root/third_party/re2/re2/dfa.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. memrchr
  2. ok
  3. kind
  4. ByteMap
  5. BytePtr
  6. last_was_mark_
  7. is_mark
  8. maxmark
  9. clear
  10. mark
  11. size
  12. insert
  13. insert_new
  14. cache_warned_
  15. DumpWorkq
  16. DumpState
  17. WorkqToCachedState
  18. CachedState
  19. ClearCache
  20. StateToWorkq
  21. AddToQueue
  22. RunWorkqOnEmptyString
  23. RunWorkqOnByte
  24. RunStateOnByteUnlocked
  25. RunStateOnByte
  26. IsLockedForWriting
  27. writing_
  28. LockForWriting
  29. ResetCache
  30. Restore
  31. InlinedSearchLoop
  32. SearchFFF
  33. SearchFFT
  34. SearchFTF
  35. SearchFTT
  36. SearchTFF
  37. SearchTFT
  38. SearchTTF
  39. SearchTTT
  40. SlowSearchLoop
  41. FastSearchLoop
  42. AnalyzeSearch
  43. AnalyzeSearchHelper
  44. Search
  45. DeleteDFA
  46. GetDFA
  47. SearchDFA
  48. BuildAllStates
  49. BuildEntireDFA
  50. PossibleMatchRange
  51. PossibleMatchRange

// Copyright 2008 The RE2 Authors.  All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// A DFA (deterministic finite automaton)-based regular expression search.
//
// The DFA search has two main parts: the construction of the automaton,
// which is represented by a graph of State structures, and the execution
// of the automaton over a given input string.
//
// The basic idea is that the State graph is constructed so that the
// execution can simply start with a state s, and then for each byte c in
// the input string, execute "s = s->next[c]", checking at each point whether
// the current s represents a matching state.
//
// The simple explanation just given does convey the essence of this code,
// but it omits the details of how the State graph gets constructed as well
// as some performance-driven optimizations to the execution of the automaton.
// All these details are explained in the comments for the code following
// the definition of class DFA.
//
// See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent.

#include "re2/prog.h"
#include "re2/stringpiece.h"
#include "util/atomicops.h"
#include "util/flags.h"
#include "util/sparse_set.h"

#define NO_THREAD_SAFETY_ANALYSIS

DEFINE_bool(re2_dfa_bail_when_slow, true,
            "Whether the RE2 DFA should bail out early "
            "if the NFA would be faster (for testing).");

namespace re2 {

#if !defined(__linux__)  /* only Linux seems to have memrchr */
static void* memrchr(const void* s, int c, size_t n) {
  const unsigned char* p = (const unsigned char*)s;
  for (p += n; n > 0; n--)
    if (*--p == c)
      return (void*)p;

  return NULL;
}
#endif

// Changing this to true compiles in prints that trace execution of the DFA.
// Generates a lot of output -- only useful for debugging.
static const bool DebugDFA = false;

// A DFA implementation of a regular expression program.
// Since this is entirely a forward declaration mandated by C++,
// some of the comments here are better understood after reading
// the comments in the sections that follow the DFA definition.
class DFA {
 public:
  DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem);
  ~DFA();
  bool ok() const { return !init_failed_; }
  Prog::MatchKind kind() { return kind_; }

  // Searches for the regular expression in text, which is considered
  // as a subsection of context for the purposes of interpreting flags
  // like ^ and $ and \A and \z.
  // Returns whether a match was found.
  // If a match is found, sets *ep to the end point of the best match in text.
  // If "anchored", the match must begin at the start of text.
  // If "want_earliest_match", the match that ends first is used, not
  //   necessarily the best one.
  // If "run_forward" is true, the DFA runs from text.begin() to text.end().
  //   If it is false, the DFA runs from text.end() to text.begin(),
  //   returning the leftmost end of the match instead of the rightmost one.
  // If the DFA cannot complete the search (for example, if it is out of
  //   memory), it sets *failed and returns false.
  bool Search(const StringPiece& text, const StringPiece& context,
              bool anchored, bool want_earliest_match, bool run_forward,
              bool* failed, const char** ep, vector<int>* matches);

  // Builds out all states for the entire DFA.  FOR TESTING ONLY
  // Returns number of states.
  int BuildAllStates();

  // Computes min and max for matching strings.  Won't return strings
  // bigger than maxlen.
  bool PossibleMatchRange(string* min, string* max, int maxlen);

  // These data structures are logically private, but C++ makes it too
  // difficult to mark them as such.
  class Workq;
  class RWLocker;
  class StateSaver;

