root/Source/platform/graphics/filters/FETurbulence.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. m_stitchTiles
  2. create
  3. type
  4. setType
  5. baseFrequencyY
  6. setBaseFrequencyY
  7. baseFrequencyX
  8. setBaseFrequencyX
  9. seed
  10. setSeed
  11. numOctaves
  12. setNumOctaves
  13. stitchTiles
  14. setStitchTiles
  15. random
  16. smoothCurve
  17. linearInterpolation
  18. initPaint
  19. checkNoise
  20. noise2D
  21. calculateTurbulenceValueForPoint
  22. fillRegion
  23. fillRegionWorker
  24. applySoftware
  25. createShader
  26. createImageFilter
  27. externalRepresentation

/*
 * Copyright (C) 2004, 2005, 2006, 2007 Nikolas Zimmermann <zimmermann@kde.org>
 * Copyright (C) 2004, 2005 Rob Buis <buis@kde.org>
 * Copyright (C) 2005 Eric Seidel <eric@webkit.org>
 * Copyright (C) 2009 Dirk Schulze <krit@webkit.org>
 * Copyright (C) 2010 Renata Hodovan <reni@inf.u-szeged.hu>
 * Copyright (C) 2011 Gabor Loki <loki@webkit.org>
 * Copyright (C) 2013 Google Inc. All rights reserved.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public License
 * along with this library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 */

#include "config.h"
#include "platform/graphics/filters/FETurbulence.h"

#include "SkPerlinNoiseShader.h"
#include "SkRectShaderImageFilter.h"
#include "platform/graphics/filters/ParallelJobs.h"
#include "platform/graphics/filters/SkiaImageFilterBuilder.h"
#include "platform/text/TextStream.h"
#include "wtf/MathExtras.h"
#include "wtf/Uint8ClampedArray.h"

namespace WebCore {

/*
    Produces results in the range [1, 2**31 - 2]. Algorithm is:
    r = (a * r) mod m where a = randAmplitude = 16807 and
    m = randMaximum = 2**31 - 1 = 2147483647, r = seed.
    See [Park & Miller], CACM vol. 31 no. 10 p. 1195, Oct. 1988
    To test: the algorithm should produce the result 1043618065
    as the 10,000th generated number if the original seed is 1.
*/
static const int s_perlinNoise = 4096;
static const long s_randMaximum = 2147483647; // 2**31 - 1
static const int s_randAmplitude = 16807; // 7**5; primitive root of m
static const int s_randQ = 127773; // m / a
static const int s_randR = 2836; // m % a

FETurbulence::FETurbulence(Filter* filter, TurbulenceType type, float baseFrequencyX, float baseFrequencyY, int numOctaves, float seed, bool stitchTiles)
    : FilterEffect(filter)
    , m_type(type)
    , m_baseFrequencyX(baseFrequencyX)
    , m_baseFrequencyY(baseFrequencyY)
    , m_numOctaves(numOctaves)
    , m_seed(seed)
    , m_stitchTiles(stitchTiles)
{
}

PassRefPtr<FETurbulence> FETurbulence::create(Filter* filter, TurbulenceType type, float baseFrequencyX, float baseFrequencyY, int numOctaves, float seed, bool stitchTiles)
{
    return adoptRef(new FETurbulence(filter, type, baseFrequencyX, baseFrequencyY, numOctaves, seed, stitchTiles));
}

TurbulenceType FETurbulence::type() const
{
    return m_type;
}

bool FETurbulence::setType(TurbulenceType type)
{
    if (m_type == type)
        return false;
    m_type = type;
    return true;
}

float FETurbulence::baseFrequencyY() const
{
    return m_baseFrequencyY;
}

bool FETurbulence::setBaseFrequencyY(float baseFrequencyY)
{
    if (m_baseFrequencyY == baseFrequencyY)
        return false;
    m_baseFrequencyY = baseFrequencyY;
    return true;
}

