.root(), kTestAllocSize);
    (void)leakedPtr2;
    EXPECT_FALSE(allocator.shutdown());
    EXPECT_FALSE(genericAllocator.shutdown());
}

// Test multiple allocations, and freelist handling.
TEST(WTF_PartitionAlloc, MultiAlloc)
{
    TestSetup();

    char* ptr1 = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestAllocSize));
    char* ptr2 = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestAllocSize));
    EXPECT_TRUE(ptr1);
    EXPECT_TRUE(ptr2);
    ptrdiff_t diff = ptr2 - ptr1;
    EXPECT_EQ(static_cast<ptrdiff_t>(kRealAllocSize), diff);

    // Check that we re-use the just-freed slot.
    partitionFree(ptr2);
    ptr2 = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestAllocSize));
    EXPECT_TRUE(ptr2);
    diff = ptr2 - ptr1;
    EXPECT_EQ(static_cast<ptrdiff_t>(kRealAllocSize), diff);
    partitionFree(ptr1);
    ptr1 = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestAllocSize));
    EXPECT_TRUE(ptr1);
    diff = ptr2 - ptr1;
    EXPECT_EQ(static_cast<ptrdiff_t>(kRealAllocSize), diff);

    char* ptr3 = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestAllocSize));
    EXPECT_TRUE(ptr3);
    diff = ptr3 - ptr1;
    EXPECT_EQ(static_cast<ptrdiff_t>(kRealAllocSize * 2), diff);

    partitionFree(ptr1);
    partitionFree(ptr2);
    partitionFree(ptr3);

    TestShutdown();
}

// Test a bucket with multiple pages.
TEST(WTF_PartitionAlloc, MultiPages)
{
    TestSetup();
    WTF::PartitionBucket* bucket = &allocator.root()->buckets()[kTestBucketIndex];

    WTF::PartitionPage* page = GetFullPage(kTestAllocSize);
    FreeFullPage(page);
    EXPECT_FALSE(bucket->freePagesHead);
    EXPECT_EQ(page, bucket->activePagesHead);
    EXPECT_EQ(0, page->nextPage);
    EXPECT_EQ(0, page->numAllocatedSlots);

    page = GetFullPage(kTestAllocSize);
    WTF::PartitionPage* page2 = GetFullPage(kTestAllocSize);

    EXPECT_EQ(page2, bucket->activePagesHead);
    EXPECT_EQ(0, page2->nextPage);
    EXPECT_EQ(reinterpret_cast<uintptr_t>(partitionPageToPointer(page)) & WTF::kSuperPageBaseMask, reinterpret_cast<uintptr_t>(partitionPageToPointer(page2)) & WTF::kSuperPageBaseMask);

    // Fully free the non-current page. It should not be freelisted because
    // there is no other immediately useable page. The other page is full.
    FreeFullPage(page);
    EXPECT_EQ(0, page->numAllocatedSlots);
    EXPECT_FALSE(bucket->freePagesHead);
    EXPECT_EQ(page, bucket->activePagesHead);

    // Allocate a new page, it should pull from the freelist.
    page = GetFullPage(kTestAllocSize);
    EXPECT_FALSE(bucket->freePagesHead);
    EXPECT_EQ(page, bucket->activePagesHead);

    FreeFullPage(page);
    FreeFullPage(page2);
    EXPECT_EQ(0, page->numAllocatedSlots);
    EXPECT_EQ(0, page2->numAllocatedSlots);
    EXPECT_EQ(0, page2->numUnprovisionedSlots);
    EXPECT_NE(-1, page2->freeCacheIndex);

    TestShutdown();
}

// Test some finer aspects of internal page transitions.
TEST(WTF_PartitionAlloc, PageTransitions)
{
    TestSetup();
    WTF::PartitionBucket* bucket = &allocator.root()->buckets()[kTestBucketIndex];

    WTF::PartitionPage* page1 = GetFullPage(kTestAllocSize);
    EXPECT_EQ(page1, bucket->activePagesHead);
    EXPECT_EQ(0, page1->nextPage);
    WTF::PartitionPage* page2 = GetFullPage(kTestAllocSize);
    EXPECT_EQ(page2, bucket->activePagesHead);
    EXPECT_EQ(0, page2->nextPage);

    // Bounce page1 back into the non-full list then fill it up again.
    char* ptr = reinterpret_cast<char*>(partitionPageToPointer(page1)) + kPointerOffset;
    partitionFree(ptr);
    EXPECT_EQ(page1, bucket->activePagesHead);
    (void) partitionAlloc(allocator.root(), kTestAllocSize);
    EXPECT_EQ(page1, bucket->activePagesHead);
    EXPECT_EQ(page2, bucket->activePagesHead->nextPage);

    // Allocating another page at this point should cause us to scan over page1
    // (which is both full and NOT our current page), and evict it from the
    // freelist. Older code had a O(n^2) condition due to failure to do this.
    WTF::PartitionPage* page3 = GetFullPage(kTestAllocSize);
    EXPECT_EQ(page3, bucket->activePagesHead);
    EXPECT_EQ(0, page3->nextPage);

    // Work out a pointer into page2 and free it.
    ptr = reinterpret_cast<char*>(partitionPageToPointer(page2)) + kPointerOffset;
    partitionFree(ptr);
    // Trying to allocate at this time should cause us to cycle around to page2
    // and find the recently freed slot.
    char* newPtr = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestAllocSize));
    EXPECT_EQ(ptr, newPtr);
    EXPECT_EQ(page2, bucket->activePagesHead);
    EXPECT_EQ(page3, page2->nextPage);

    // Work out a pointer into page1 and free it. This should pull the page
    // back into the list of available pages.
    ptr = reinterpret_cast<char*>(partitionPageToPointer(page1)) + kPointerOffset;
    partitionFree(ptr);
    // This allocation should be satisfied by page1.
    newPtr = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestAllocSize));
    EXPECT_EQ(ptr, newPtr);
    EXPECT_EQ(page1, bucket->activePagesHead);
    EXPECT_EQ(page2, page1->nextPage);

    FreeFullPage(page3);
    FreeFullPage(page2);
    FreeFullPage(page1);

