root/Source/platform/graphics/filters/FEComposite.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. m_k4
  2. create
  3. operation
  4. setOperation
  5. k1
  6. setK1
  7. k2
  8. setK2
  9. k3
  10. setK3
  11. k4
  12. setK4
  13. correctFilterResultIfNeeded
  14. computeArithmeticPixels
  15. computeArithmeticPixelsUnclamped
  16. arithmeticSoftware
  17. platformArithmeticSoftware
  18. determineAbsolutePaintRect
  19. applySoftware
  20. toXfermode
  21. createImageFilter
  22. externalRepresentation

/*
 * Copyright (C) 2004, 2005, 2006, 2007 Nikolas Zimmermann <zimmermann@kde.org>
 * Copyright (C) 2004, 2005 Rob Buis <buis@kde.org>
 * Copyright (C) 2005 Eric Seidel <eric@webkit.org>
 * Copyright (C) 2009 Dirk Schulze <krit@webkit.org>
 * Copyright (C) Research In Motion Limited 2010. All rights reserved.
 * Copyright (C) 2013 Google Inc. All rights reserved.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public License
 * along with this library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 */

#include "config.h"

#include "platform/graphics/filters/FEComposite.h"

#include "SkArithmeticMode.h"
#include "SkFlattenableBuffers.h"
#include "SkXfermodeImageFilter.h"

#include "platform/graphics/GraphicsContext.h"
#include "platform/graphics/cpu/arm/filters/FECompositeArithmeticNEON.h"
#include "platform/graphics/filters/SkiaImageFilterBuilder.h"
#include "platform/text/TextStream.h"
#include "third_party/skia/include/core/SkDevice.h"

#include "wtf/Uint8ClampedArray.h"

namespace WebCore {

FEComposite::FEComposite(Filter* filter, const CompositeOperationType& type, float k1, float k2, float k3, float k4)
    : FilterEffect(filter)
    , m_type(type)
    , m_k1(k1)
    , m_k2(k2)
    , m_k3(k3)
    , m_k4(k4)
{
}

PassRefPtr<FEComposite> FEComposite::create(Filter* filter, const CompositeOperationType& type, float k1, float k2, float k3, float k4)
{
    return adoptRef(new FEComposite(filter, type, k1, k2, k3, k4));
}

CompositeOperationType FEComposite::operation() const
{
    return m_type;
}

bool FEComposite::setOperation(CompositeOperationType type)
{
    if (m_type == type)
        return false;
    m_type = type;
    return true;
}

float FEComposite::k1() const
{
    return m_k1;
}

bool FEComposite::setK1(float k1)
{
    if (m_k1 == k1)
        return false;
    m_k1 = k1;
    return true;
}

float FEComposite::k2() const
{
    return m_k2;
}

bool FEComposite::setK2(float k2)
{
    if (m_k2 == k2)
        return false;
    m_k2 = k2;
    return true;
}

float FEComposite::k3() const
{
    return m_k3;
}

bool FEComposite::setK3(float k3)
{
    if (m_k3 == k3)
        return false;
    m_k3 = k3;
    return true;
}

float FEComposite::k4() const
{
    return m_k4;
}

bool FEComposite::setK4(float k4)
{
    if (m_k4 == k4)
        return false;
    m_k4 = k4;
    return true;
}

void FEComposite::correctFilterResultIfNeeded()
{
    if (m_type != FECOMPOSITE_OPERATOR_ARITHMETIC)
        return;

    forceValidPreMultipliedPixels();
}

template <int b1, int b4>
static inline void computeArithmeticPixels(unsigned char* source, unsigned char* destination, int pixelArrayLength,
                                    float k1, float k2, float k3, float k4)
{
    float scaledK1;
    float scaledK4;
    if (b1)
        scaledK1 = k1 / 255.0f;
    if (b4)
        scaledK4 = k4 * 255.0f;

    while (--pixelArrayLength >= 0) {
        unsigned char i1 = *source;
        unsigned char i2 = *destination;
        float result = k2 * i1 + k3 * i2;
        if (b1)
            result += scaledK1 * i1 * i2;
        if (b4)
            result += scaledK4;

        if (result <= 0)
            *destination = 0;
        else if (result >= 255)
            *destination = 255;
        else
            *destination = result;
        ++source;
        ++destination;
    }
}