float FETurbulence::baseFrequencyX() const
{
    return m_baseFrequencyX;
}

bool FETurbulence::setBaseFrequencyX(float baseFrequencyX)
{
    if (m_baseFrequencyX == baseFrequencyX)
        return false;
    m_baseFrequencyX = baseFrequencyX;
    return true;
}

float FETurbulence::seed() const
{
    return m_seed;
}

bool FETurbulence::setSeed(float seed)
{
    if (m_seed == seed)
        return false;
    m_seed = seed;
    return true;
}

int FETurbulence::numOctaves() const
{
    return m_numOctaves;
}

bool FETurbulence::setNumOctaves(int numOctaves)
{
    if (m_numOctaves == numOctaves)
        return false;
    m_numOctaves = numOctaves;
    return true;
}

bool FETurbulence::stitchTiles() const
{
    return m_stitchTiles;
}

bool FETurbulence::setStitchTiles(bool stitch)
{
    if (m_stitchTiles == stitch)
        return false;
    m_stitchTiles = stitch;
    return true;
}

// The turbulence calculation code is an adapted version of what appears in the SVG 1.1 specification:
// http://www.w3.org/TR/SVG11/filters.html#feTurbulence

// Compute pseudo random number.
inline long FETurbulence::PaintingData::random()
{
    long result = s_randAmplitude * (seed % s_randQ) - s_randR * (seed / s_randQ);
    if (result <= 0)
        result += s_randMaximum;
    seed = result;
    return result;
}

inline float smoothCurve(float t)
{
    return t * t * (3 - 2 * t);
}

inline float linearInterpolation(float t, float a, float b)
{
    return a + t * (b - a);
}

inline void FETurbulence::initPaint(PaintingData& paintingData)
{
    float normalizationFactor;

    // The seed value clamp to the range [1, s_randMaximum - 1].
    if (paintingData.seed <= 0)
        paintingData.seed = -(paintingData.seed % (s_randMaximum - 1)) + 1;
    if (paintingData.seed > s_randMaximum - 1)
        paintingData.seed = s_randMaximum - 1;

    float* gradient;
    for (int channel = 0; channel < 4; ++channel) {
        for (int i = 0; i < s_blockSize; ++i) {
            paintingData.latticeSelector[i] = i;
            gradient = paintingData.gradient[channel][i];
            gradient[0] = static_cast<float>((paintingData.random() % (2 * s_blockSize)) - s_blockSize) / s_blockSize;
            gradient[1] = static_cast<float>((paintingData.random() % (2 * s_blockSize)) - s_blockSize) / s_blockSize;
            normalizationFactor = sqrtf(gradient[0] * gradient[0] + gradient[1] * gradient[1]);
            gradient[0] /= normalizationFactor;
            gradient[1] /= normalizationFactor;
        }
    }
    for (int i = s_blockSize - 1; i > 0; --i) {
        int k = paintingData.latticeSelector[i];
        int j = paintingData.random() % s_blockSize;
        ASSERT(j >= 0);
        ASSERT(j < 2 * s_blockSize + 2);
        paintingData.latticeSelector[i] = paintingData.latticeSelector[j];
        paintingData.latticeSelector[j] = k;
    }
    for (int i = 0; i < s_blockSize + 2; ++i) {
        paintingData.latticeSelector[s_blockSize + i] = paintingData.latticeSelector[i];
        for (int channel = 0; channel < 4; ++channel) {
            paintingData.gradient[channel][s_blockSize + i][0] = paintingData.gradient[channel][i][0];
            paintingData.gradient[channel][s_blockSize + i][1] = paintingData.gradient[channel][i][1];
        }
    }
}

inline void checkNoise(int& noiseValue, int limitValue, int newValue)
{
    if (noiseValue >= limitValue)
        noiseValue -= newValue;
    if (noiseValue >= limitValue - 1)
        noiseValue -= newValue - 1;
}

float FETurbulence::noise2D(int channel, PaintingData& paintingData, StitchData& stitchData, const FloatPoint& noiseVector)
{
    struct Noise {
        int noisePositionIntegerValue;
        float noisePositionFractionValue;

