root/Source/core/rendering/RenderMultiColumnSet.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. m_minimumColumnHeight
  2. createAnonymous
  3. heightAdjustedForSetOffset
  4. pageLogicalTopForOffset
  5. setAndConstrainColumnHeight
  6. findRunWithTallestColumns
  7. distributeImplicitBreaks
  8. calculateBalancedHeight
  9. clearForcedBreaks
  10. addForcedBreak
  11. recalculateBalancedHeight
  12. recordSpaceShortage
  13. updateLogicalWidth
  14. prepareForLayout
  15. computeLogicalHeight
  16. columnGap
  17. columnCount
  18. columnRectAt
  19. columnIndexAtOffset
  20. flowThreadPortionRectAt
  21. flowThreadPortionOverflowRect
  22. paintObject
  23. paintColumnRules
  24. repaintFlowThreadContent
  25. collectLayerFragments
  26. renderName

/*
 * Copyright (C) 2012 Apple Inc.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "core/rendering/RenderMultiColumnSet.h"

#include "core/rendering/PaintInfo.h"
#include "core/rendering/RenderLayer.h"
#include "core/rendering/RenderMultiColumnFlowThread.h"

using namespace std;

namespace WebCore {

RenderMultiColumnSet::RenderMultiColumnSet(RenderFlowThread* flowThread)
    : RenderRegionSet(0, flowThread)
    , m_computedColumnCount(1)
    , m_computedColumnWidth(0)
    , m_computedColumnHeight(0)
    , m_maxColumnHeight(RenderFlowThread::maxLogicalHeight())
    , m_minSpaceShortage(RenderFlowThread::maxLogicalHeight())
    , m_minimumColumnHeight(0)
{
}

RenderMultiColumnSet* RenderMultiColumnSet::createAnonymous(RenderFlowThread* flowThread)
{
    Document& document = flowThread->document();
    RenderMultiColumnSet* renderer = new RenderMultiColumnSet(flowThread);
    renderer->setDocumentForAnonymous(&document);
    return renderer;
}

LayoutUnit RenderMultiColumnSet::heightAdjustedForSetOffset(LayoutUnit height) const
{
    RenderBlockFlow* multicolBlock = multiColumnBlockFlow();
    LayoutUnit contentLogicalTop = logicalTop() - multicolBlock->borderBefore() - multicolBlock->paddingBefore();

    height -= contentLogicalTop;
    return max(height, LayoutUnit(1)); // Let's avoid zero height, as that would probably cause an infinite amount of columns to be created.
}

LayoutUnit RenderMultiColumnSet::pageLogicalTopForOffset(LayoutUnit offset) const
{
    LayoutUnit portionLogicalTop = (isHorizontalWritingMode() ? flowThreadPortionRect().y() : flowThreadPortionRect().x());
    unsigned columnIndex = columnIndexAtOffset(offset, AssumeNewColumns);
    return portionLogicalTop + columnIndex * computedColumnHeight();
}

void RenderMultiColumnSet::setAndConstrainColumnHeight(LayoutUnit newHeight)
{
    m_computedColumnHeight = newHeight;
    if (m_computedColumnHeight > m_maxColumnHeight)
        m_computedColumnHeight = m_maxColumnHeight;
    // FIXME: the height may also be affected by the enclosing pagination context, if any.
}

unsigned RenderMultiColumnSet::findRunWithTallestColumns() const
{
    unsigned indexWithLargestHeight = 0;
    LayoutUnit largestHeight;
    LayoutUnit previousOffset;
    size_t runCount = m_contentRuns.size();
    ASSERT(runCount);
    for (size_t i = 0; i < runCount; i++) {
        const ContentRun& run = m_contentRuns[i];
        LayoutUnit height = run.columnLogicalHeight(previousOffset);
        if (largestHeight < height) {
            largestHeight = height;
            indexWithLargestHeight = i;
        }
        previousOffset = run.breakOffset();
    }
    return indexWithLargestHeight;
}

void RenderMultiColumnSet::distributeImplicitBreaks()
{
    unsigned breakCount = forcedBreaksCount();