    // Allocating whilst in this state exposed a bug, so keep the test.
    ptr = reinterpret_cast<char*>(partitionAlloc(allocator.root(), kTestAllocSize));
    partitionFree(ptr);

    TestShutdown();
}

// Test some corner cases relating to page transitions in the internal
// free page list metadata bucket.
TEST(WTF_PartitionAlloc, FreePageListPageTransitions)
{
    TestSetup();
    WTF::PartitionBucket* bucket = &allocator.root()->buckets()[kTestBucketIndex];

    size_t numToFillFreeListPage = WTF::kPartitionPageSize / (sizeof(WTF::PartitionPage) + kExtraAllocSize);
    // The +1 is because we need to account for the fact that the current page
    // never gets thrown on the freelist.
    ++numToFillFreeListPage;
    OwnPtr<WTF::PartitionPage*[]> pages = adoptArrayPtr(new WTF::PartitionPage*[numToFillFreeListPage]);

    size_t i;
    for (i = 0; i < numToFillFreeListPage; ++i) {
        pages[i] = GetFullPage(kTestAllocSize);
    }
    EXPECT_EQ(pages[numToFillFreeListPage - 1], bucket->activePagesHead);
    for (i = 0; i < numToFillFreeListPage; ++i)
        FreeFullPage(pages[i]);
    EXPECT_EQ(0, bucket->activePagesHead->numAllocatedSlots);
    EXPECT_NE(-1, bucket->activePagesHead->nextPage->freeCacheIndex);
    EXPECT_EQ(0, bucket->activePagesHead->nextPage->numAllocatedSlots);
    EXPECT_EQ(0, bucket->activePagesHead->nextPage->numUnprovisionedSlots);

    // Allocate / free in a different bucket size so we get control of a
    // different free page list. We need two pages because one will be the last
    // active page and not get freed.
    WTF::PartitionPage* page1 = GetFullPage(kTestAllocSize * 2);
    WTF::PartitionPage* page2 = GetFullPage(kTestAllocSize * 2);
    FreeFullPage(page1);
    FreeFullPage(page2);

    // If we re-allocate all kTestAllocSize allocations, we'll pull all the
    // free pages and end up freeing the first page for free page objects.
    // It's getting a bit tricky but a nice re-entrancy is going on:
    // alloc(kTestAllocSize) -> pulls page from free page list ->
    // free(PartitionFreepagelistEntry) -> last entry in page freed ->
    // alloc(PartitionFreepagelistEntry).
    for (i = 0; i < numToFillFreeListPage; ++i) {
        pages[i] = GetFullPage(kTestAllocSize);
    }
    EXPECT_EQ(pages[numToFillFreeListPage - 1], bucket->activePagesHead);

    // As part of the final free-up, we'll test another re-entrancy:
    // free(kTestAllocSize) -> last entry in page freed ->
    // alloc(PartitionFreepagelistEntry) -> pulls page from free page list ->
    // free(PartitionFreepagelistEntry)
    for (i = 0; i < numToFillFreeListPage; ++i)
        FreeFullPage(pages[i]);
    EXPECT_EQ(0, bucket->activePagesHead->numAllocatedSlots);
    EXPECT_NE(-1, bucket->activePagesHead->nextPage->freeCacheIndex);
    EXPECT_EQ(0, bucket->activePagesHead->nextPage->numAllocatedSlots);
    EXPECT_EQ(0, bucket->activePagesHead->nextPage->numUnprovisionedSlots);

    TestShutdown();
}

// Test a large series of allocations that cross more than one underlying
// 64KB super page allocation.
TEST(WTF_PartitionAlloc, MultiPageAllocs)
{
    TestSetup();
    // This is guaranteed to cross a super page boundary because the first
    // partition page "slot" will be taken up by a guard page.
    size_t numPagesNeeded = WTF::kNumPartitionPagesPerSuperPage;
    // The super page should begin and end in a guard so we one less page in
    // order to allocate a single page in the new super page.
    --numPagesNeeded;

    EXPECT_GT(numPagesNeeded, 1u);
    OwnPtr<WTF::PartitionPage*[]> pages;
    pages = adoptArrayPtr(new WTF::PartitionPage*[numPagesNeeded]);
    uintptr_t firstSuperPageBase = 0;
    size_t i;
    for (i = 0; i < numPagesNeeded; ++i) {
        pages[i] = GetFullPage(kTestAllocSize);
        void* storagePtr = partitionPageToPointer(pages[i]);
        if (!i)
            firstSuperPageBase = reinterpret_cast<uintptr_t>(storagePtr) & WTF::kSuperPageBaseMask;
        if (i == numPagesNeeded - 1) {
            uintptr_t secondSuperPageBase = reinterpret_cast<uintptr_t>(storagePtr) & WTF::kSuperPageBaseMask;
            uintptr_t secondSuperPageOffset = reinterpret_cast<uintptr_t>(storagePtr) & WTF::kSuperPageOffsetMask;
            EXPECT_FALSE(secondSuperPageBase == firstSuperPageBase);
            // Check that we allocated a guard page for the second page.
            EXPECT_EQ(WTF::kPartitionPageSize, secondSuperPageOffset);
        }
    }
    for (i = 0; i < numPagesNeeded; ++i)
        FreeFullPage(pages[i]);

    TestShutdown();
}

// Test the generic allocation functions that can handle arbitrary sizes and
// reallocing etc.
TEST(WTF_PartitionAlloc, GenericAlloc)
{
    TestSetup();

    void* ptr = partitionAllocGeneric(genericAllocator.root(), 1);
    EXPECT_TRUE(ptr);
    partitionFreeGeneric(genericAllocator.root(), ptr);
    ptr = partitionAllocGeneric(genericAllocator.root(), WTF::kGenericMaxBucketed + 1);
    EXPECT_TRUE(ptr);
    partitionFreeGeneric(genericAllocator.root(), ptr);

    ptr = partitionAllocGeneric(genericAllocator.root(), 1);
    EXPECT_TRUE(ptr);
    void* origPtr = ptr;
    char* charPtr = static_cast<char*>(ptr);
    *charPtr = 'A';

    // Change the size of the realloc, remaining inside the same bucket.
    void* newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, 2);
    EXPECT_EQ(ptr, newPtr);
    newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, 1);
    EXPECT_EQ(ptr, newPtr);
    newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, WTF::kGenericSmallestBucket);
    EXPECT_EQ(ptr, newPtr);