        Noise(float component)
        {
            float position = component + s_perlinNoise;
            noisePositionIntegerValue = static_cast<int>(position);
            noisePositionFractionValue = position - noisePositionIntegerValue;
        }
    };

    Noise noiseX(noiseVector.x());
    Noise noiseY(noiseVector.y());
    float* q;
    float sx, sy, a, b, u, v;

    // If stitching, adjust lattice points accordingly.
    if (m_stitchTiles) {
        checkNoise(noiseX.noisePositionIntegerValue, stitchData.wrapX, stitchData.width);
        checkNoise(noiseY.noisePositionIntegerValue, stitchData.wrapY, stitchData.height);
    }

    noiseX.noisePositionIntegerValue &= s_blockMask;
    noiseY.noisePositionIntegerValue &= s_blockMask;
    int latticeIndex = paintingData.latticeSelector[noiseX.noisePositionIntegerValue];
    int nextLatticeIndex = paintingData.latticeSelector[(noiseX.noisePositionIntegerValue + 1) & s_blockMask];

    sx = smoothCurve(noiseX.noisePositionFractionValue);
    sy = smoothCurve(noiseY.noisePositionFractionValue);

    // This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement.
    int temp = paintingData.latticeSelector[latticeIndex + noiseY.noisePositionIntegerValue];
    q = paintingData.gradient[channel][temp];
    u = noiseX.noisePositionFractionValue * q[0] + noiseY.noisePositionFractionValue * q[1];
    temp = paintingData.latticeSelector[nextLatticeIndex + noiseY.noisePositionIntegerValue];
    q = paintingData.gradient[channel][temp];
    v = (noiseX.noisePositionFractionValue - 1) * q[0] + noiseY.noisePositionFractionValue * q[1];
    a = linearInterpolation(sx, u, v);
    temp = paintingData.latticeSelector[latticeIndex + noiseY.noisePositionIntegerValue + 1];
    q = paintingData.gradient[channel][temp];
    u = noiseX.noisePositionFractionValue * q[0] + (noiseY.noisePositionFractionValue - 1) * q[1];
    temp = paintingData.latticeSelector[nextLatticeIndex + noiseY.noisePositionIntegerValue + 1];
    q = paintingData.gradient[channel][temp];
    v = (noiseX.noisePositionFractionValue - 1) * q[0] + (noiseY.noisePositionFractionValue - 1) * q[1];
    b = linearInterpolation(sx, u, v);
    return linearInterpolation(sy, a, b);
}