  // A single DFA state.  The DFA is represented as a graph of these
  // States, linked by the next_ pointers.  If in state s and reading
  // byte c, the next state should be s->next_[c].
  struct State {
    inline bool IsMatch() const { return flag_ & kFlagMatch; }
    void SaveMatch(vector<int>* v);

    int* inst_;         // Instruction pointers in the state.
    int ninst_;         // # of inst_ pointers.
    uint flag_;         // Empty string bitfield flags in effect on the way
                        // into this state, along with kFlagMatch if this
                        // is a matching state.
    State** next_;      // Outgoing arrows from State,
                        // one per input byte class
  };

  enum {
    kByteEndText = 256,         // imaginary byte at end of text

    kFlagEmptyMask = 0xFFF,     // State.flag_: bits holding kEmptyXXX flags
    kFlagMatch = 0x1000,        // State.flag_: this is a matching state
    kFlagLastWord = 0x2000,     // State.flag_: last byte was a word char
    kFlagNeedShift = 16,        // needed kEmpty bits are or'ed in shifted left
  };

#ifndef STL_MSVC
  // STL function structures for use with unordered_set.
  struct StateEqual {
    bool operator()(const State* a, const State* b) const {
      if (a == b)
        return true;
      if (a == NULL || b == NULL)
        return false;
      if (a->ninst_ != b->ninst_)
        return false;
      if (a->flag_ != b->flag_)
        return false;
      for (int i = 0; i < a->ninst_; i++)
        if (a->inst_[i] != b->inst_[i])
          return false;
      return true;  // they're equal
    }
  };
#endif  // STL_MSVC
  struct StateHash {
    size_t operator()(const State* a) const {
      if (a == NULL)
        return 0;
      const char* s = reinterpret_cast<const char*>(a->inst_);
      int len = a->ninst_ * sizeof a->inst_[0];
      if (sizeof(size_t) == sizeof(uint32))
        return Hash32StringWithSeed(s, len, a->flag_);
      else
        return Hash64StringWithSeed(s, len, a->flag_);
    }
#ifdef STL_MSVC
    // Less than operator.
    bool operator()(const State* a, const State* b) const {
      if (a == b)
        return false;
      if (a == NULL || b == NULL)
        return a == NULL;
      if (a->ninst_ != b->ninst_)
        return a->ninst_ < b->ninst_;
      if (a->flag_ != b->flag_)
        return a->flag_ < b->flag_;
      for (int i = 0; i < a->ninst_; ++i)
        if (a->inst_[i] != b->inst_[i])
          return a->inst_[i] < b->inst_[i];
      return false;  // they're equal
    }
    // The two public members are required by msvc. 4 and 8 are default values.
    // Reference: http://msdn.microsoft.com/en-us/library/1s1byw77.aspx
    static const size_t bucket_size = 4;
    static const size_t min_buckets = 8;
#endif  // STL_MSVC
  };

#ifdef STL_MSVC
  typedef unordered_set<State*, StateHash> StateSet;
#else  // !STL_MSVC
  typedef unordered_set<State*, StateHash, StateEqual> StateSet;
#endif  // STL_MSVC


 private:
  // Special "firstbyte" values for a state.  (Values >= 0 denote actual bytes.)
  enum {
    kFbUnknown = -1,   // No analysis has been performed.
    kFbMany = -2,      // Many bytes will lead out of this state.
    kFbNone = -3,      // No bytes lead out of this state.
  };

  enum {
    // Indices into start_ for unanchored searches.
    // Add kStartAnchored for anchored searches.
    kStartBeginText = 0,          // text at beginning of context
    kStartBeginLine = 2,          // text at beginning of line
    kStartAfterWordChar = 4,      // text follows a word character
    kStartAfterNonWordChar = 6,   // text follows non-word character
    kMaxStart = 8,

    kStartAnchored = 1,
  };

  // Resets the DFA State cache, flushing all saved State* information.
  // Releases and reacquires cache_mutex_ via cache_lock, so any
  // State* existing before the call are not valid after the call.
  // Use a StateSaver to preserve important states across the call.
  // cache_mutex_.r <= L < mutex_
  // After: cache_mutex_.w <= L < mutex_
  void ResetCache(RWLocker* cache_lock);

  // Looks up and returns the State corresponding to a Workq.
  // L >= mutex_
  State* WorkqToCachedState(Workq* q, uint flag);

  // Looks up and returns a State matching the inst, ninst, and flag.
  // L >= mutex_
  State* CachedState(int* inst, int ninst, uint flag);

  // Clear the cache entirely.
  // Must hold cache_mutex_.w or be in destructor.
  void ClearCache();

  // Converts a State into a Workq: the opposite of WorkqToCachedState.
  // L >= mutex_
  static void StateToWorkq(State* s, Workq* q);

  // Runs a State on a given byte, returning the next state.
  State* RunStateOnByteUnlocked(State*, int);  // cache_mutex_.r <= L < mutex_
  State* RunStateOnByte(State*, int);          // L >= mutex_