// computeArithmeticPixelsUnclamped is a faster version of computeArithmeticPixels for the common case where clamping
// is not necessary. This enables aggresive compiler optimizations such as auto-vectorization.
template <int b1, int b4>
static inline void computeArithmeticPixelsUnclamped(unsigned char* source, unsigned char* destination, int pixelArrayLength, float k1, float k2, float k3, float k4)
{
    float scaledK1;
    float scaledK4;
    if (b1)
        scaledK1 = k1 / 255.0f;
    if (b4)
        scaledK4 = k4 * 255.0f;

    while (--pixelArrayLength >= 0) {
        unsigned char i1 = *source;
        unsigned char i2 = *destination;
        float result = k2 * i1 + k3 * i2;
        if (b1)
            result += scaledK1 * i1 * i2;
        if (b4)
            result += scaledK4;

        *destination = result;
        ++source;
        ++destination;
    }
}

static inline void arithmeticSoftware(unsigned char* source, unsigned char* destination, int pixelArrayLength, float k1, float k2, float k3, float k4)
{
    float upperLimit = std::max(0.0f, k1) + std::max(0.0f, k2) + std::max(0.0f, k3) + k4;
    float lowerLimit = std::min(0.0f, k1) + std::min(0.0f, k2) + std::min(0.0f, k3) + k4;
    if ((k4 >= 0.0f && k4 <= 1.0f) && (upperLimit >= 0.0f && upperLimit <= 1.0f) && (lowerLimit >= 0.0f && lowerLimit <= 1.0f)) {
        if (k4) {
            if (k1)
                computeArithmeticPixelsUnclamped<1, 1>(source, destination, pixelArrayLength, k1, k2, k3, k4);
            else
                computeArithmeticPixelsUnclamped<0, 1>(source, destination, pixelArrayLength, k1, k2, k3, k4);
        } else {
            if (k1)
                computeArithmeticPixelsUnclamped<1, 0>(source, destination, pixelArrayLength, k1, k2, k3, k4);
            else
                computeArithmeticPixelsUnclamped<0, 0>(source, destination, pixelArrayLength, k1, k2, k3, k4);
        }
        return;
    }

    if (k4) {
        if (k1)
            computeArithmeticPixels<1, 1>(source, destination, pixelArrayLength, k1, k2, k3, k4);
        else
            computeArithmeticPixels<0, 1>(source, destination, pixelArrayLength, k1, k2, k3, k4);
    } else {
        if (k1)
            computeArithmeticPixels<1, 0>(source, destination, pixelArrayLength, k1, k2, k3, k4);
        else
            computeArithmeticPixels<0, 0>(source, destination, pixelArrayLength, k1, k2, k3, k4);
    }
}

inline void FEComposite::platformArithmeticSoftware(Uint8ClampedArray* source, Uint8ClampedArray* destination,
    float k1, float k2, float k3, float k4)
{
    int length = source->length();
    ASSERT(length == static_cast<int>(destination->length()));
    // The selection here eventually should happen dynamically.
#if HAVE(ARM_NEON_INTRINSICS)
    ASSERT(!(length & 0x3));
    platformArithmeticNeon(source->data(), destination->data(), length, k1, k2, k3, k4);
#else
    arithmeticSoftware(source->data(), destination->data(), length, k1, k2, k3, k4);
#endif
}

FloatRect FEComposite::determineAbsolutePaintRect(const FloatRect& originalRequestedRect)
{
    FloatRect requestedRect = originalRequestedRect;
    if (clipsToBounds())
        requestedRect.intersect(maxEffectRect());

    // We may be called multiple times if result is used more than once. Return
    // quickly if nothing new is required.
    if (absolutePaintRect().contains(enclosingIntRect(requestedRect)))
        return requestedRect;