unsigned char FETurbulence::calculateTurbulenceValueForPoint(int channel, PaintingData& paintingData, StitchData& stitchData, const FloatPoint& point, float baseFrequencyX, float baseFrequencyY)
{
    float tileWidth = paintingData.filterSize.width();
    float tileHeight = paintingData.filterSize.height();
    ASSERT(tileWidth > 0 && tileHeight > 0);
    // Adjust the base frequencies if necessary for stitching.
    if (m_stitchTiles) {
        // When stitching tiled turbulence, the frequencies must be adjusted
        // so that the tile borders will be continuous.
        if (baseFrequencyX) {
            float lowFrequency = floorf(tileWidth * baseFrequencyX) / tileWidth;
            float highFrequency = ceilf(tileWidth * baseFrequencyX) / tileWidth;
            // BaseFrequency should be non-negative according to the standard.
            if (baseFrequencyX / lowFrequency < highFrequency / baseFrequencyX)
                baseFrequencyX = lowFrequency;
            else
                baseFrequencyX = highFrequency;
        }
        if (baseFrequencyY) {
            float lowFrequency = floorf(tileHeight * baseFrequencyY) / tileHeight;
            float highFrequency = ceilf(tileHeight * baseFrequencyY) / tileHeight;
            if (baseFrequencyY / lowFrequency < highFrequency / baseFrequencyY)
                baseFrequencyY = lowFrequency;
            else
                baseFrequencyY = highFrequency;
        }
        // Set up TurbulenceInitial stitch values.
        stitchData.width = roundf(tileWidth * baseFrequencyX);
        stitchData.wrapX = s_perlinNoise + stitchData.width;
        stitchData.height = roundf(tileHeight * baseFrequencyY);
        stitchData.wrapY = s_perlinNoise + stitchData.height;
    }
    float turbulenceFunctionResult = 0;
    FloatPoint noiseVector(point.x() * baseFrequencyX, point.y() * baseFrequencyY);
    float ratio = 1;
    for (int octave = 0; octave < m_numOctaves; ++octave) {
        if (m_type == FETURBULENCE_TYPE_FRACTALNOISE)
            turbulenceFunctionResult += noise2D(channel, paintingData, stitchData, noiseVector) / ratio;
        else
            turbulenceFunctionResult += fabsf(noise2D(channel, paintingData, stitchData, noiseVector)) / ratio;
        noiseVector.setX(noiseVector.x() * 2);
        noiseVector.setY(noiseVector.y() * 2);
        ratio *= 2;
        if (m_stitchTiles) {
            // Update stitch values. Subtracting s_perlinNoiseoise before the multiplication and
            // adding it afterward simplifies to subtracting it once.
            stitchData.width *= 2;
            stitchData.wrapX = 2 * stitchData.wrapX - s_perlinNoise;
            stitchData.height *= 2;
            stitchData.wrapY = 2 * stitchData.wrapY - s_perlinNoise;
        }
    }

    // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult * 255) + 255) / 2 by fractalNoise
    // and (turbulenceFunctionResult * 255) by turbulence.
    if (m_type == FETURBULENCE_TYPE_FRACTALNOISE)
        turbulenceFunctionResult = turbulenceFunctionResult * 0.5f + 0.5f;
    // Clamp result
    turbulenceFunctionResult = std::max(std::min(turbulenceFunctionResult, 1.f), 0.f);
    return static_cast<unsigned char>(turbulenceFunctionResult * 255);
}

inline void FETurbulence::fillRegion(Uint8ClampedArray* pixelArray, PaintingData& paintingData, int startY, int endY, float baseFrequencyX, float baseFrequencyY)
{
    IntRect filterRegion = absolutePaintRect();
    IntPoint point(0, filterRegion.y() + startY);
    int indexOfPixelChannel = startY * (filterRegion.width() << 2);
    int channel;
    StitchData stitchData;

    for (int y = startY; y < endY; ++y) {
        point.setY(point.y() + 1);
        point.setX(filterRegion.x());
        for (int x = 0; x < filterRegion.width(); ++x) {
            point.setX(point.x() + 1);
            for (channel = 0; channel < 4; ++channel, ++indexOfPixelChannel)
                pixelArray->set(indexOfPixelChannel, calculateTurbulenceValueForPoint(channel, paintingData, stitchData, filter()->mapAbsolutePointToLocalPoint(point), baseFrequencyX, baseFrequencyY));
        }
    }
}

void FETurbulence::fillRegionWorker(FillRegionParameters* parameters)
{
    parameters->filter->fillRegion(parameters->pixelArray, *parameters->paintingData, parameters->startY, parameters->endY, parameters->baseFrequencyX, parameters->baseFrequencyY);
}

void FETurbulence::applySoftware()
{
    Uint8ClampedArray* pixelArray = createUnmultipliedImageResult();
    if (!pixelArray)
        return;

    if (absolutePaintRect().isEmpty()) {
        pixelArray->zeroFill();
        return;
    }

    PaintingData paintingData(m_seed, roundedIntSize(filterPrimitiveSubregion().size()));
    initPaint(paintingData);

    int optimalThreadNumber = (absolutePaintRect().width() * absolutePaintRect().height()) / s_minimalRectDimension;
    if (optimalThreadNumber > 1) {
        // Initialize parallel jobs
        ParallelJobs<FillRegionParameters> parallelJobs(&WebCore::FETurbulence::fillRegionWorker, optimalThreadNumber);

