root/base/allocator/allocator_unittest.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. Fill
  2. Valid
  3. IsZeroed
  4. CheckAlignment
  5. NextSize
  6. TestAtomicIncrement
  7. TestCompareAndSwap
  8. TestAtomicExchange
  9. TestAtomicIncrementBounds
  10. TestStore
  11. TestLoad
  12. TestAtomicOps
  13. TestCalloc
  14. TestNewHandler
  15. TestOneNewWithoutExceptions
  16. TestNothrowNew
  17. TEST
  18. TEST
  19. TEST
  20. TEST
  21. TEST
  22. TEST
  23. TEST
  24. TEST
  25. TEST
  26. TEST
  27. TEST
  28. TEST
  29. main

// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <stdio.h>
#include <stdlib.h>
#include <algorithm>   // for min()
#include "base/atomicops.h"
#include "testing/gtest/include/gtest/gtest.h"

// Number of bits in a size_t.
static const int kSizeBits = 8 * sizeof(size_t);
// The maximum size of a size_t.
static const size_t kMaxSize = ~static_cast<size_t>(0);
// Maximum positive size of a size_t if it were signed.
static const size_t kMaxSignedSize = ((size_t(1) << (kSizeBits-1)) - 1);
// An allocation size which is not too big to be reasonable.
static const size_t kNotTooBig = 100000;
// An allocation size which is just too big.
static const size_t kTooBig = ~static_cast<size_t>(0);

namespace {

using std::min;

// Fill a buffer of the specified size with a predetermined pattern
static void Fill(unsigned char* buffer, int n) {
  for (int i = 0; i < n; i++) {
    buffer[i] = (i & 0xff);
  }
}

// Check that the specified buffer has the predetermined pattern
// generated by Fill()
static bool Valid(unsigned char* buffer, int n) {
  for (int i = 0; i < n; i++) {
    if (buffer[i] != (i & 0xff)) {
      return false;
    }
  }
  return true;
}

// Check that a buffer is completely zeroed.
static bool IsZeroed(unsigned char* buffer, int n) {
  for (int i = 0; i < n; i++) {
    if (buffer[i] != 0) {
      return false;
    }
  }
  return true;
}

// Check alignment
static void CheckAlignment(void* p, int align) {
  EXPECT_EQ(0, reinterpret_cast<uintptr_t>(p) & (align-1));
}

// Return the next interesting size/delta to check.  Returns -1 if no more.
static int NextSize(int size) {
  if (size < 100)
    return size+1;

  if (size < 100000) {
    // Find next power of two
    int power = 1;
    while (power < size)
      power <<= 1;

    // Yield (power-1, power, power+1)
    if (size < power-1)
      return power-1;

    if (size == power-1)
      return power;

    assert(size == power);
    return power+1;
  } else {
    return -1;
  }
}

#define GG_ULONGLONG(x)  static_cast<uint64>(x)

template <class AtomicType>
static void TestAtomicIncrement() {
  // For now, we just test single threaded execution

  // use a guard value to make sure the NoBarrier_AtomicIncrement doesn't go
  // outside the expected address bounds.  This is in particular to
  // test that some future change to the asm code doesn't cause the
  // 32-bit NoBarrier_AtomicIncrement to do the wrong thing on 64-bit machines.
  struct {
    AtomicType prev_word;
    AtomicType count;
    AtomicType next_word;
  } s;

  AtomicType prev_word_value, next_word_value;
  memset(&prev_word_value, 0xFF, sizeof(AtomicType));
  memset(&next_word_value, 0xEE, sizeof(AtomicType));

  s.prev_word = prev_word_value;
  s.count = 0;
  s.next_word = next_word_value;

  EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 1), 1);
  EXPECT_EQ(s.count, 1);
  EXPECT_EQ(s.prev_word, prev_word_value);
  EXPECT_EQ(s.next_word, next_word_value);

  EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 2), 3);
  EXPECT_EQ(s.count, 3);
  EXPECT_EQ(s.prev_word, prev_word_value);
  EXPECT_EQ(s.next_word, next_word_value);

  EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 3), 6);
  EXPECT_EQ(s.count, 6);
  EXPECT_EQ(s.prev_word, prev_word_value);
  EXPECT_EQ(s.next_word, next_word_value);

  EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -3), 3);
  EXPECT_EQ(s.count, 3);
  EXPECT_EQ(s.prev_word, prev_word_value);
  EXPECT_EQ(s.next_word, next_word_value);

  EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -2), 1);
  EXPECT_EQ(s.count, 1);
  EXPECT_EQ(s.prev_word, prev_word_value);
  EXPECT_EQ(s.next_word, next_word_value);

  EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), 0);
  EXPECT_EQ(s.count, 0);
  EXPECT_EQ(s.prev_word, prev_word_value);
  EXPECT_EQ(s.next_word, next_word_value);

  EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), -1);
  EXPECT_EQ(s.count, -1);
  EXPECT_EQ(s.prev_word, prev_word_value);
  EXPECT_EQ(s.next_word, next_word_value);

  EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -4), -5);
  EXPECT_EQ(s.count, -5);
  EXPECT_EQ(s.prev_word, prev_word_value);
  EXPECT_EQ(s.next_word, next_word_value);

  EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 5), 0);
  EXPECT_EQ(s.count, 0);
  EXPECT_EQ(s.prev_word, prev_word_value);
  EXPECT_EQ(s.next_word, next_word_value);
}


#define NUM_BITS(T) (sizeof(T) * 8)


template <class AtomicType>
static void TestCompareAndSwap() {
  AtomicType value = 0;
  AtomicType prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 1);
  EXPECT_EQ(1, value);
  EXPECT_EQ(0, prev);

  // Use test value that has non-zero bits in both halves, more for testing
  // 64-bit implementation on 32-bit platforms.
  const AtomicType k_test_val = (GG_ULONGLONG(1) <<
                                 (NUM_BITS(AtomicType) - 2)) + 11;
  value = k_test_val;
  prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 5);
  EXPECT_EQ(k_test_val, value);
  EXPECT_EQ(k_test_val, prev);

  value = k_test_val;
  prev = base::subtle::NoBarrier_CompareAndSwap(&value, k_test_val, 5);
  EXPECT_EQ(5, value);
  EXPECT_EQ(k_test_val, prev);
}


template <class AtomicType>
static void TestAtomicExchange() {
  AtomicType value = 0;
  AtomicType new_value = base::subtle::NoBarrier_AtomicExchange(&value, 1);
  EXPECT_EQ(1, value);
  EXPECT_EQ(0, new_value);

  // Use test value that has non-zero bits in both halves, more for testing
  // 64-bit implementation on 32-bit platforms.
  const AtomicType k_test_val = (GG_ULONGLONG(1) <<
                                 (NUM_BITS(AtomicType) - 2)) + 11;
  value = k_test_val;
  new_value = base::subtle::NoBarrier_AtomicExchange(&value, k_test_val);
  EXPECT_EQ(k_test_val, value);
  EXPECT_EQ(k_test_val, new_value);

  value = k_test_val;
  new_value = base::subtle::NoBarrier_AtomicExchange(&value, 5);
  EXPECT_EQ(5, value);
  EXPECT_EQ(k_test_val, new_value);
}


template <class AtomicType>
static void TestAtomicIncrementBounds() {
  // Test increment at the half-width boundary of the atomic type.
  // It is primarily for testing at the 32-bit boundary for 64-bit atomic type.
  AtomicType test_val = GG_ULONGLONG(1) << (NUM_BITS(AtomicType) / 2);
  AtomicType value = test_val - 1;
  AtomicType new_value = base::subtle::NoBarrier_AtomicIncrement(&value, 1);
  EXPECT_EQ(test_val, value);
  EXPECT_EQ(value, new_value);

  base::subtle::NoBarrier_AtomicIncrement(&value, -1);
  EXPECT_EQ(test_val - 1, value);
}

// This is a simple sanity check that values are correct. Not testing
// atomicity
template <class AtomicType>
static void TestStore() {
  const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL);
  const AtomicType kVal2 = static_cast<AtomicType>(-1);

  AtomicType value;

  base::subtle::NoBarrier_Store(&value, kVal1);
  EXPECT_EQ(kVal1, value);
  base::subtle::NoBarrier_Store(&value, kVal2);
  EXPECT_EQ(kVal2, value);

  base::subtle::Acquire_Store(&value, kVal1);
  EXPECT_EQ(kVal1, value);
  base::subtle::Acquire_Store(&value, kVal2);
  EXPECT_EQ(kVal2, value);

  base::subtle::Release_Store(&value, kVal1);
  EXPECT_EQ(kVal1, value);
  base::subtle::Release_Store(&value, kVal2);
  EXPECT_EQ(kVal2, value);
}

// This is a simple sanity check that values are correct. Not testing
// atomicity
template <class AtomicType>
static void TestLoad() {
  const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL);
  const AtomicType kVal2 = static_cast<AtomicType>(-1);