    // Change the size of the realloc, switching buckets.
    newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, WTF::kGenericSmallestBucket + 1);
    EXPECT_NE(newPtr, ptr);
    // Check that the realloc copied correctly.
    char* newCharPtr = static_cast<char*>(newPtr);
    EXPECT_EQ(*newCharPtr, 'A');
#ifndef NDEBUG
    // Subtle: this checks for an old bug where we copied too much from the
    // source of the realloc. The condition can be detected by a trashing of
    // the uninitialized value in the space of the upsized allocation.
    EXPECT_EQ(WTF::kUninitializedByte, static_cast<unsigned char>(*(newCharPtr + WTF::kGenericSmallestBucket)));
#endif
    *newCharPtr = 'B';
    // The realloc moved. To check that the old allocation was freed, we can
    // do an alloc of the old allocation size and check that the old allocation
    // address is at the head of the freelist and reused.
    void* reusedPtr = partitionAllocGeneric(genericAllocator.root(), 1);
    EXPECT_EQ(reusedPtr, origPtr);
    partitionFreeGeneric(genericAllocator.root(), reusedPtr);

    // Downsize the realloc.
    ptr = newPtr;
    newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, 1);
    EXPECT_EQ(newPtr, origPtr);
    newCharPtr = static_cast<char*>(newPtr);
    EXPECT_EQ(*newCharPtr, 'B');
    *newCharPtr = 'C';

    // Upsize the realloc to outside the partition.
    ptr = newPtr;
    newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, WTF::kGenericMaxBucketed + 1);
    EXPECT_NE(newPtr, ptr);
    newCharPtr = static_cast<char*>(newPtr);
    EXPECT_EQ(*newCharPtr, 'C');
    *newCharPtr = 'D';

    // Upsize and downsize the realloc, remaining outside the partition.
    ptr = newPtr;
    newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, WTF::kGenericMaxBucketed * 10);
    newCharPtr = static_cast<char*>(newPtr);
    EXPECT_EQ(*newCharPtr, 'D');
    *newCharPtr = 'E';
    ptr = newPtr;
    newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, WTF::kGenericMaxBucketed * 2);
    newCharPtr = static_cast<char*>(newPtr);
    EXPECT_EQ(*newCharPtr, 'E');
    *newCharPtr = 'F';

    // Downsize the realloc to inside the partition.
    ptr = newPtr;
    newPtr = partitionReallocGeneric(genericAllocator.root(), ptr, 1);
    EXPECT_NE(newPtr, ptr);
    EXPECT_EQ(newPtr, origPtr);
    newCharPtr = static_cast<char*>(newPtr);
    EXPECT_EQ(*newCharPtr, 'F');

    partitionFreeGeneric(genericAllocator.root(), newPtr);
    TestShutdown();
}

// Test the generic allocation functions can handle some specific sizes of
// interest.
TEST(WTF_PartitionAlloc, GenericAllocSizes)
{
    TestSetup();

    void* ptr = partitionAllocGeneric(genericAllocator.root(), 0);
    EXPECT_TRUE(ptr);
    partitionFreeGeneric(genericAllocator.root(), ptr);

    // kPartitionPageSize is interesting because it results in just one
    // allocation per page, which tripped up some corner cases.
    size_t size = WTF::kPartitionPageSize - kExtraAllocSize;
    ptr = partitionAllocGeneric(genericAllocator.root(), size);
    EXPECT_TRUE(ptr);
    void* ptr2 = partitionAllocGeneric(genericAllocator.root(), size);
    EXPECT_TRUE(ptr2);
    partitionFreeGeneric(genericAllocator.root(), ptr);
    // Should be freeable at this point.
    WTF::PartitionPage* page = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr));
    EXPECT_NE(-1, page->freeCacheIndex);
    partitionFreeGeneric(genericAllocator.root(), ptr2);

    size = (((WTF::kPartitionPageSize * WTF::kMaxPartitionPagesPerSlotSpan) - WTF::kSystemPageSize) / 2) - kExtraAllocSize;
    ptr = partitionAllocGeneric(genericAllocator.root(), size);
    EXPECT_TRUE(ptr);
    memset(ptr, 'A', size);
    ptr2 = partitionAllocGeneric(genericAllocator.root(), size);
    EXPECT_TRUE(ptr2);
    void* ptr3 = partitionAllocGeneric(genericAllocator.root(), size);
    EXPECT_TRUE(ptr3);
    void* ptr4 = partitionAllocGeneric(genericAllocator.root(), size);
    EXPECT_TRUE(ptr4);

    page = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr));
    WTF::PartitionPage* page2 = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr3));
    EXPECT_NE(page, page2);

    partitionFreeGeneric(genericAllocator.root(), ptr);
    partitionFreeGeneric(genericAllocator.root(), ptr3);
    partitionFreeGeneric(genericAllocator.root(), ptr2);
    // Should be freeable at this point.
    EXPECT_NE(-1, page->freeCacheIndex);
    EXPECT_EQ(0, page->numAllocatedSlots);
    EXPECT_EQ(0, page->numUnprovisionedSlots);
    void* newPtr = partitionAllocGeneric(genericAllocator.root(), size);
    EXPECT_EQ(ptr3, newPtr);
    newPtr = partitionAllocGeneric(genericAllocator.root(), size);
    EXPECT_EQ(ptr2, newPtr);
#if OS(LINUX) && defined(NDEBUG)
    // On Linux, we have a guarantee that freelisting a page should cause its
    // contents to be nulled out. We check for null here to detect an bug we
    // had where a large slot size was causing us to not properly free all
    // resources back to the system.
    // We only run the check in optimized builds because the debug build
    // writes over the allocated area with an "uninitialized" byte pattern.
    EXPECT_EQ(0, *(reinterpret_cast<char*>(newPtr) + (size - 1)));
#endif
    partitionFreeGeneric(genericAllocator.root(), newPtr);
    partitionFreeGeneric(genericAllocator.root(), ptr3);
    partitionFreeGeneric(genericAllocator.root(), ptr4);