        // Fill the parameter array
        int i = parallelJobs.numberOfJobs();
        if (i > 1) {
            // Split the job into "stepY"-sized jobs but there a few jobs that need to be slightly larger since
            // stepY * jobs < total size. These extras are handled by the remainder "jobsWithExtra".
            const int stepY = absolutePaintRect().height() / i;
            const int jobsWithExtra = absolutePaintRect().height() % i;

            int startY = 0;
            for (; i > 0; --i) {
                FillRegionParameters& params = parallelJobs.parameter(i-1);
                params.filter = this;
                params.pixelArray = pixelArray;
                params.paintingData = &paintingData;
                params.startY = startY;
                startY += i < jobsWithExtra ? stepY + 1 : stepY;
                params.endY = startY;
                params.baseFrequencyX = m_baseFrequencyX;
                params.baseFrequencyY = m_baseFrequencyY;
            }

            // Execute parallel jobs
            parallelJobs.execute();
            return;
        }
    }

    // Fallback to single threaded mode if there is no room for a new thread or the paint area is too small.
    fillRegion(pixelArray, paintingData, 0, absolutePaintRect().height(), m_baseFrequencyX, m_baseFrequencyY);
}

SkShader* FETurbulence::createShader(const IntRect& filterRegion)
{
    const SkISize size = SkISize::Make(filterRegion.width(), filterRegion.height());
    // Frequency should be scaled by page zoom, but not by primitiveUnits.
    // So we apply only the transform scale (as Filter::apply*Scale() do)
    // and not the target bounding box scale (as SVGFilter::apply*Scale()
    // would do). Note also that we divide by the scale since this is
    // a frequency, not a period.
    const AffineTransform& absoluteTransform = filter()->absoluteTransform();
    float baseFrequencyX = m_baseFrequencyX / absoluteTransform.a();
    float baseFrequencyY = m_baseFrequencyY / absoluteTransform.d();
    return (type() == FETURBULENCE_TYPE_FRACTALNOISE) ?
        SkPerlinNoiseShader::CreateFractalNoise(SkFloatToScalar(baseFrequencyX),
            SkFloatToScalar(baseFrequencyY), numOctaves(), SkFloatToScalar(seed()),
            stitchTiles() ? &size : 0) :
        SkPerlinNoiseShader::CreateTubulence(SkFloatToScalar(baseFrequencyX),
            SkFloatToScalar(baseFrequencyY), numOctaves(), SkFloatToScalar(seed()),
            stitchTiles() ? &size : 0);
}

PassRefPtr<SkImageFilter> FETurbulence::createImageFilter(SkiaImageFilterBuilder* builder)
{
    SkAutoTUnref<SkShader> shader(createShader(IntRect()));
    SkImageFilter::CropRect rect = getCropRect(builder->cropOffset());
    return adoptRef(SkRectShaderImageFilter::Create(shader, &rect));
}

static TextStream& operator<<(TextStream& ts, const TurbulenceType& type)
{
    switch (type) {
    case FETURBULENCE_TYPE_UNKNOWN:
        ts << "UNKNOWN";
        break;
    case FETURBULENCE_TYPE_TURBULENCE:
        ts << "TURBULENCE";
        break;
    case FETURBULENCE_TYPE_FRACTALNOISE:
        ts << "NOISE";
        break;
    }
    return ts;
}

TextStream& FETurbulence::externalRepresentation(TextStream& ts, int indent) const
{
    writeIndent(ts, indent);
    ts << "[feTurbulence";
    FilterEffect::externalRepresentation(ts);
    ts << " type=\"" << type() << "\" "
       << "baseFrequency=\"" << baseFrequencyX() << ", " << baseFrequencyY() << "\" "
       << "seed=\"" << seed() << "\" "
       << "numOctaves=\"" << numOctaves() << "\" "
       << "stitchTiles=\"" << stitchTiles() << "\"]\n";
    return ts;
}

} // namespace WebCore

/* [<][>][^][v][top][bottom][index][help] */