  AtomicType value;

  value = kVal1;
  EXPECT_EQ(kVal1, base::subtle::NoBarrier_Load(&value));
  value = kVal2;
  EXPECT_EQ(kVal2, base::subtle::NoBarrier_Load(&value));

  value = kVal1;
  EXPECT_EQ(kVal1, base::subtle::Acquire_Load(&value));
  value = kVal2;
  EXPECT_EQ(kVal2, base::subtle::Acquire_Load(&value));

  value = kVal1;
  EXPECT_EQ(kVal1, base::subtle::Release_Load(&value));
  value = kVal2;
  EXPECT_EQ(kVal2, base::subtle::Release_Load(&value));
}

template <class AtomicType>
static void TestAtomicOps() {
  TestCompareAndSwap<AtomicType>();
  TestAtomicExchange<AtomicType>();
  TestAtomicIncrementBounds<AtomicType>();
  TestStore<AtomicType>();
  TestLoad<AtomicType>();
}

static void TestCalloc(size_t n, size_t s, bool ok) {
  char* p = reinterpret_cast<char*>(calloc(n, s));
  if (!ok) {
    EXPECT_EQ(NULL, p) << "calloc(n, s) should not succeed";
  } else {
    EXPECT_NE(reinterpret_cast<void*>(NULL), p) <<
        "calloc(n, s) should succeed";
    for (int i = 0; i < n*s; i++) {
      EXPECT_EQ('\0', p[i]);
    }
    free(p);
  }
}


// A global test counter for number of times the NewHandler is called.
static int news_handled = 0;
static void TestNewHandler() {
  ++news_handled;
  throw std::bad_alloc();
}

// Because we compile without exceptions, we expect these will not throw.
static void TestOneNewWithoutExceptions(void* (*func)(size_t),
                                        bool should_throw) {
  // success test
  try {
    void* ptr = (*func)(kNotTooBig);
    EXPECT_NE(reinterpret_cast<void*>(NULL), ptr) <<
        "allocation should not have failed.";
  } catch(...) {
    EXPECT_EQ(0, 1) << "allocation threw unexpected exception.";
  }

  // failure test
  try {
    void* rv = (*func)(kTooBig);
    EXPECT_EQ(NULL, rv);
    EXPECT_FALSE(should_throw) << "allocation should have thrown.";
  } catch(...) {
    EXPECT_TRUE(should_throw) << "allocation threw unexpected exception.";
  }
}

static void TestNothrowNew(void* (*func)(size_t)) {
  news_handled = 0;

  // test without new_handler:
  std::new_handler saved_handler = std::set_new_handler(0);
  TestOneNewWithoutExceptions(func, false);

  // test with new_handler:
  std::set_new_handler(TestNewHandler);
  TestOneNewWithoutExceptions(func, true);
  EXPECT_EQ(news_handled, 1) << "nothrow new_handler was not called.";
  std::set_new_handler(saved_handler);
}

}  // namespace

//-----------------------------------------------------------------------------

TEST(Atomics, AtomicIncrementWord) {
  TestAtomicIncrement<AtomicWord>();
}

TEST(Atomics, AtomicIncrement32) {
  TestAtomicIncrement<Atomic32>();
}

TEST(Atomics, AtomicOpsWord) {
  TestAtomicIncrement<AtomicWord>();
}

TEST(Atomics, AtomicOps32) {
  TestAtomicIncrement<Atomic32>();
}

TEST(Allocators, Malloc) {
  // Try allocating data with a bunch of alignments and sizes
  for (int size = 1; size < 1048576; size *= 2) {
    unsigned char* ptr = reinterpret_cast<unsigned char*>(malloc(size));
    CheckAlignment(ptr, 2);  // Should be 2 byte aligned
    Fill(ptr, size);
    EXPECT_TRUE(Valid(ptr, size));
    free(ptr);
  }
}

TEST(Allocators, Calloc) {
  TestCalloc(0, 0, true);
  TestCalloc(0, 1, true);
  TestCalloc(1, 1, true);
  TestCalloc(1<<10, 0, true);
  TestCalloc(1<<20, 0, true);
  TestCalloc(0, 1<<10, true);
  TestCalloc(0, 1<<20, true);
  TestCalloc(1<<20, 2, true);
  TestCalloc(2, 1<<20, true);
  TestCalloc(1000, 1000, true);

  TestCalloc(kMaxSize, 2, false);
  TestCalloc(2, kMaxSize, false);
  TestCalloc(kMaxSize, kMaxSize, false);

  TestCalloc(kMaxSignedSize, 3, false);
  TestCalloc(3, kMaxSignedSize, false);
  TestCalloc(kMaxSignedSize, kMaxSignedSize, false);
}

TEST(Allocators, New) {
  TestNothrowNew(&::operator new);
  TestNothrowNew(&::operator new[]);
}

