root/base/metrics/stats_table.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. AlignOffset
  2. AlignedSize
  3. shared_memory
  4. table_header
  5. version
  6. size
  7. max_counters
  8. max_threads
  9. thread_name
  10. thread_tid
  11. thread_pid
  12. counter_name
  13. row
  14. data_table_
  15. New
  16. CreateSharedMemory
  17. InitializeTable
  18. ComputeMappedPointers
  19. tls_index_
  20. current
  21. set_current
  22. GetSlot
  23. RegisterThread
  24. CountThreadsRegistered
  25. FindCounter
  26. GetLocation
  27. GetRowName
  28. GetRowValue
  29. GetRowValue
  30. GetCounterValue
  31. GetCounterValue
  32. GetMaxCounters
  33. GetMaxThreads
  34. FindLocation
  35. UnregisterThread
  36. UnregisterThread
  37. SlotReturnFunction
  38. FindEmptyThread
  39. FindCounterOrEmptyRow
  40. AddCounter
  41. GetTLSData
  42. GetSharedMemoryHandle

// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/metrics/stats_table.h"

#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/memory/shared_memory.h"
#include "base/process/process_handle.h"
#include "base/strings/string_piece.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_string_conversions.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread_local_storage.h"

#if defined(OS_POSIX)
#include "base/posix/global_descriptors.h"
#include "errno.h"
#include "ipc/ipc_descriptors.h"
#endif

namespace base {

// The StatsTable uses a shared memory segment that is laid out as follows
//
// +-------------------------------------------+
// | Version | Size | MaxCounters | MaxThreads |
// +-------------------------------------------+
// | Thread names table                        |
// +-------------------------------------------+
// | Thread TID table                          |
// +-------------------------------------------+
// | Thread PID table                          |
// +-------------------------------------------+
// | Counter names table                       |
// +-------------------------------------------+
// | Data                                      |
// +-------------------------------------------+
//
// The data layout is a grid, where the columns are the thread_ids and the
// rows are the counter_ids.
//
// If the first character of the thread_name is '\0', then that column is
// empty.
// If the first character of the counter_name is '\0', then that row is
// empty.
//
// About Locking:
// This class is designed to be both multi-thread and multi-process safe.
// Aside from initialization, this is done by partitioning the data which
// each thread uses so that no locking is required.  However, to allocate
// the rows and columns of the table to particular threads, locking is
// required.
//
// At the shared-memory level, we have a lock.  This lock protects the
// shared-memory table only, and is used when we create new counters (e.g.
// use rows) or when we register new threads (e.g. use columns).  Reading
// data from the table does not require any locking at the shared memory
// level.
//
// Each process which accesses the table will create a StatsTable object.
// The StatsTable maintains a hash table of the existing counters in the
// table for faster lookup.  Since the hash table is process specific,
// each process maintains its own cache.  We avoid complexity here by never
// de-allocating from the hash table.  (Counters are dynamically added,
// but not dynamically removed).

// In order for external viewers to be able to read our shared memory,
// we all need to use the same size ints.
COMPILE_ASSERT(sizeof(int)==4, expect_4_byte_ints);

namespace {

// An internal version in case we ever change the format of this
// file, and so that we can identify our table.
const int kTableVersion = 0x13131313;

// The name for un-named counters and threads in the table.
const char kUnknownName[] = "<unknown>";

// Calculates delta to align an offset to the size of an int
inline int AlignOffset(int offset) {
  return (sizeof(int) - (offset % sizeof(int))) % sizeof(int);
}

inline int AlignedSize(int size) {
  return size + AlignOffset(size);
}

}  // namespace

// The StatsTable::Internal maintains convenience pointers into the
// shared memory segment.  Use this class to keep the data structure
// clean and accessible.
class StatsTable::Internal {
 public:
  // Various header information contained in the memory mapped segment.
  struct TableHeader {
    int version;
    int size;
    int max_counters;
    int max_threads;
  };