    // Can we allocate a massive (512MB) size?
    ptr = partitionAllocGeneric(genericAllocator.root(), 512 * 1024 * 1024);
    partitionFreeGeneric(genericAllocator.root(), ptr);

    // Check a more reasonable, but still direct mapped, size.
    // Chop a system page and a byte off to test for rounding errors.
    size = 20 * 1024 * 1024;
    size -= WTF::kSystemPageSize;
    size -= 1;
    ptr = partitionAllocGeneric(genericAllocator.root(), size);
    char* charPtr = reinterpret_cast<char*>(ptr);
    *(charPtr + (size - 1)) = 'A';
    partitionFreeGeneric(genericAllocator.root(), ptr);

    // Can we free null?
    partitionFreeGeneric(genericAllocator.root(), 0);

    // Do we correctly get a null for a failed allocation?
    EXPECT_EQ(0, partitionAllocGenericFlags(genericAllocator.root(), WTF::PartitionAllocReturnNull, 3u * 1024 * 1024 * 1024));

    TestShutdown();
}

// Test that we can fetch the real allocated size after an allocation.
TEST(WTF_PartitionAlloc, GenericAllocGetSize)
{
    TestSetup();

    void* ptr;
    size_t requestedSize, actualSize, predictedSize;

    EXPECT_TRUE(partitionAllocSupportsGetSize());

    // Allocate something small.
    requestedSize = 511 - kExtraAllocSize;
    predictedSize = partitionAllocActualSize(genericAllocator.root(), requestedSize);
    ptr = partitionAllocGeneric(genericAllocator.root(), requestedSize);
    EXPECT_TRUE(ptr);
    actualSize = partitionAllocGetSize(ptr);
    EXPECT_EQ(predictedSize, actualSize);
    EXPECT_LT(requestedSize, actualSize);
    partitionFreeGeneric(genericAllocator.root(), ptr);

    // Allocate a size that should be a perfect match for a bucket, because it
    // is an exact power of 2.
    requestedSize = (256 * 1024) - kExtraAllocSize;
    predictedSize = partitionAllocActualSize(genericAllocator.root(), requestedSize);
    ptr = partitionAllocGeneric(genericAllocator.root(), requestedSize);
    EXPECT_TRUE(ptr);
    actualSize = partitionAllocGetSize(ptr);
    EXPECT_EQ(predictedSize, actualSize);
    EXPECT_EQ(requestedSize, actualSize);
    partitionFreeGeneric(genericAllocator.root(), ptr);

    // Allocate a size that is a system page smaller than a bucket. GetSize()
    // should return a larger size than we asked for now.
    requestedSize = (256 * 1024) - WTF::kSystemPageSize - kExtraAllocSize;
    predictedSize = partitionAllocActualSize(genericAllocator.root(), requestedSize);
    ptr = partitionAllocGeneric(genericAllocator.root(), requestedSize);
    EXPECT_TRUE(ptr);
    actualSize = partitionAllocGetSize(ptr);
    EXPECT_EQ(predictedSize, actualSize);
    EXPECT_EQ(requestedSize + WTF::kSystemPageSize, actualSize);
    // Check that we can write at the end of the reported size too.
    char* charPtr = reinterpret_cast<char*>(ptr);
    *(charPtr + (actualSize - 1)) = 'A';
    partitionFreeGeneric(genericAllocator.root(), ptr);

    // Allocate something very large, and uneven.
    requestedSize = 512 * 1024 * 1024 - 1;
    predictedSize = partitionAllocActualSize(genericAllocator.root(), requestedSize);
    ptr = partitionAllocGeneric(genericAllocator.root(), requestedSize);
    EXPECT_TRUE(ptr);
    actualSize = partitionAllocGetSize(ptr);
    EXPECT_EQ(predictedSize, actualSize);
    EXPECT_LT(requestedSize, actualSize);
    partitionFreeGeneric(genericAllocator.root(), ptr);

    // Too large allocation.
    requestedSize = INT_MAX;
    predictedSize = partitionAllocActualSize(genericAllocator.root(), requestedSize);
    EXPECT_EQ(requestedSize, predictedSize);

    TestShutdown();
}

// Test the realloc() contract.
TEST(WTF_PartitionAlloc, Realloc)
{
    TestSetup();

    // realloc(0, size) should be equivalent to malloc().
    void* ptr = partitionReallocGeneric(genericAllocator.root(), 0, kTestAllocSize);
    memset(ptr, 'A', kTestAllocSize);
    WTF::PartitionPage* page = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr));
    // realloc(ptr, 0) should be equivalent to free().
    void* ptr2 = partitionReallocGeneric(genericAllocator.root(), ptr, 0);
    EXPECT_EQ(0, ptr2);
    EXPECT_EQ(WTF::partitionCookieFreePointerAdjust(ptr), page->freelistHead);

    // Test that growing an allocation with realloc() copies everything from the
    // old allocation.
    size_t size = WTF::kSystemPageSize - kExtraAllocSize;
    EXPECT_EQ(size, partitionAllocActualSize(genericAllocator.root(), size));
    ptr = partitionAllocGeneric(genericAllocator.root(), size);
    memset(ptr, 'A', size);
    ptr2 = partitionReallocGeneric(genericAllocator.root(), ptr, size + 1);
    EXPECT_NE(ptr, ptr2);
    char* charPtr2 = static_cast<char*>(ptr2);
    EXPECT_EQ('A', charPtr2[0]);
    EXPECT_EQ('A', charPtr2[size - 1]);
#ifndef NDEBUG
    EXPECT_EQ(WTF::kUninitializedByte, static_cast<unsigned char>(charPtr2[size]));
#endif

    // Test that shrinking an allocation with realloc() also copies everything
    // from the old allocation.
    ptr = partitionReallocGeneric(genericAllocator.root(), ptr2, size - 1);
    EXPECT_NE(ptr2, ptr);
    char* charPtr = static_cast<char*>(ptr);
    EXPECT_EQ('A', charPtr[0]);
    EXPECT_EQ('A', charPtr[size - 2]);
#ifndef NDEBUG
    EXPECT_EQ(WTF::kUninitializedByte, static_cast<unsigned char>(charPtr[size - 1]));
#endif

    partitionFreeGeneric(genericAllocator.root(), ptr);

