/* * Copyright (C) 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of * its contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef FloatQuad_h #define FloatQuad_h #include "platform/geometry/FloatPoint.h" #include "platform/geometry/FloatRect.h" #include "platform/geometry/IntRect.h" namespace WebCore { // A FloatQuad is a collection of 4 points, often representing the result of // mapping a rectangle through transforms. When initialized from a rect, the // points are in clockwise order from top left. class PLATFORM_EXPORT FloatQuad { public: FloatQuad() { } FloatQuad(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& p3, const FloatPoint& p4) : m_p1(p1) , m_p2(p2) , m_p3(p3) , m_p4(p4) { } FloatQuad(const FloatRect& inRect) : m_p1(inRect.location()) , m_p2(inRect.maxX(), inRect.y()) , m_p3(inRect.maxX(), inRect.maxY()) , m_p4(inRect.x(), inRect.maxY()) { } FloatPoint p1() const { return m_p1; } FloatPoint p2() const { return m_p2; } FloatPoint p3() const { return m_p3; } FloatPoint p4() const { return m_p4; } void setP1(const FloatPoint& p) { m_p1 = p; } void setP2(const FloatPoint& p) { m_p2 = p; } void setP3(const FloatPoint& p) { m_p3 = p; } void setP4(const FloatPoint& p) { m_p4 = p; } // isEmpty tests that the bounding box is empty. This will not identify // "slanted" empty quads. bool isEmpty() const { return boundingBox().isEmpty(); } // Tests whether this quad can be losslessly represented by a FloatRect, // that is, if two edges are parallel to the x-axis and the other two // are parallel to the y-axis. If this method returns true, the // corresponding FloatRect can be retrieved with boundingBox(). bool isRectilinear() const; // Tests whether the given point is inside, or on an edge or corner of this quad. bool containsPoint(const FloatPoint&) const; // Tests whether the four corners of other are inside, or coincident with the sides of this quad. // Note that this only works for convex quads, but that includes all quads that originate // from transformed rects. bool containsQuad(const FloatQuad&) const; // Tests whether any part of the rectangle intersects with this quad. // This only works for convex quads. bool intersectsRect(const FloatRect&) const; // Test whether any part of the circle/ellipse intersects with this quad. // Note that these two functions only work for convex quads. bool intersectsCircle(const FloatPoint& center, float radius) const; bool intersectsEllipse(const FloatPoint& center, const FloatSize& radii) const; // The center of the quad. If the quad is the result of a affine-transformed rectangle this is the same as the original center transformed. FloatPoint center() const { return FloatPoint((m_p1.x() + m_p2.x() + m_p3.x() + m_p4.x()) / 4.0, (m_p1.y() + m_p2.y() + m_p3.y() + m_p4.y()) / 4.0); } FloatRect boundingBox() const; IntRect enclosingBoundingBox() const { return enclosingIntRect(boundingBox()); } void move(const FloatSize& offset) { m_p1 += offset; m_p2 += offset; m_p3 += offset; m_p4 += offset; } void move(float dx, float dy) { m_p1.move(dx, dy); m_p2.move(dx, dy); m_p3.move(dx, dy); m_p4.move(dx, dy); } void scale(float dx, float dy) { m_p1.scale(dx, dy); m_p2.scale(dx, dy); m_p3.scale(dx, dy); m_p4.scale(dx, dy); } // Tests whether points are in clock-wise, or counter clock-wise order. // Note that output is undefined when all points are colinear. bool isCounterclockwise() const; private: FloatPoint m_p1; FloatPoint m_p2; FloatPoint m_p3; FloatPoint m_p4; }; inline FloatQuad& operator+=(FloatQuad& a, const FloatSize& b) { a.move(b); return a; } inline FloatQuad& operator-=(FloatQuad& a, const FloatSize& b) { a.move(-b.width(), -b.height()); return a; } inline bool operator==(const FloatQuad& a, const FloatQuad& b) { return a.p1() == b.p1() && a.p2() == b.p2() && a.p3() == b.p3() && a.p4() == b.p4(); } inline bool operator!=(const FloatQuad& a, const FloatQuad& b) { return a.p1() != b.p1() || a.p2() != b.p2() || a.p3() != b.p3() || a.p4() != b.p4(); } } // namespace WebCore #endif // FloatQuad_h