  // Construct a new Internal based on expected size parameters, or
  // return NULL on failure.
  static Internal* New(const std::string& name,
                       int size,
                       int max_threads,
                       int max_counters);

  SharedMemory* shared_memory() { return shared_memory_.get(); }

  // Accessors for our header pointers
  TableHeader* table_header() const { return table_header_; }
  int version() const { return table_header_->version; }
  int size() const { return table_header_->size; }
  int max_counters() const { return table_header_->max_counters; }
  int max_threads() const { return table_header_->max_threads; }

  // Accessors for our tables
  char* thread_name(int slot_id) const {
    return &thread_names_table_[
      (slot_id-1) * (StatsTable::kMaxThreadNameLength)];
  }
  PlatformThreadId* thread_tid(int slot_id) const {
    return &(thread_tid_table_[slot_id-1]);
  }
  int* thread_pid(int slot_id) const {
    return &(thread_pid_table_[slot_id-1]);
  }
  char* counter_name(int counter_id) const {
    return &counter_names_table_[
      (counter_id-1) * (StatsTable::kMaxCounterNameLength)];
  }
  int* row(int counter_id) const {
    return &data_table_[(counter_id-1) * max_threads()];
  }

 private:
  // Constructor is private because you should use New() instead.
  explicit Internal(SharedMemory* shared_memory)
      : shared_memory_(shared_memory),
        table_header_(NULL),
        thread_names_table_(NULL),
        thread_tid_table_(NULL),
        thread_pid_table_(NULL),
        counter_names_table_(NULL),
        data_table_(NULL) {
  }

  // Create or open the SharedMemory used by the stats table.
  static SharedMemory* CreateSharedMemory(const std::string& name,
                                          int size);

  // Initializes the table on first access.  Sets header values
  // appropriately and zeroes all counters.
  void InitializeTable(void* memory, int size, int max_counters,
                       int max_threads);

  // Initializes our in-memory pointers into a pre-created StatsTable.
  void ComputeMappedPointers(void* memory);

  scoped_ptr<SharedMemory> shared_memory_;
  TableHeader* table_header_;
  char* thread_names_table_;
  PlatformThreadId* thread_tid_table_;
  int* thread_pid_table_;
  char* counter_names_table_;
  int* data_table_;

  DISALLOW_COPY_AND_ASSIGN(Internal);
};

// static
StatsTable::Internal* StatsTable::Internal::New(const std::string& name,
                                                int size,
                                                int max_threads,
                                                int max_counters) {
  scoped_ptr<SharedMemory> shared_memory(CreateSharedMemory(name, size));
  if (!shared_memory.get())
    return NULL;
  if (!shared_memory->Map(size))
    return NULL;
  void* memory = shared_memory->memory();

  scoped_ptr<Internal> internal(new Internal(shared_memory.release()));
  TableHeader* header = static_cast<TableHeader*>(memory);

  // If the version does not match, then assume the table needs
  // to be initialized.
  if (header->version != kTableVersion)
    internal->InitializeTable(memory, size, max_counters, max_threads);

  // We have a valid table, so compute our pointers.
  internal->ComputeMappedPointers(memory);

  return internal.release();
}

// static
SharedMemory* StatsTable::Internal::CreateSharedMemory(const std::string& name,
                                                       int size) {
#if defined(OS_POSIX)
  GlobalDescriptors* global_descriptors = GlobalDescriptors::GetInstance();
  if (global_descriptors->MaybeGet(kStatsTableSharedMemFd) != -1) {
    // Open the shared memory file descriptor passed by the browser process.
    FileDescriptor file_descriptor(
        global_descriptors->Get(kStatsTableSharedMemFd), false);
    return new SharedMemory(file_descriptor, false);
  }
  // Otherwise we need to create it.
  scoped_ptr<SharedMemory> shared_memory(new SharedMemory());
  if (!shared_memory->CreateAnonymous(size))
    return NULL;
  return shared_memory.release();
#elif defined(OS_WIN)
  scoped_ptr<SharedMemory> shared_memory(new SharedMemory());
  if (!shared_memory->CreateNamedDeprecated(name, true, size))
    return NULL;
  return shared_memory.release();
#endif
}

void StatsTable::Internal::InitializeTable(void* memory, int size,
                                          int max_counters,
                                          int max_threads) {
  // Zero everything.
  memset(memory, 0, size);