    // Test that shrinking a direct mapped allocation happens in-place (even
    // though the new size is smaller than kGenericMaxBucketed).
    size = WTF::kGenericMaxBucketed + 16 * WTF::kSystemPageSize;
    ptr = partitionAllocGeneric(genericAllocator.root(), size);
    size_t actualSize = partitionAllocGetSize(ptr);
    ptr2 = partitionReallocGeneric(genericAllocator.root(), ptr, WTF::kGenericMaxBucketed - 16 * WTF::kSystemPageSize);
    EXPECT_EQ(ptr, ptr2);
    EXPECT_EQ(actualSize - 32 * WTF::kSystemPageSize, partitionAllocGetSize(ptr2));

    // Test that a previously in-place shrunk direct mapped allocation can be
    // expanded up again within its original size.
    ptr = partitionReallocGeneric(genericAllocator.root(), ptr2, size - WTF::kSystemPageSize);
    EXPECT_EQ(ptr2, ptr);
    EXPECT_EQ(actualSize - WTF::kSystemPageSize, partitionAllocGetSize(ptr));

    partitionFreeGeneric(genericAllocator.root(), ptr);

    TestShutdown();
}

// Tests the handing out of freelists for partial pages.
TEST(WTF_PartitionAlloc, PartialPageFreelists)
{
    TestSetup();

    size_t bigSize = allocator.root()->maxAllocation - kExtraAllocSize;
    EXPECT_EQ(WTF::kSystemPageSize - WTF::kAllocationGranularity, bigSize + kExtraAllocSize);
    size_t bucketIdx = (bigSize + kExtraAllocSize) >> WTF::kBucketShift;
    WTF::PartitionBucket* bucket = &allocator.root()->buckets()[bucketIdx];
    EXPECT_EQ(0, bucket->freePagesHead);

    void* ptr = partitionAlloc(allocator.root(), bigSize);
    EXPECT_TRUE(ptr);

    WTF::PartitionPage* page = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr));
    size_t totalSlots = (page->bucket->numSystemPagesPerSlotSpan * WTF::kSystemPageSize) / (bigSize + kExtraAllocSize);
    EXPECT_EQ(4u, totalSlots);
    // The freelist should have one entry, because we were able to exactly fit
    // one object slot and one freelist pointer (the null that the head points
    // to) into a system page.
    EXPECT_TRUE(page->freelistHead);
    EXPECT_EQ(1, page->numAllocatedSlots);
    EXPECT_EQ(2, page->numUnprovisionedSlots);

    void* ptr2 = partitionAlloc(allocator.root(), bigSize);
    EXPECT_TRUE(ptr2);
    EXPECT_FALSE(page->freelistHead);
    EXPECT_EQ(2, page->numAllocatedSlots);
    EXPECT_EQ(2, page->numUnprovisionedSlots);

    void* ptr3 = partitionAlloc(allocator.root(), bigSize);
    EXPECT_TRUE(ptr3);
    EXPECT_TRUE(page->freelistHead);
    EXPECT_EQ(3, page->numAllocatedSlots);
    EXPECT_EQ(0, page->numUnprovisionedSlots);

    void* ptr4 = partitionAlloc(allocator.root(), bigSize);
    EXPECT_TRUE(ptr4);
    EXPECT_FALSE(page->freelistHead);
    EXPECT_EQ(4, page->numAllocatedSlots);
    EXPECT_EQ(0, page->numUnprovisionedSlots);

    void* ptr5 = partitionAlloc(allocator.root(), bigSize);
    EXPECT_TRUE(ptr5);

    WTF::PartitionPage* page2 = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr5));
    EXPECT_EQ(1, page2->numAllocatedSlots);

    // Churn things a little whilst there's a partial page freelist.
    partitionFree(ptr);
    ptr = partitionAlloc(allocator.root(), bigSize);
    void* ptr6 = partitionAlloc(allocator.root(), bigSize);

    partitionFree(ptr);
    partitionFree(ptr2);
    partitionFree(ptr3);
    partitionFree(ptr4);
    partitionFree(ptr5);
    partitionFree(ptr6);
    EXPECT_NE(-1, page->freeCacheIndex);
    EXPECT_NE(-1, page2->freeCacheIndex);
    EXPECT_TRUE(page2->freelistHead);
    EXPECT_EQ(0, page2->numAllocatedSlots);

    // And test a couple of sizes that do not cross kSystemPageSize with a single allocation.
    size_t mediumSize = (WTF::kSystemPageSize / 2) - kExtraAllocSize;
    bucketIdx = (mediumSize + kExtraAllocSize) >> WTF::kBucketShift;
    bucket = &allocator.root()->buckets()[bucketIdx];
    EXPECT_EQ(0, bucket->freePagesHead);

    ptr = partitionAlloc(allocator.root(), mediumSize);
    EXPECT_TRUE(ptr);
    page = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr));
    EXPECT_EQ(1, page->numAllocatedSlots);
    totalSlots = (page->bucket->numSystemPagesPerSlotSpan * WTF::kSystemPageSize) / (mediumSize + kExtraAllocSize);
    size_t firstPageSlots = WTF::kSystemPageSize / (mediumSize + kExtraAllocSize);
    EXPECT_EQ(2u, firstPageSlots);
    EXPECT_EQ(totalSlots - firstPageSlots, page->numUnprovisionedSlots);

    partitionFree(ptr);

    size_t smallSize = (WTF::kSystemPageSize / 4) - kExtraAllocSize;
    bucketIdx = (smallSize + kExtraAllocSize) >> WTF::kBucketShift;
    bucket = &allocator.root()->buckets()[bucketIdx];
    EXPECT_EQ(0, bucket->freePagesHead);

    ptr = partitionAlloc(allocator.root(), smallSize);
    EXPECT_TRUE(ptr);
    page = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr));
    EXPECT_EQ(1, page->numAllocatedSlots);
    totalSlots = (page->bucket->numSystemPagesPerSlotSpan * WTF::kSystemPageSize) / (smallSize + kExtraAllocSize);
    firstPageSlots = WTF::kSystemPageSize / (smallSize + kExtraAllocSize);
    EXPECT_EQ(totalSlots - firstPageSlots, page->numUnprovisionedSlots);