#ifndef NDEBUG
    // There should be no implicit breaks assumed at this point.
    for (unsigned i = 0; i < breakCount; i++)
        ASSERT(!m_contentRuns[i].assumedImplicitBreaks());
#endif // NDEBUG

    // There will always be at least one break, since the flow thread reports a "forced break" at
    // end of content.
    ASSERT(breakCount >= 1);

    // If there is room for more breaks (to reach the used value of column-count), imagine that we
    // insert implicit breaks at suitable locations. At any given time, the content run with the
    // currently tallest columns will get another implicit break "inserted", which will increase its
    // column count by one and shrink its columns' height. Repeat until we have the desired total
    // number of breaks. The largest column height among the runs will then be the initial column
    // height for the balancer to use.
    while (breakCount < m_computedColumnCount) {
        unsigned index = findRunWithTallestColumns();
        m_contentRuns[index].assumeAnotherImplicitBreak();
        breakCount++;
    }
}

LayoutUnit RenderMultiColumnSet::calculateBalancedHeight(bool initial) const
{
    if (initial) {
        // Start with the lowest imaginable column height.
        unsigned index = findRunWithTallestColumns();
        LayoutUnit startOffset = index > 0 ? m_contentRuns[index - 1].breakOffset() : LayoutUnit();
        return std::max<LayoutUnit>(m_contentRuns[index].columnLogicalHeight(startOffset), m_minimumColumnHeight);
    }

    if (columnCount() <= computedColumnCount()) {
        // With the current column height, the content fits without creating overflowing columns. We're done.
        return m_computedColumnHeight;
    }

    if (forcedBreaksCount() >= computedColumnCount()) {
        // Too many forced breaks to allow any implicit breaks. Initial balancing should already
        // have set a good height. There's nothing more we should do.
        return m_computedColumnHeight;
    }

    // If the initial guessed column height wasn't enough, stretch it now. Stretch by the lowest
    // amount of space shortage found during layout.

    ASSERT(m_minSpaceShortage > 0); // We should never _shrink_ the height!
    ASSERT(m_minSpaceShortage != RenderFlowThread::maxLogicalHeight()); // If this happens, we probably have a bug.
    if (m_minSpaceShortage == RenderFlowThread::maxLogicalHeight())
        return m_computedColumnHeight; // So bail out rather than looping infinitely.

    return m_computedColumnHeight + m_minSpaceShortage;
}

void RenderMultiColumnSet::clearForcedBreaks()
{
    m_contentRuns.clear();
}

void RenderMultiColumnSet::addForcedBreak(LayoutUnit offsetFromFirstPage)
{
    if (!multiColumnFlowThread()->requiresBalancing())
        return;
    if (!m_contentRuns.isEmpty() && offsetFromFirstPage <= m_contentRuns.last().breakOffset())
        return;
    // Append another item as long as we haven't exceeded used column count. What ends up in the
    // overflow area shouldn't affect column balancing.
    if (m_contentRuns.size() < m_computedColumnCount)
        m_contentRuns.append(ContentRun(offsetFromFirstPage));
}

bool RenderMultiColumnSet::recalculateBalancedHeight(bool initial)
{
    ASSERT(multiColumnFlowThread()->requiresBalancing());

    LayoutUnit oldColumnHeight = m_computedColumnHeight;
    if (initial)
        distributeImplicitBreaks();
    LayoutUnit newColumnHeight = calculateBalancedHeight(initial);
    setAndConstrainColumnHeight(newColumnHeight);

    // After having calculated an initial column height, the multicol container typically needs at
    // least one more layout pass with a new column height, but if a height was specified, we only
    // need to do this if we think that we need less space than specified. Conversely, if we
    // determined that the columns need to be as tall as the specified height of the container, we
    // have already laid it out correctly, and there's no need for another pass.

    if (m_computedColumnHeight == oldColumnHeight)
        return false; // No change. We're done.