  // Initialize the header.
  TableHeader* header = static_cast<TableHeader*>(memory);
  header->version = kTableVersion;
  header->size = size;
  header->max_counters = max_counters;
  header->max_threads = max_threads;
}

void StatsTable::Internal::ComputeMappedPointers(void* memory) {
  char* data = static_cast<char*>(memory);
  int offset = 0;

  table_header_ = reinterpret_cast<TableHeader*>(data);
  offset += sizeof(*table_header_);
  offset += AlignOffset(offset);

  // Verify we're looking at a valid StatsTable.
  DCHECK_EQ(table_header_->version, kTableVersion);

  thread_names_table_ = reinterpret_cast<char*>(data + offset);
  offset += sizeof(char) *
            max_threads() * StatsTable::kMaxThreadNameLength;
  offset += AlignOffset(offset);

  thread_tid_table_ = reinterpret_cast<PlatformThreadId*>(data + offset);
  offset += sizeof(int) * max_threads();
  offset += AlignOffset(offset);

  thread_pid_table_ = reinterpret_cast<int*>(data + offset);
  offset += sizeof(int) * max_threads();
  offset += AlignOffset(offset);

  counter_names_table_ = reinterpret_cast<char*>(data + offset);
  offset += sizeof(char) *
            max_counters() * StatsTable::kMaxCounterNameLength;
  offset += AlignOffset(offset);

  data_table_ = reinterpret_cast<int*>(data + offset);
  offset += sizeof(int) * max_threads() * max_counters();

  DCHECK_EQ(offset, size());
}

// TLSData carries the data stored in the TLS slots for the
// StatsTable.  This is used so that we can properly cleanup when the
// thread exits and return the table slot.
//
// Each thread that calls RegisterThread in the StatsTable will have
// a TLSData stored in its TLS.
struct StatsTable::TLSData {
  StatsTable* table;
  int slot;
};

// We keep a singleton table which can be easily accessed.
StatsTable* global_table = NULL;

StatsTable::StatsTable(const std::string& name, int max_threads,
                       int max_counters)
    : internal_(NULL),
      tls_index_(SlotReturnFunction) {
  int table_size =
    AlignedSize(sizeof(Internal::TableHeader)) +
    AlignedSize((max_counters * sizeof(char) * kMaxCounterNameLength)) +
    AlignedSize((max_threads * sizeof(char) * kMaxThreadNameLength)) +
    AlignedSize(max_threads * sizeof(int)) +
    AlignedSize(max_threads * sizeof(int)) +
    AlignedSize((sizeof(int) * (max_counters * max_threads)));

  internal_ = Internal::New(name, table_size, max_threads, max_counters);

  if (!internal_)
    DPLOG(ERROR) << "StatsTable did not initialize";
}

StatsTable::~StatsTable() {
  // Before we tear down our copy of the table, be sure to
  // unregister our thread.
  UnregisterThread();

  // Return ThreadLocalStorage.  At this point, if any registered threads
  // still exist, they cannot Unregister.
  tls_index_.Free();

  // Cleanup our shared memory.
  delete internal_;

  // If we are the global table, unregister ourselves.
  if (global_table == this)
    global_table = NULL;
}

StatsTable* StatsTable::current() {
  return global_table;
}

void StatsTable::set_current(StatsTable* value) {
  global_table = value;
}

int StatsTable::GetSlot() const {
  TLSData* data = GetTLSData();
  if (!data)
    return 0;
  return data->slot;
}

int StatsTable::RegisterThread(const std::string& name) {
  int slot = 0;
  if (!internal_)
    return 0;

