// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef DOUBLE_CONVERSION_DIY_FP_H_ #define DOUBLE_CONVERSION_DIY_FP_H_ #include "utils.h" namespace WTF { namespace double_conversion { // This "Do It Yourself Floating Point" class implements a floating-point number // with a uint64 significand and an int exponent. Normalized DiyFp numbers will // have the most significant bit of the significand set. // Multiplication and Subtraction do not normalize their results. // DiyFp are not designed to contain special doubles (NaN and Infinity). class DiyFp { public: static const int kSignificandSize = 64; DiyFp() : f_(0), e_(0) {} DiyFp(uint64_t f, int e) : f_(f), e_(e) {} // this = this - other. // The exponents of both numbers must be the same and the significand of this // must be bigger than the significand of other. // The result will not be normalized. void Subtract(const DiyFp& other) { ASSERT(e_ == other.e_); ASSERT(f_ >= other.f_); f_ -= other.f_; } // Returns a - b. // The exponents of both numbers must be the same and this must be bigger // than other. The result will not be normalized. static DiyFp Minus(const DiyFp& a, const DiyFp& b) { DiyFp result = a; result.Subtract(b); return result; } // this = this * other. void Multiply(const DiyFp& other); // returns a * b; static DiyFp Times(const DiyFp& a, const DiyFp& b) { DiyFp result = a; result.Multiply(b); return result; } void Normalize() { ASSERT(f_ != 0); uint64_t f = f_; int e = e_; // This method is mainly called for normalizing boundaries. In general // boundaries need to be shifted by 10 bits. We thus optimize for this case. const uint64_t k10MSBits = UINT64_2PART_C(0xFFC00000, 00000000); while ((f & k10MSBits) == 0) { f <<= 10; e -= 10; } while ((f & kUint64MSB) == 0) { f <<= 1; e--; } f_ = f; e_ = e; } static DiyFp Normalize(const DiyFp& a) { DiyFp result = a; result.Normalize(); return result; } uint64_t f() const { return f_; } int e() const { return e_; } void set_f(uint64_t new_value) { f_ = new_value; } void set_e(int new_value) { e_ = new_value; } private: static const uint64_t kUint64MSB = UINT64_2PART_C(0x80000000, 00000000); uint64_t f_; int e_; }; } // namespace double_conversion } // namespace WTF #endif // DOUBLE_CONVERSION_DIY_FP_H_