    partitionFree(ptr);
    EXPECT_TRUE(page->freelistHead);
    EXPECT_EQ(0, page->numAllocatedSlots);

    size_t verySmallSize = 32 - kExtraAllocSize;
    bucketIdx = (verySmallSize + kExtraAllocSize) >> WTF::kBucketShift;
    bucket = &allocator.root()->buckets()[bucketIdx];
    EXPECT_EQ(0, bucket->freePagesHead);

    ptr = partitionAlloc(allocator.root(), verySmallSize);
    EXPECT_TRUE(ptr);
    page = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr));
    EXPECT_EQ(1, page->numAllocatedSlots);
    totalSlots = (page->bucket->numSystemPagesPerSlotSpan * WTF::kSystemPageSize) / (verySmallSize + kExtraAllocSize);
    firstPageSlots = WTF::kSystemPageSize / (verySmallSize + kExtraAllocSize);
    EXPECT_EQ(totalSlots - firstPageSlots, page->numUnprovisionedSlots);

    partitionFree(ptr);
    EXPECT_TRUE(page->freelistHead);
    EXPECT_EQ(0, page->numAllocatedSlots);

    // And try an allocation size (against the generic allocator) that is
    // larger than a system page.
    size_t pageAndAHalfSize = (WTF::kSystemPageSize + (WTF::kSystemPageSize / 2)) - kExtraAllocSize;
    ptr = partitionAllocGeneric(genericAllocator.root(), pageAndAHalfSize);
    EXPECT_TRUE(ptr);
    page = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr));
    EXPECT_EQ(1, page->numAllocatedSlots);
    EXPECT_TRUE(page->freelistHead);
    totalSlots = (page->bucket->numSystemPagesPerSlotSpan * WTF::kSystemPageSize) / (pageAndAHalfSize + kExtraAllocSize);
    EXPECT_EQ(totalSlots - 2, page->numUnprovisionedSlots);
    partitionFreeGeneric(genericAllocator.root(), ptr);

    // And then make sure than exactly the page size only faults one page.
    size_t pageSize = WTF::kSystemPageSize - kExtraAllocSize;
    ptr = partitionAllocGeneric(genericAllocator.root(), pageSize);
    EXPECT_TRUE(ptr);
    page = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr));
    EXPECT_EQ(1, page->numAllocatedSlots);
    EXPECT_FALSE(page->freelistHead);
    totalSlots = (page->bucket->numSystemPagesPerSlotSpan * WTF::kSystemPageSize) / (pageSize + kExtraAllocSize);
    EXPECT_EQ(totalSlots - 1, page->numUnprovisionedSlots);
    partitionFreeGeneric(genericAllocator.root(), ptr);

    TestShutdown();
}

// Test some of the fragmentation-resistant properties of the allocator.
TEST(WTF_PartitionAlloc, PageRefilling)
{
    TestSetup();
    WTF::PartitionBucket* bucket = &allocator.root()->buckets()[kTestBucketIndex];

    // Grab two full pages and a non-full page.
    WTF::PartitionPage* page1 = GetFullPage(kTestAllocSize);
    WTF::PartitionPage* page2 = GetFullPage(kTestAllocSize);
    void* ptr = partitionAlloc(allocator.root(), kTestAllocSize);
    EXPECT_TRUE(ptr);
    EXPECT_NE(page1, bucket->activePagesHead);
    EXPECT_NE(page2, bucket->activePagesHead);
    WTF::PartitionPage* page = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr));
    EXPECT_EQ(1, page->numAllocatedSlots);

    // Work out a pointer into page2 and free it; and then page1 and free it.
    char* ptr2 = reinterpret_cast<char*>(WTF::partitionPageToPointer(page1)) + kPointerOffset;
    partitionFree(ptr2);
    ptr2 = reinterpret_cast<char*>(WTF::partitionPageToPointer(page2)) + kPointerOffset;
    partitionFree(ptr2);

    // If we perform two allocations from the same bucket now, we expect to
    // refill both the nearly full pages.
    (void) partitionAlloc(allocator.root(), kTestAllocSize);
    (void) partitionAlloc(allocator.root(), kTestAllocSize);
    EXPECT_EQ(1, page->numAllocatedSlots);

    FreeFullPage(page2);
    FreeFullPage(page1);
    partitionFree(ptr);

    TestShutdown();
}

// Basic tests to ensure that allocations work for partial page buckets.
TEST(WTF_PartitionAlloc, PartialPages)
{
    TestSetup();

    // Find a size that is backed by a partial partition page.
    size_t size = sizeof(void*);
    WTF::PartitionBucket* bucket = 0;
    while (size < kTestMaxAllocation) {
        bucket = &allocator.root()->buckets()[size >> WTF::kBucketShift];
        if (bucket->numSystemPagesPerSlotSpan % WTF::kNumSystemPagesPerPartitionPage)
            break;
        size += sizeof(void*);
    }
    EXPECT_LT(size, kTestMaxAllocation);

    WTF::PartitionPage* page1 = GetFullPage(size);
    WTF::PartitionPage* page2 = GetFullPage(size);
    FreeFullPage(page2);
    FreeFullPage(page1);

    TestShutdown();
}

// Test correct handling if our mapping collides with another.
TEST(WTF_PartitionAlloc, MappingCollision)
{
    TestSetup();
    // The -2 is because the first and last partition pages in a super page are
    // guard pages.
    size_t numPartitionPagesNeeded = WTF::kNumPartitionPagesPerSuperPage - 2;
    OwnPtr<WTF::PartitionPage*[]> firstSuperPagePages = adoptArrayPtr(new WTF::PartitionPage*[numPartitionPagesNeeded]);
    OwnPtr<WTF::PartitionPage*[]> secondSuperPagePages = adoptArrayPtr(new WTF::PartitionPage*[numPartitionPagesNeeded]);

    size_t i;
    for (i = 0; i < numPartitionPagesNeeded; ++i)
        firstSuperPagePages[i] = GetFullPage(kTestAllocSize);