  // Registering a thread requires that we lock the shared memory
  // so that two threads don't grab the same slot.  Fortunately,
  // thread creation shouldn't happen in inner loops.
  // TODO(viettrungluu): crbug.com/345734: Use a different locking mechanism.
  {
    SharedMemoryAutoLockDeprecated lock(internal_->shared_memory());
    slot = FindEmptyThread();
    if (!slot) {
      return 0;
    }

    // We have space, so consume a column in the table.
    std::string thread_name = name;
    if (name.empty())
      thread_name = kUnknownName;
    strlcpy(internal_->thread_name(slot), thread_name.c_str(),
            kMaxThreadNameLength);
    *(internal_->thread_tid(slot)) = PlatformThread::CurrentId();
    *(internal_->thread_pid(slot)) = GetCurrentProcId();
  }

  // Set our thread local storage.
  TLSData* data = new TLSData;
  data->table = this;
  data->slot = slot;
  tls_index_.Set(data);
  return slot;
}

int StatsTable::CountThreadsRegistered() const {
  if (!internal_)
    return 0;

  // Loop through the shared memory and count the threads that are active.
  // We intentionally do not lock the table during the operation.
  int count = 0;
  for (int index = 1; index <= internal_->max_threads(); index++) {
    char* name = internal_->thread_name(index);
    if (*name != '\0')
      count++;
  }
  return count;
}

int StatsTable::FindCounter(const std::string& name) {
  // Note: the API returns counters numbered from 1..N, although
  // internally, the array is 0..N-1.  This is so that we can return
  // zero as "not found".
  if (!internal_)
    return 0;

  // Create a scope for our auto-lock.
  {
    AutoLock scoped_lock(counters_lock_);

    // Attempt to find the counter.
    CountersMap::const_iterator iter;
    iter = counters_.find(name);
    if (iter != counters_.end())
      return iter->second;
  }

  // Counter does not exist, so add it.
  return AddCounter(name);
}

int* StatsTable::GetLocation(int counter_id, int slot_id) const {
  if (!internal_)
    return NULL;
  if (slot_id > internal_->max_threads())
    return NULL;

  int* row = internal_->row(counter_id);
  return &(row[slot_id-1]);
}

const char* StatsTable::GetRowName(int index) const {
  if (!internal_)
    return NULL;

  return internal_->counter_name(index);
}

int StatsTable::GetRowValue(int index) const {
  return GetRowValue(index, 0);
}

int StatsTable::GetRowValue(int index, int pid) const {
  if (!internal_)
    return 0;

  int rv = 0;
  int* row = internal_->row(index);
  for (int slot_id = 1; slot_id <= internal_->max_threads(); slot_id++) {
    if (pid == 0 || *internal_->thread_pid(slot_id) == pid)
      rv += row[slot_id-1];
  }
  return rv;
}

int StatsTable::GetCounterValue(const std::string& name) {
  return GetCounterValue(name, 0);
}

int StatsTable::GetCounterValue(const std::string& name, int pid) {
  if (!internal_)
    return 0;

  int row = FindCounter(name);
  if (!row)
    return 0;
  return GetRowValue(row, pid);
}

int StatsTable::GetMaxCounters() const {
  if (!internal_)
    return 0;
  return internal_->max_counters();
}

int StatsTable::GetMaxThreads() const {
  if (!internal_)
    return 0;
  return internal_->max_threads();
}

int* StatsTable::FindLocation(const char* name) {
  // Get the static StatsTable
  StatsTable *table = StatsTable::current();
  if (!table)
    return NULL;

  // Get the slot for this thread.  Try to register
  // it if none exists.
  int slot = table->GetSlot();
  if (!slot && !(slot = table->RegisterThread(std::string())))
    return NULL;