    m_minSpaceShortage = RenderFlowThread::maxLogicalHeight();
    clearForcedBreaks();
    return true; // Need another pass.
}

void RenderMultiColumnSet::recordSpaceShortage(LayoutUnit spaceShortage)
{
    if (spaceShortage >= m_minSpaceShortage)
        return;

    // The space shortage is what we use as our stretch amount. We need a positive number here in
    // order to get anywhere.
    ASSERT(spaceShortage > 0);

    m_minSpaceShortage = spaceShortage;
}

void RenderMultiColumnSet::updateLogicalWidth()
{
    RenderMultiColumnFlowThread* flowThread = multiColumnFlowThread();
    setComputedColumnWidthAndCount(flowThread->columnWidth(), flowThread->columnCount());

    // FIXME: When we add regions support, we'll start it off at the width of the multi-column
    // block in that particular region.
    setLogicalWidth(parentBox()->contentLogicalWidth());

    // If we overflow, increase our logical width.
    unsigned colCount = columnCount();
    LayoutUnit colGap = columnGap();
    LayoutUnit minimumContentLogicalWidth = colCount * computedColumnWidth() + (colCount - 1) * colGap;
    LayoutUnit currentContentLogicalWidth = contentLogicalWidth();
    LayoutUnit delta = max(LayoutUnit(), minimumContentLogicalWidth - currentContentLogicalWidth);
    if (!delta)
        return;

    // Increase our logical width by the delta.
    setLogicalWidth(logicalWidth() + delta);
}

void RenderMultiColumnSet::prepareForLayout()
{
    RenderBlockFlow* multicolBlock = multiColumnBlockFlow();
    RenderStyle* multicolStyle = multicolBlock->style();

    // Set box logical top.
    ASSERT(!previousSiblingBox() || !previousSiblingBox()->isRenderMultiColumnSet()); // FIXME: multiple set not implemented; need to examine previous set to calculate the correct logical top.
    setLogicalTop(multicolBlock->borderBefore() + multicolBlock->paddingBefore());

    // Set box width.
    updateLogicalWidth();

    if (multicolBlock->multiColumnFlowThread()->requiresBalancing()) {
        // Set maximum column height. We will not stretch beyond this.
        m_maxColumnHeight = RenderFlowThread::maxLogicalHeight();
        if (!multicolStyle->logicalHeight().isAuto()) {
            m_maxColumnHeight = multicolBlock->computeContentLogicalHeight(multicolStyle->logicalHeight(), -1);
            if (m_maxColumnHeight == -1)
                m_maxColumnHeight = RenderFlowThread::maxLogicalHeight();
        }
        if (!multicolStyle->logicalMaxHeight().isUndefined()) {
            LayoutUnit logicalMaxHeight = multicolBlock->computeContentLogicalHeight(multicolStyle->logicalMaxHeight(), -1);
            if (logicalMaxHeight != -1 && m_maxColumnHeight > logicalMaxHeight)
                m_maxColumnHeight = logicalMaxHeight;
        }
        m_maxColumnHeight = heightAdjustedForSetOffset(m_maxColumnHeight);
        m_computedColumnHeight = 0; // Restart balancing.
    } else {
        setAndConstrainColumnHeight(heightAdjustedForSetOffset(multicolBlock->multiColumnFlowThread()->columnHeightAvailable()));
    }

    clearForcedBreaks();

    // Nuke previously stored minimum column height. Contents may have changed for all we know.
    m_minimumColumnHeight = 0;
}

void RenderMultiColumnSet::computeLogicalHeight(LayoutUnit, LayoutUnit logicalTop, LogicalExtentComputedValues& computedValues) const
{
    computedValues.m_extent = m_computedColumnHeight;
    computedValues.m_position = logicalTop;
}

LayoutUnit RenderMultiColumnSet::columnGap() const
{
    RenderBlockFlow* parentBlock = multiColumnBlockFlow();
    if (parentBlock->style()->hasNormalColumnGap())
        return parentBlock->style()->fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins.
    return parentBlock->style()->columnGap();
}

unsigned RenderMultiColumnSet::columnCount() const
{
    // We must always return a value of 1 or greater. Column count = 0 is a meaningless situation,
    // and will confuse and cause problems in other parts of the code.
    if (!computedColumnHeight())
        return 1;