    char* pageBase = reinterpret_cast<char*>(WTF::partitionPageToPointer(firstSuperPagePages[0]));
    EXPECT_EQ(WTF::kPartitionPageSize, reinterpret_cast<uintptr_t>(pageBase) & WTF::kSuperPageOffsetMask);
    pageBase -= WTF::kPartitionPageSize;
    // Map a single system page either side of the mapping for our allocations,
    // with the goal of tripping up alignment of the next mapping.
    void* map1 = WTF::allocPages(pageBase - WTF::kPageAllocationGranularity, WTF::kPageAllocationGranularity, WTF::kPageAllocationGranularity);
    EXPECT_TRUE(map1);
    void* map2 = WTF::allocPages(pageBase + WTF::kSuperPageSize, WTF::kPageAllocationGranularity, WTF::kPageAllocationGranularity);
    EXPECT_TRUE(map2);
    WTF::setSystemPagesInaccessible(map1, WTF::kPageAllocationGranularity);
    WTF::setSystemPagesInaccessible(map2, WTF::kPageAllocationGranularity);

    for (i = 0; i < numPartitionPagesNeeded; ++i)
        secondSuperPagePages[i] = GetFullPage(kTestAllocSize);

    WTF::freePages(map1, WTF::kPageAllocationGranularity);
    WTF::freePages(map2, WTF::kPageAllocationGranularity);

    pageBase = reinterpret_cast<char*>(partitionPageToPointer(secondSuperPagePages[0]));
    EXPECT_EQ(WTF::kPartitionPageSize, reinterpret_cast<uintptr_t>(pageBase) & WTF::kSuperPageOffsetMask);
    pageBase -= WTF::kPartitionPageSize;
    // Map a single system page either side of the mapping for our allocations,
    // with the goal of tripping up alignment of the next mapping.
    map1 = WTF::allocPages(pageBase - WTF::kPageAllocationGranularity, WTF::kPageAllocationGranularity, WTF::kPageAllocationGranularity);
    EXPECT_TRUE(map1);
    map2 = WTF::allocPages(pageBase + WTF::kSuperPageSize, WTF::kPageAllocationGranularity, WTF::kPageAllocationGranularity);
    EXPECT_TRUE(map2);
    WTF::setSystemPagesInaccessible(map1, WTF::kPageAllocationGranularity);
    WTF::setSystemPagesInaccessible(map2, WTF::kPageAllocationGranularity);

    WTF::PartitionPage* pageInThirdSuperPage = GetFullPage(kTestAllocSize);
    WTF::freePages(map1, WTF::kPageAllocationGranularity);
    WTF::freePages(map2, WTF::kPageAllocationGranularity);

    EXPECT_EQ(0u, reinterpret_cast<uintptr_t>(partitionPageToPointer(pageInThirdSuperPage)) & WTF::kPartitionPageOffsetMask);

    // And make sure we really did get a page in a new superpage.
    EXPECT_NE(reinterpret_cast<uintptr_t>(partitionPageToPointer(firstSuperPagePages[0])) & WTF::kSuperPageBaseMask, reinterpret_cast<uintptr_t>(partitionPageToPointer(pageInThirdSuperPage)) & WTF::kSuperPageBaseMask);
    EXPECT_NE(reinterpret_cast<uintptr_t>(partitionPageToPointer(secondSuperPagePages[0])) & WTF::kSuperPageBaseMask, reinterpret_cast<uintptr_t>(partitionPageToPointer(pageInThirdSuperPage)) & WTF::kSuperPageBaseMask);

    FreeFullPage(pageInThirdSuperPage);
    for (i = 0; i < numPartitionPagesNeeded; ++i) {
        FreeFullPage(firstSuperPagePages[i]);
        FreeFullPage(secondSuperPagePages[i]);
    }

    TestShutdown();
}

// Tests that pages in the free page cache do get freed as appropriate.
TEST(WTF_PartitionAlloc, FreeCache)
{
    TestSetup();

    size_t bigSize = allocator.root()->maxAllocation - kExtraAllocSize;
    size_t bucketIdx = (bigSize + kExtraAllocSize) >> WTF::kBucketShift;
    WTF::PartitionBucket* bucket = &allocator.root()->buckets()[bucketIdx];

    void* ptr = partitionAlloc(allocator.root(), bigSize);
    EXPECT_TRUE(ptr);
    WTF::PartitionPage* page = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr));
    EXPECT_EQ(0, bucket->freePagesHead);
    EXPECT_EQ(1, page->numAllocatedSlots);
    partitionFree(ptr);
    EXPECT_EQ(0, page->numAllocatedSlots);
    EXPECT_NE(-1, page->freeCacheIndex);
    EXPECT_TRUE(page->freelistHead);

    CycleFreeCache(kTestAllocSize);

    // Flushing the cache should have really freed the unused page.
    EXPECT_FALSE(page->freelistHead);
    EXPECT_EQ(-1, page->freeCacheIndex);
    EXPECT_EQ(0, page->numAllocatedSlots);

    // Check that an allocation works ok whilst in this state (a free'd page
    // as the active pages head).
    ptr = partitionAlloc(allocator.root(), bigSize);
    EXPECT_FALSE(bucket->freePagesHead);
    partitionFree(ptr);

    // Also check that a page that is bouncing immediately between empty and
    // used does not get freed.
    for (size_t i = 0; i < WTF::kMaxFreeableSpans * 2; ++i) {
        ptr = partitionAlloc(allocator.root(), bigSize);
        EXPECT_TRUE(page->freelistHead);
        partitionFree(ptr);
        EXPECT_TRUE(page->freelistHead);
    }

    TestShutdown();
}

// Tests for a bug we had with losing references to free pages.
TEST(WTF_PartitionAlloc, LostFreePagesBug)
{
    TestSetup();

    size_t size = WTF::kPartitionPageSize - kExtraAllocSize;

    void* ptr = partitionAllocGeneric(genericAllocator.root(), size);
    EXPECT_TRUE(ptr);
    void* ptr2 = partitionAllocGeneric(genericAllocator.root(), size);
    EXPECT_TRUE(ptr2);

    WTF::PartitionPage* page = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr));
    WTF::PartitionPage* page2 = WTF::partitionPointerToPage(WTF::partitionCookieFreePointerAdjust(ptr2));
    WTF::PartitionBucket* bucket = page->bucket;