  // Find the counter id for the counter.
  std::string str_name(name);
  int counter = table->FindCounter(str_name);

  // Now we can find the location in the table.
  return table->GetLocation(counter, slot);
}

void StatsTable::UnregisterThread() {
  UnregisterThread(GetTLSData());
}

void StatsTable::UnregisterThread(TLSData* data) {
  if (!data)
    return;
  DCHECK(internal_);

  // Mark the slot free by zeroing out the thread name.
  char* name = internal_->thread_name(data->slot);
  *name = '\0';

  // Remove the calling thread's TLS so that it cannot use the slot.
  tls_index_.Set(NULL);
  delete data;
}

void StatsTable::SlotReturnFunction(void* data) {
  // This is called by the TLS destructor, which on some platforms has
  // already cleared the TLS info, so use the tls_data argument
  // rather than trying to fetch it ourselves.
  TLSData* tls_data = static_cast<TLSData*>(data);
  if (tls_data) {
    DCHECK(tls_data->table);
    tls_data->table->UnregisterThread(tls_data);
  }
}

int StatsTable::FindEmptyThread() const {
  // Note: the API returns slots numbered from 1..N, although
  // internally, the array is 0..N-1.  This is so that we can return
  // zero as "not found".
  //
  // The reason for doing this is because the thread 'slot' is stored
  // in TLS, which is always initialized to zero, not -1.  If 0 were
  // returned as a valid slot number, it would be confused with the
  // uninitialized state.
  if (!internal_)
    return 0;

  int index = 1;
  for (; index <= internal_->max_threads(); index++) {
    char* name = internal_->thread_name(index);
    if (!*name)
      break;
  }
  if (index > internal_->max_threads())
    return 0;  // The table is full.
  return index;
}

int StatsTable::FindCounterOrEmptyRow(const std::string& name) const {
  // Note: the API returns slots numbered from 1..N, although
  // internally, the array is 0..N-1.  This is so that we can return
  // zero as "not found".
  //
  // There isn't much reason for this other than to be consistent
  // with the way we track columns for thread slots.  (See comments
  // in FindEmptyThread for why it is done this way).
  if (!internal_)
    return 0;

  int free_slot = 0;
  for (int index = 1; index <= internal_->max_counters(); index++) {
    char* row_name = internal_->counter_name(index);
    if (!*row_name && !free_slot)
      free_slot = index;  // save that we found a free slot
    else if (!strncmp(row_name, name.c_str(), kMaxCounterNameLength))
      return index;
  }
  return free_slot;
}

int StatsTable::AddCounter(const std::string& name) {
  if (!internal_)
    return 0;

  int counter_id = 0;
  {
    // To add a counter to the shared memory, we need the
    // shared memory lock.
    SharedMemoryAutoLockDeprecated lock(internal_->shared_memory());

    // We have space, so create a new counter.
    counter_id = FindCounterOrEmptyRow(name);
    if (!counter_id)
      return 0;

    std::string counter_name = name;
    if (name.empty())
      counter_name = kUnknownName;
    strlcpy(internal_->counter_name(counter_id), counter_name.c_str(),
            kMaxCounterNameLength);
  }

  // now add to our in-memory cache
  {
    AutoLock lock(counters_lock_);
    counters_[name] = counter_id;
  }
  return counter_id;
}

StatsTable::TLSData* StatsTable::GetTLSData() const {
  TLSData* data =
    static_cast<TLSData*>(tls_index_.Get());
  if (!data)
    return NULL;

  DCHECK(data->slot);
  DCHECK_EQ(data->table, this);
  return data;
}

#if defined(OS_POSIX)
SharedMemoryHandle StatsTable::GetSharedMemoryHandle() const {
  if (!internal_)
    return SharedMemory::NULLHandle();
  return internal_->shared_memory()->handle();
}
#endif

}  // namespace base

/* [<][>][^][v][top][bottom][index][help] */