// This makes sure that reallocing a small number of bytes in either
// direction doesn't cause us to allocate new memory.
TEST(Allocators, Realloc1) {
  int start_sizes[] = { 100, 1000, 10000, 100000 };
  int deltas[] = { 1, -2, 4, -8, 16, -32, 64, -128 };

  for (int s = 0; s < sizeof(start_sizes)/sizeof(*start_sizes); ++s) {
    void* p = malloc(start_sizes[s]);
    ASSERT_TRUE(p);
    // The larger the start-size, the larger the non-reallocing delta.
    for (int d = 0; d < s*2; ++d) {
      void* new_p = realloc(p, start_sizes[s] + deltas[d]);
      ASSERT_EQ(p, new_p);  // realloc should not allocate new memory
    }
    // Test again, but this time reallocing smaller first.
    for (int d = 0; d < s*2; ++d) {
      void* new_p = realloc(p, start_sizes[s] - deltas[d]);
      ASSERT_EQ(p, new_p);  // realloc should not allocate new memory
    }
    free(p);
  }
}

TEST(Allocators, Realloc2) {
  for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) {
    for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) {
      unsigned char* src = reinterpret_cast<unsigned char*>(malloc(src_size));
      Fill(src, src_size);
      unsigned char* dst =
          reinterpret_cast<unsigned char*>(realloc(src, dst_size));
      EXPECT_TRUE(Valid(dst, min(src_size, dst_size)));
      Fill(dst, dst_size);
      EXPECT_TRUE(Valid(dst, dst_size));
      if (dst != NULL) free(dst);
    }
  }

  // Now make sure realloc works correctly even when we overflow the
  // packed cache, so some entries are evicted from the cache.
  // The cache has 2^12 entries, keyed by page number.
  const int kNumEntries = 1 << 14;
  int** p = reinterpret_cast<int**>(malloc(sizeof(*p) * kNumEntries));
  int sum = 0;
  for (int i = 0; i < kNumEntries; i++) {
    // no page size is likely to be bigger than 8192?
    p[i] = reinterpret_cast<int*>(malloc(8192));
    p[i][1000] = i;              // use memory deep in the heart of p
  }
  for (int i = 0; i < kNumEntries; i++) {
    p[i] = reinterpret_cast<int*>(realloc(p[i], 9000));
  }
  for (int i = 0; i < kNumEntries; i++) {
    sum += p[i][1000];
    free(p[i]);
  }
  EXPECT_EQ(kNumEntries/2 * (kNumEntries - 1), sum);  // assume kNE is even
  free(p);
}

TEST(Allocators, ReallocZero) {
  // Test that realloc to zero does not return NULL.
  for (int size = 0; size >= 0; size = NextSize(size)) {
    char* ptr = reinterpret_cast<char*>(malloc(size));
    EXPECT_NE(static_cast<char*>(NULL), ptr);
    ptr = reinterpret_cast<char*>(realloc(ptr, 0));
    EXPECT_NE(static_cast<char*>(NULL), ptr);
    if (ptr)
      free(ptr);
  }
}

#ifdef WIN32
// Test recalloc
TEST(Allocators, Recalloc) {
  for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) {
    for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) {
      unsigned char* src =
          reinterpret_cast<unsigned char*>(_recalloc(NULL, 1, src_size));
      EXPECT_TRUE(IsZeroed(src, src_size));
      Fill(src, src_size);
      unsigned char* dst =
          reinterpret_cast<unsigned char*>(_recalloc(src, 1, dst_size));
      EXPECT_TRUE(Valid(dst, min(src_size, dst_size)));
      Fill(dst, dst_size);
      EXPECT_TRUE(Valid(dst, dst_size));
      if (dst != NULL)
        free(dst);
    }
  }
}

// Test windows specific _aligned_malloc() and _aligned_free() methods.
TEST(Allocators, AlignedMalloc) {
  // Try allocating data with a bunch of alignments and sizes
  static const int kTestAlignments[] = {8, 16, 256, 4096, 8192, 16384};
  for (int size = 1; size > 0; size = NextSize(size)) {
    for (int i = 0; i < ARRAYSIZE(kTestAlignments); ++i) {
      unsigned char* ptr = static_cast<unsigned char*>(
          _aligned_malloc(size, kTestAlignments[i]));
      CheckAlignment(ptr, kTestAlignments[i]);
      Fill(ptr, size);
      EXPECT_TRUE(Valid(ptr, size));

      // Make a second allocation of the same size and alignment to prevent
      // allocators from passing this test by accident.  Per jar, tcmalloc
      // provides allocations for new (never before seen) sizes out of a thread
      // local heap of a given "size class."  Each time the test requests a new
      // size, it will usually get the first element of a span, which is a
      // 4K aligned allocation.
      unsigned char* ptr2 = static_cast<unsigned char*>(
          _aligned_malloc(size, kTestAlignments[i]));
      CheckAlignment(ptr2, kTestAlignments[i]);
      Fill(ptr2, size);
      EXPECT_TRUE(Valid(ptr2, size));

      // Should never happen, but sanity check just in case.
      ASSERT_NE(ptr, ptr2);
      _aligned_free(ptr);
      _aligned_free(ptr2);
    }
  }
}

#endif


int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}

/* [<][>][^][v][top][bottom][index][help] */