    // Our portion rect determines our column count. We have as many columns as needed to fit all the content.
    LayoutUnit logicalHeightInColumns = flowThread()->isHorizontalWritingMode() ? flowThreadPortionRect().height() : flowThreadPortionRect().width();
    if (!logicalHeightInColumns)
        return 1;

    unsigned count = ceil(logicalHeightInColumns.toFloat() / computedColumnHeight().toFloat());
    ASSERT(count >= 1);
    return count;
}

LayoutRect RenderMultiColumnSet::columnRectAt(unsigned index) const
{
    LayoutUnit colLogicalWidth = computedColumnWidth();
    LayoutUnit colLogicalHeight = computedColumnHeight();
    LayoutUnit colLogicalTop = borderBefore() + paddingBefore();
    LayoutUnit colLogicalLeft = borderAndPaddingLogicalLeft();
    LayoutUnit colGap = columnGap();
    if (style()->isLeftToRightDirection())
        colLogicalLeft += index * (colLogicalWidth + colGap);
    else
        colLogicalLeft += contentLogicalWidth() - colLogicalWidth - index * (colLogicalWidth + colGap);

    if (isHorizontalWritingMode())
        return LayoutRect(colLogicalLeft, colLogicalTop, colLogicalWidth, colLogicalHeight);
    return LayoutRect(colLogicalTop, colLogicalLeft, colLogicalHeight, colLogicalWidth);
}

unsigned RenderMultiColumnSet::columnIndexAtOffset(LayoutUnit offset, ColumnIndexCalculationMode mode) const
{
    LayoutRect portionRect(flowThreadPortionRect());

    // Handle the offset being out of range.
    LayoutUnit flowThreadLogicalTop = isHorizontalWritingMode() ? portionRect.y() : portionRect.x();
    if (offset < flowThreadLogicalTop)
        return 0;
    // If we're laying out right now, we cannot constrain against some logical bottom, since it
    // isn't known yet. Otherwise, just return the last column if we're past the logical bottom.
    if (mode == ClampToExistingColumns) {
        LayoutUnit flowThreadLogicalBottom = isHorizontalWritingMode() ? portionRect.maxY() : portionRect.maxX();
        if (offset >= flowThreadLogicalBottom)
            return columnCount() - 1;
    }

    // Just divide by the column height to determine the correct column.
    return (offset - flowThreadLogicalTop).toFloat() / computedColumnHeight().toFloat();
}

LayoutRect RenderMultiColumnSet::flowThreadPortionRectAt(unsigned index) const
{
    LayoutRect portionRect = flowThreadPortionRect();
    if (isHorizontalWritingMode())
        portionRect = LayoutRect(portionRect.x(), portionRect.y() + index * computedColumnHeight(), portionRect.width(), computedColumnHeight());
    else
        portionRect = LayoutRect(portionRect.x() + index * computedColumnHeight(), portionRect.y(), computedColumnHeight(), portionRect.height());
    return portionRect;
}

LayoutRect RenderMultiColumnSet::flowThreadPortionOverflowRect(const LayoutRect& portionRect, unsigned index, unsigned colCount, LayoutUnit colGap) const
{
    // This function determines the portion of the flow thread that paints for the column. Along the inline axis, columns are
    // unclipped at outside edges (i.e., the first and last column in the set), and they clip to half the column
    // gap along interior edges.
    //
    // In the block direction, we will not clip overflow out of the top of the first column, or out of the bottom of
    // the last column. This applies only to the true first column and last column across all column sets.
    //
    // FIXME: Eventually we will know overflow on a per-column basis, but we can't do this until we have a painting
    // mode that understands not to paint contents from a previous column in the overflow area of a following column.
    // This problem applies to regions and pages as well and is not unique to columns.
    bool isFirstColumn = !index;
    bool isLastColumn = index == colCount - 1;
    bool isLeftmostColumn = style()->isLeftToRightDirection() ? isFirstColumn : isLastColumn;
    bool isRightmostColumn = style()->isLeftToRightDirection() ? isLastColumn : isFirstColumn;