    EXPECT_EQ(0, bucket->freePagesHead);
    EXPECT_EQ(-1, page->numAllocatedSlots);
    EXPECT_EQ(1, page2->numAllocatedSlots);

    partitionFreeGeneric(genericAllocator.root(), ptr);
    partitionFreeGeneric(genericAllocator.root(), ptr2);

    EXPECT_EQ(0, bucket->freePagesHead);
    EXPECT_EQ(0, page->numAllocatedSlots);
    EXPECT_EQ(0, page2->numAllocatedSlots);
    EXPECT_TRUE(page->freelistHead);
    EXPECT_TRUE(page2->freelistHead);

    CycleGenericFreeCache(kTestAllocSize);

    EXPECT_FALSE(page->freelistHead);
    EXPECT_FALSE(page2->freelistHead);

    EXPECT_FALSE(bucket->freePagesHead);
    EXPECT_TRUE(bucket->activePagesHead);
    EXPECT_TRUE(bucket->activePagesHead->nextPage);

    // At this moment, we have two freed pages, on the freelist.

    ptr = partitionAllocGeneric(genericAllocator.root(), size);
    EXPECT_TRUE(ptr);
    partitionFreeGeneric(genericAllocator.root(), ptr);

    EXPECT_TRUE(bucket->activePagesHead);
    EXPECT_TRUE(bucket->freePagesHead);

    CycleGenericFreeCache(kTestAllocSize);

    // We're now set up to trigger the bug by scanning over the active pages
    // list, where the current active page is freed, and there exists at least
    // one freed page in the free pages list.
    ptr = partitionAllocGeneric(genericAllocator.root(), size);
    EXPECT_TRUE(ptr);
    partitionFreeGeneric(genericAllocator.root(), ptr);

    EXPECT_TRUE(bucket->activePagesHead);
    EXPECT_TRUE(bucket->freePagesHead);

    TestShutdown();
}

#if !OS(ANDROID)

// Make sure that malloc(-1) dies.
// In the past, we had an integer overflow that would alias malloc(-1) to
// malloc(0), which is not good.
TEST(WTF_PartitionAllocDeathTest, LargeAllocs)
{
    TestSetup();
    // Largest alloc.
    EXPECT_DEATH(partitionAllocGeneric(genericAllocator.root(), static_cast<size_t>(-1)), "");
    // And the smallest allocation we expect to die.
    EXPECT_DEATH(partitionAllocGeneric(genericAllocator.root(), static_cast<size_t>(INT_MAX) + 1), "");

    TestShutdown();
}

// Check that our immediate double-free detection works.
TEST(WTF_PartitionAllocDeathTest, ImmediateDoubleFree)
{
    TestSetup();

    void* ptr = partitionAllocGeneric(genericAllocator.root(), kTestAllocSize);
    EXPECT_TRUE(ptr);
    partitionFreeGeneric(genericAllocator.root(), ptr);

    EXPECT_DEATH(partitionFreeGeneric(genericAllocator.root(), ptr), "");

    TestShutdown();
}

// Check that our refcount-based double-free detection works.
TEST(WTF_PartitionAllocDeathTest, RefcountDoubleFree)
{
    TestSetup();

    void* ptr = partitionAllocGeneric(genericAllocator.root(), kTestAllocSize);
    EXPECT_TRUE(ptr);
    void* ptr2 = partitionAllocGeneric(genericAllocator.root(), kTestAllocSize);
    EXPECT_TRUE(ptr2);
    partitionFreeGeneric(genericAllocator.root(), ptr);
    partitionFreeGeneric(genericAllocator.root(), ptr2);
    // This is not an immediate double-free so our immediate detection won't
    // fire. However, it does take the "refcount" of the partition page to -1,
    // which is illegal and should be trapped.
    EXPECT_DEATH(partitionFreeGeneric(genericAllocator.root(), ptr), "");

    TestShutdown();
}

// Check that guard pages are present where expected.
TEST(WTF_PartitionAllocDeathTest, GuardPages)
{
    TestSetup();

    // This large size will result in a direct mapped allocation with guard
    // pages at either end.
    size_t size = (WTF::kGenericMaxBucketed + WTF::kSystemPageSize) - kExtraAllocSize;
    void* ptr = partitionAllocGeneric(genericAllocator.root(), size);
    EXPECT_TRUE(ptr);
    char* charPtr = reinterpret_cast<char*>(ptr) - kPointerOffset;

    EXPECT_DEATH(*(charPtr - 1) = 'A', "");
    EXPECT_DEATH(*(charPtr + size + kExtraAllocSize) = 'A', "");

    partitionFreeGeneric(genericAllocator.root(), ptr);

    TestShutdown();
}

#endif // !OS(ANDROID)

// Tests that the countLeadingZeros() functions work to our satisfaction.
// It doesn't seem worth the overhead of a whole new file for these tests, so
// we'll put them here since partitionAllocGeneric will depend heavily on these
// functions working correctly.
TEST(WTF_PartitionAlloc, CLZWorks)
{
    EXPECT_EQ(32u, WTF::countLeadingZeros32(0));
    EXPECT_EQ(31u, WTF::countLeadingZeros32(1));
    EXPECT_EQ(1u, WTF::countLeadingZeros32(1 << 30));
    EXPECT_EQ(0u, WTF::countLeadingZeros32(1 << 31));

#if CPU(64BIT)
    EXPECT_EQ(64u, WTF::countLeadingZerosSizet(0ull));
    EXPECT_EQ(63u, WTF::countLeadingZerosSizet(1ull));
    EXPECT_EQ(32u, WTF::countLeadingZerosSizet(1ull << 31));
    EXPECT_EQ(1u, WTF::countLeadingZerosSizet(1ull << 62));
    EXPECT_EQ(0u, WTF::countLeadingZerosSizet(1ull << 63));
#else
    EXPECT_EQ(32u, WTF::countLeadingZerosSizet(0));
    EXPECT_EQ(31u, WTF::countLeadingZerosSizet(1));
    EXPECT_EQ(1u, WTF::countLeadingZerosSizet(1 << 30));
    EXPECT_EQ(0u, WTF::countLeadingZerosSizet(1 << 31));
#endif
}

} // namespace

#endif // !defined(MEMORY_TOOL_REPLACES_ALLOCATOR)

/* [<][>][^][v][top][bottom][index][help] */