    // No mapPaintRect required for FEComposite.
    FloatRect input1Rect = inputEffect(1)->determineAbsolutePaintRect(requestedRect);
    FloatRect affectedRect;
    switch (m_type) {
    case FECOMPOSITE_OPERATOR_IN:
        // 'in' has output only in the intersection of both inputs.
        affectedRect = intersection(input1Rect, inputEffect(0)->determineAbsolutePaintRect(input1Rect));
        break;
    case FECOMPOSITE_OPERATOR_ATOP:
        // 'atop' has output only in the extents of the second input.
        // Make sure first input knows where it needs to produce output.
        inputEffect(0)->determineAbsolutePaintRect(input1Rect);
        affectedRect = input1Rect;
        break;
    case FECOMPOSITE_OPERATOR_ARITHMETIC:
        if (k4() > 0) {
            // Make sure first input knows where it needs to produce output.
            inputEffect(0)->determineAbsolutePaintRect(requestedRect);
            // Arithmetic with non-zero k4 may influnce the complete filter primitive
            // region. So we can't optimize the paint region here.
            affectedRect = requestedRect;
            break;
        }
        if (k2() <= 0) {
            // Input 0 does not appear where input 1 is not present.
            FloatRect input0Rect = inputEffect(0)->determineAbsolutePaintRect(input1Rect);
            if (k3() > 0) {
                affectedRect = input1Rect;
            } else {
                // Just k1 is positive. Use intersection.
                affectedRect = intersection(input1Rect, input0Rect);
            }
            break;
        }
        // else fall through to use union
    default:
        // Take the union of both input effects.
        affectedRect = unionRect(input1Rect, inputEffect(0)->determineAbsolutePaintRect(requestedRect));
        break;
    }

    affectedRect.intersect(requestedRect);
    addAbsolutePaintRect(affectedRect);
    return affectedRect;
}

void FEComposite::applySoftware()
{
    FilterEffect* in = inputEffect(0);
    FilterEffect* in2 = inputEffect(1);

    if (m_type == FECOMPOSITE_OPERATOR_ARITHMETIC) {
        Uint8ClampedArray* dstPixelArray = createPremultipliedImageResult();
        if (!dstPixelArray)
            return;

        IntRect effectADrawingRect = requestedRegionOfInputImageData(in->absolutePaintRect());
        RefPtr<Uint8ClampedArray> srcPixelArray = in->asPremultipliedImage(effectADrawingRect);

        IntRect effectBDrawingRect = requestedRegionOfInputImageData(in2->absolutePaintRect());
        in2->copyPremultipliedImage(dstPixelArray, effectBDrawingRect);

        platformArithmeticSoftware(srcPixelArray.get(), dstPixelArray, m_k1, m_k2, m_k3, m_k4);
        return;
    }

    ImageBuffer* resultImage = createImageBufferResult();
    if (!resultImage)
        return;
    GraphicsContext* filterContext = resultImage->context();

    ImageBuffer* imageBuffer = in->asImageBuffer();
    ImageBuffer* imageBuffer2 = in2->asImageBuffer();
    ASSERT(imageBuffer);
    ASSERT(imageBuffer2);

    switch (m_type) {
    case FECOMPOSITE_OPERATOR_OVER:
        filterContext->drawImageBuffer(imageBuffer2, drawingRegionOfInputImage(in2->absolutePaintRect()));
        filterContext->drawImageBuffer(imageBuffer, drawingRegionOfInputImage(in->absolutePaintRect()));
        break;
    case FECOMPOSITE_OPERATOR_IN: {
        // Applies only to the intersected region.
        IntRect destinationRect = in->absolutePaintRect();
        destinationRect.intersect(in2->absolutePaintRect());
        destinationRect.intersect(absolutePaintRect());
        if (destinationRect.isEmpty())
            break;
        IntPoint destinationPoint(destinationRect.x() - absolutePaintRect().x(), destinationRect.y() - absolutePaintRect().y());
        IntRect sourceRect(IntPoint(destinationRect.x() - in->absolutePaintRect().x(),
                                    destinationRect.y() - in->absolutePaintRect().y()), destinationRect.size());
        IntRect source2Rect(IntPoint(destinationRect.x() - in2->absolutePaintRect().x(),
                                     destinationRect.y() - in2->absolutePaintRect().y()), destinationRect.size());
        filterContext->drawImageBuffer(imageBuffer2, destinationPoint, source2Rect);
        filterContext->drawImageBuffer(imageBuffer, destinationPoint, sourceRect, CompositeSourceIn);
        break;
    }
    case FECOMPOSITE_OPERATOR_OUT:
        filterContext->drawImageBuffer(imageBuffer, drawingRegionOfInputImage(in->absolutePaintRect()));
        filterContext->drawImageBuffer(imageBuffer2, drawingRegionOfInputImage(in2->absolutePaintRect()), IntRect(IntPoint(), imageBuffer2->size()), CompositeDestinationOut);
        break;
    case FECOMPOSITE_OPERATOR_ATOP:
        filterContext->drawImageBuffer(imageBuffer2, drawingRegionOfInputImage(in2->absolutePaintRect()));
        filterContext->drawImageBuffer(imageBuffer, drawingRegionOfInputImage(in->absolutePaintRect()), IntRect(IntPoint(), imageBuffer->size()), CompositeSourceAtop);
        break;
    case FECOMPOSITE_OPERATOR_XOR:
        filterContext->drawImageBuffer(imageBuffer2, drawingRegionOfInputImage(in2->absolutePaintRect()));
        filterContext->drawImageBuffer(imageBuffer, drawingRegionOfInputImage(in->absolutePaintRect()), IntRect(IntPoint(), imageBuffer->size()), CompositeXOR);
        break;
    default:
        break;
    }
}