    // Calculate the overflow rectangle, based on the flow thread's, clipped at column logical
    // top/bottom unless it's the first/last column.
    LayoutRect overflowRect = overflowRectForFlowThreadPortion(portionRect, isFirstColumn && isFirstRegion(), isLastColumn && isLastRegion());

    // Avoid overflowing into neighboring columns, by clipping in the middle of adjacent column
    // gaps. Also make sure that we avoid rounding errors.
    if (isHorizontalWritingMode()) {
        if (!isLeftmostColumn)
            overflowRect.shiftXEdgeTo(portionRect.x() - colGap / 2);
        if (!isRightmostColumn)
            overflowRect.shiftMaxXEdgeTo(portionRect.maxX() + colGap - colGap / 2);
    } else {
        if (!isLeftmostColumn)
            overflowRect.shiftYEdgeTo(portionRect.y() - colGap / 2);
        if (!isRightmostColumn)
            overflowRect.shiftMaxYEdgeTo(portionRect.maxY() + colGap - colGap / 2);
    }
    return overflowRect;
}

void RenderMultiColumnSet::paintObject(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
    if (style()->visibility() != VISIBLE)
        return;

    RenderBlockFlow::paintObject(paintInfo, paintOffset);

    // FIXME: Right now we're only painting in the foreground phase.
    // Columns should technically respect phases and allow for background/float/foreground overlap etc., just like
    // RenderBlocks do. Note this is a pretty minor issue, since the old column implementation clipped columns
    // anyway, thus making it impossible for them to overlap one another. It's also really unlikely that the columns
    // would overlap another block.
    if (!m_flowThread || !isValid() || (paintInfo.phase != PaintPhaseForeground && paintInfo.phase != PaintPhaseSelection))
        return;

    paintColumnRules(paintInfo, paintOffset);
}

void RenderMultiColumnSet::paintColumnRules(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
    if (paintInfo.context->paintingDisabled())
        return;

    RenderStyle* blockStyle = multiColumnBlockFlow()->style();
    const Color& ruleColor = resolveColor(blockStyle, CSSPropertyWebkitColumnRuleColor);
    bool ruleTransparent = blockStyle->columnRuleIsTransparent();
    EBorderStyle ruleStyle = blockStyle->columnRuleStyle();
    LayoutUnit ruleThickness = blockStyle->columnRuleWidth();
    LayoutUnit colGap = columnGap();
    bool renderRule = ruleStyle > BHIDDEN && !ruleTransparent;
    if (!renderRule)
        return;

    unsigned colCount = columnCount();
    if (colCount <= 1)
        return;

    bool antialias = shouldAntialiasLines(paintInfo.context);

    bool leftToRight = style()->isLeftToRightDirection();
    LayoutUnit currLogicalLeftOffset = leftToRight ? LayoutUnit() : contentLogicalWidth();
    LayoutUnit ruleAdd = borderAndPaddingLogicalLeft();
    LayoutUnit ruleLogicalLeft = leftToRight ? LayoutUnit() : contentLogicalWidth();
    LayoutUnit inlineDirectionSize = computedColumnWidth();
    BoxSide boxSide = isHorizontalWritingMode()
        ? leftToRight ? BSLeft : BSRight
        : leftToRight ? BSTop : BSBottom;

    for (unsigned i = 0; i < colCount; i++) {
        // Move to the next position.
        if (leftToRight) {
            ruleLogicalLeft += inlineDirectionSize + colGap / 2;
            currLogicalLeftOffset += inlineDirectionSize + colGap;
        } else {
            ruleLogicalLeft -= (inlineDirectionSize + colGap / 2);
            currLogicalLeftOffset -= (inlineDirectionSize + colGap);
        }

        // Now paint the column rule.
        if (i < colCount - 1) {
            LayoutUnit ruleLeft = isHorizontalWritingMode() ? paintOffset.x() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd : paintOffset.x() + borderLeft() + paddingLeft();
            LayoutUnit ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleThickness : ruleLeft + contentWidth();
            LayoutUnit ruleTop = isHorizontalWritingMode() ? paintOffset.y() + borderTop() + paddingTop() : paintOffset.y() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd;
            LayoutUnit ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleThickness;
            IntRect pixelSnappedRuleRect = pixelSnappedIntRectFromEdges(ruleLeft, ruleTop, ruleRight, ruleBottom);
            drawLineForBoxSide(paintInfo.context, pixelSnappedRuleRect.x(), pixelSnappedRuleRect.y(), pixelSnappedRuleRect.maxX(), pixelSnappedRuleRect.maxY(), boxSide, ruleColor, ruleStyle, 0, 0, antialias);
        }

        ruleLogicalLeft = currLogicalLeftOffset;
    }
}

void RenderMultiColumnSet::repaintFlowThreadContent(const LayoutRect& repaintRect) const
{
    // Figure out the start and end columns and only check within that range so that we don't walk the
    // entire column set. Put the repaint rect into flow thread coordinates by flipping it first.
    LayoutRect flowThreadRepaintRect(repaintRect);
    flowThread()->flipForWritingMode(flowThreadRepaintRect);

    // Now we can compare this rect with the flow thread portions owned by each column. First let's
    // just see if the repaint rect intersects our flow thread portion at all.
    LayoutRect clippedRect(flowThreadRepaintRect);
    clippedRect.intersect(RenderRegion::flowThreadPortionOverflowRect());
    if (clippedRect.isEmpty())
        return;

    // Now we know we intersect at least one column. Let's figure out the logical top and logical
    // bottom of the area we're repainting.
    LayoutUnit repaintLogicalTop = isHorizontalWritingMode() ? flowThreadRepaintRect.y() : flowThreadRepaintRect.x();
    LayoutUnit repaintLogicalBottom = (isHorizontalWritingMode() ? flowThreadRepaintRect.maxY() : flowThreadRepaintRect.maxX()) - 1;

    unsigned startColumn = columnIndexAtOffset(repaintLogicalTop);
    unsigned endColumn = columnIndexAtOffset(repaintLogicalBottom);

    LayoutUnit colGap = columnGap();
    unsigned colCount = columnCount();
    for (unsigned i = startColumn; i <= endColumn; i++) {
        LayoutRect colRect = columnRectAt(i);

        // Get the portion of the flow thread that corresponds to this column.
        LayoutRect flowThreadPortion = flowThreadPortionRectAt(i);

        // Now get the overflow rect that corresponds to the column.
        LayoutRect flowThreadOverflowPortion = flowThreadPortionOverflowRect(flowThreadPortion, i, colCount, colGap);

        // Do a repaint for this specific column.
        repaintFlowThreadContentRectangle(repaintRect, flowThreadPortion, flowThreadOverflowPortion, colRect.location());
    }
}

void RenderMultiColumnSet::collectLayerFragments(LayerFragments& fragments, const LayoutRect& layerBoundingBox, const LayoutRect& dirtyRect)
{
    // The two rectangles passed to this method are physical, except that we pretend that there's
    // only one long column (that's how a flow thread works).
    //
    // Then there's the output from this method - the stuff we put into the list of fragments. The
    // fragment.paginationOffset point is the actual physical translation required to get from a
    // location in the flow thread to a location in a given column. The fragment.paginationClip
    // rectangle, on the other hand, is in the same coordinate system as the two rectangles passed
    // to this method (flow thread coordinates).
    //
    // All other rectangles in this method are sized physically, and the inline direction coordinate
    // is physical too, but the block direction coordinate is "logical top". This is the same as
    // e.g. RenderBox::frameRect(). These rectangles also pretend that there's only one long column,
    // i.e. they are for the flow thread.