SkXfermode::Mode toXfermode(WebCore::CompositeOperationType mode)
{
    switch (mode) {
    case WebCore::FECOMPOSITE_OPERATOR_OVER:
        return SkXfermode::kSrcOver_Mode;
    case WebCore::FECOMPOSITE_OPERATOR_IN:
        return SkXfermode::kSrcIn_Mode;
    case WebCore::FECOMPOSITE_OPERATOR_OUT:
        return SkXfermode::kSrcOut_Mode;
    case WebCore::FECOMPOSITE_OPERATOR_ATOP:
        return SkXfermode::kSrcATop_Mode;
    case WebCore::FECOMPOSITE_OPERATOR_XOR:
        return SkXfermode::kXor_Mode;
    default:
        ASSERT_NOT_REACHED();
        return SkXfermode::kSrcOver_Mode;
    }
}

PassRefPtr<SkImageFilter> FEComposite::createImageFilter(SkiaImageFilterBuilder* builder)
{
    RefPtr<SkImageFilter> foreground(builder->build(inputEffect(0), operatingColorSpace()));
    RefPtr<SkImageFilter> background(builder->build(inputEffect(1), operatingColorSpace()));
    SkImageFilter::CropRect cropRect = getCropRect(builder->cropOffset());
    RefPtr<SkXfermode> mode;
    if (m_type == FECOMPOSITE_OPERATOR_ARITHMETIC)
        mode = adoptRef(SkArithmeticMode::Create(SkFloatToScalar(m_k1), SkFloatToScalar(m_k2), SkFloatToScalar(m_k3), SkFloatToScalar(m_k4)));
    else
        mode = adoptRef(SkXfermode::Create(toXfermode(m_type)));
    return adoptRef(new SkXfermodeImageFilter(mode.get(), background.get(), foreground.get(), &cropRect));
}

static TextStream& operator<<(TextStream& ts, const CompositeOperationType& type)
{
    switch (type) {
    case FECOMPOSITE_OPERATOR_UNKNOWN:
        ts << "UNKNOWN";
        break;
    case FECOMPOSITE_OPERATOR_OVER:
        ts << "OVER";
        break;
    case FECOMPOSITE_OPERATOR_IN:
        ts << "IN";
        break;
    case FECOMPOSITE_OPERATOR_OUT:
        ts << "OUT";
        break;
    case FECOMPOSITE_OPERATOR_ATOP:
        ts << "ATOP";
        break;
    case FECOMPOSITE_OPERATOR_XOR:
        ts << "XOR";
        break;
    case FECOMPOSITE_OPERATOR_ARITHMETIC:
        ts << "ARITHMETIC";
        break;
    }
    return ts;
}

TextStream& FEComposite::externalRepresentation(TextStream& ts, int indent) const
{
    writeIndent(ts, indent);
    ts << "[feComposite";
    FilterEffect::externalRepresentation(ts);
    ts << " operation=\"" << m_type << "\"";
    if (m_type == FECOMPOSITE_OPERATOR_ARITHMETIC)
        ts << " k1=\"" << m_k1 << "\" k2=\"" << m_k2 << "\" k3=\"" << m_k3 << "\" k4=\"" << m_k4 << "\"";
    ts << "]\n";
    inputEffect(0)->externalRepresentation(ts, indent + 1);
    inputEffect(1)->externalRepresentation(ts, indent + 1);
    return ts;
}

} // namespace WebCore

/* [<][>][^][v][top][bottom][index][help] */