    // Put the layer bounds into flow thread-local coordinates by flipping it first. Since we're in
    // a renderer, most rectangles are represented this way.
    LayoutRect layerBoundsInFlowThread(layerBoundingBox);
    flowThread()->flipForWritingMode(layerBoundsInFlowThread);

    // Now we can compare with the flow thread portions owned by each column. First let's
    // see if the rect intersects our flow thread portion at all.
    LayoutRect clippedRect(layerBoundsInFlowThread);
    clippedRect.intersect(RenderRegion::flowThreadPortionOverflowRect());
    if (clippedRect.isEmpty())
        return;

    // Now we know we intersect at least one column. Let's figure out the logical top and logical
    // bottom of the area we're checking.
    LayoutUnit layerLogicalTop = isHorizontalWritingMode() ? layerBoundsInFlowThread.y() : layerBoundsInFlowThread.x();
    LayoutUnit layerLogicalBottom = (isHorizontalWritingMode() ? layerBoundsInFlowThread.maxY() : layerBoundsInFlowThread.maxX()) - 1;

    // Figure out the start and end columns and only check within that range so that we don't walk the
    // entire column set.
    unsigned startColumn = columnIndexAtOffset(layerLogicalTop);
    unsigned endColumn = columnIndexAtOffset(layerLogicalBottom);

    LayoutUnit colLogicalWidth = computedColumnWidth();
    LayoutUnit colGap = columnGap();
    unsigned colCount = columnCount();

    for (unsigned i = startColumn; i <= endColumn; i++) {
        // Get the portion of the flow thread that corresponds to this column.
        LayoutRect flowThreadPortion = flowThreadPortionRectAt(i);

        // Now get the overflow rect that corresponds to the column.
        LayoutRect flowThreadOverflowPortion = flowThreadPortionOverflowRect(flowThreadPortion, i, colCount, colGap);

        // In order to create a fragment we must intersect the portion painted by this column.
        LayoutRect clippedRect(layerBoundsInFlowThread);
        clippedRect.intersect(flowThreadOverflowPortion);
        if (clippedRect.isEmpty())
            continue;

        // We also need to intersect the dirty rect. We have to apply a translation and shift based off
        // our column index.
        LayoutPoint translationOffset;
        LayoutUnit inlineOffset = i * (colLogicalWidth + colGap);
        if (!style()->isLeftToRightDirection())
            inlineOffset = -inlineOffset;
        translationOffset.setX(inlineOffset);
        LayoutUnit blockOffset = isHorizontalWritingMode() ? -flowThreadPortion.y() : -flowThreadPortion.x();
        if (isFlippedBlocksWritingMode(style()->writingMode()))
            blockOffset = -blockOffset;
        translationOffset.setY(blockOffset);
        if (!isHorizontalWritingMode())
            translationOffset = translationOffset.transposedPoint();
        // FIXME: The translation needs to include the multicolumn set's content offset within the
        // multicolumn block as well. This won't be an issue until we start creating multiple multicolumn sets.

        // Shift the dirty rect to be in flow thread coordinates with this translation applied.
        LayoutRect translatedDirtyRect(dirtyRect);
        translatedDirtyRect.moveBy(-translationOffset);

        // See if we intersect the dirty rect.
        clippedRect = layerBoundingBox;
        clippedRect.intersect(translatedDirtyRect);
        if (clippedRect.isEmpty())
            continue;

        // Something does need to paint in this column. Make a fragment now and supply the physical translation
        // offset and the clip rect for the column with that offset applied.
        LayerFragment fragment;
        fragment.paginationOffset = translationOffset;

        LayoutRect flippedFlowThreadOverflowPortion(flowThreadOverflowPortion);
        // Flip it into more a physical (RenderLayer-style) rectangle.
        flowThread()->flipForWritingMode(flippedFlowThreadOverflowPortion);
        fragment.paginationClip = flippedFlowThreadOverflowPortion;
        fragments.append(fragment);
    }
}

const char* RenderMultiColumnSet::renderName() const
{
    return "RenderMultiColumnSet";
}

}

/* [<][>][^][v][top][bottom][index][help] */