  // Runs a Workq on a given byte followed by a set of empty-string flags,
  // producing a new Workq in nq.  If a match instruction is encountered,
  // sets *ismatch to true.
  // L >= mutex_
  void RunWorkqOnByte(Workq* q, Workq* nq,
                             int c, uint flag, bool* ismatch,
                             Prog::MatchKind kind,
                             int new_byte_loop);

  // Runs a Workq on a set of empty-string flags, producing a new Workq in nq.
  // L >= mutex_
  void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint flag);

  // Adds the instruction id to the Workq, following empty arrows
  // according to flag.
  // L >= mutex_
  void AddToQueue(Workq* q, int id, uint flag);

  // For debugging, returns a text representation of State.
  static string DumpState(State* state);

  // For debugging, returns a text representation of a Workq.
  static string DumpWorkq(Workq* q);

  // Search parameters
  struct SearchParams {
    SearchParams(const StringPiece& text, const StringPiece& context,
                 RWLocker* cache_lock)
      : text(text), context(context),
        anchored(false),
        want_earliest_match(false),
        run_forward(false),
        start(NULL),
        firstbyte(kFbUnknown),
        cache_lock(cache_lock),
        failed(false),
        ep(NULL),
        matches(NULL) { }

    StringPiece text;
    StringPiece context;
    bool anchored;
    bool want_earliest_match;
    bool run_forward;
    State* start;
    int firstbyte;
    RWLocker *cache_lock;
    bool failed;     // "out" parameter: whether search gave up
    const char* ep;  // "out" parameter: end pointer for match
    vector<int>* matches;

   private:
    DISALLOW_EVIL_CONSTRUCTORS(SearchParams);
  };

  // Before each search, the parameters to Search are analyzed by
  // AnalyzeSearch to determine the state in which to start and the
  // "firstbyte" for that state, if any.
  struct StartInfo {
    StartInfo() : start(NULL), firstbyte(kFbUnknown) { }
    State* start;
    volatile int firstbyte;
  };

  // Fills in params->start and params->firstbyte using
  // the other search parameters.  Returns true on success,
  // false on failure.
  // cache_mutex_.r <= L < mutex_
  bool AnalyzeSearch(SearchParams* params);
  bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info, uint flags);

  // The generic search loop, inlined to create specialized versions.
  // cache_mutex_.r <= L < mutex_
  // Might unlock and relock cache_mutex_ via params->cache_lock.
  inline bool InlinedSearchLoop(SearchParams* params,
                                bool have_firstbyte,
                                bool want_earliest_match,
                                bool run_forward);

  // The specialized versions of InlinedSearchLoop.  The three letters
  // at the ends of the name denote the true/false values used as the
  // last three parameters of InlinedSearchLoop.
  // cache_mutex_.r <= L < mutex_
  // Might unlock and relock cache_mutex_ via params->cache_lock.
  bool SearchFFF(SearchParams* params);
  bool SearchFFT(SearchParams* params);
  bool SearchFTF(SearchParams* params);
  bool SearchFTT(SearchParams* params);
  bool SearchTFF(SearchParams* params);
  bool SearchTFT(SearchParams* params);
  bool SearchTTF(SearchParams* params);
  bool SearchTTT(SearchParams* params);

  // The main search loop: calls an appropriate specialized version of
  // InlinedSearchLoop.
  // cache_mutex_.r <= L < mutex_
  // Might unlock and relock cache_mutex_ via params->cache_lock.
  bool FastSearchLoop(SearchParams* params);

  // For debugging, a slow search loop that calls InlinedSearchLoop
  // directly -- because the booleans passed are not constants, the
  // loop is not specialized like the SearchFFF etc. versions, so it
  // runs much more slowly.  Useful only for debugging.
  // cache_mutex_.r <= L < mutex_
  // Might unlock and relock cache_mutex_ via params->cache_lock.
  bool SlowSearchLoop(SearchParams* params);

  // Looks up bytes in bytemap_ but handles case c == kByteEndText too.
  int ByteMap(int c) {
    if (c == kByteEndText)
      return prog_->bytemap_range();
    return prog_->bytemap()[c];
  }

  // Constant after initialization.
  Prog* prog_;              // The regular expression program to run.
  Prog::MatchKind kind_;    // The kind of DFA.
  int start_unanchored_;  // start of unanchored program
  bool init_failed_;        // initialization failed (out of memory)

  Mutex mutex_;  // mutex_ >= cache_mutex_.r

  // Scratch areas, protected by mutex_.
  Workq* q0_;             // Two pre-allocated work queues.
  Workq* q1_;
  int* astack_;         // Pre-allocated stack for AddToQueue
  int nastack_;

  // State* cache.  Many threads use and add to the cache simultaneously,
  // holding cache_mutex_ for reading and mutex_ (above) when adding.
  // If the cache fills and needs to be discarded, the discarding is done
  // while holding cache_mutex_ for writing, to avoid interrupting other
  // readers.  Any State* pointers are only valid while cache_mutex_
  // is held.
  Mutex cache_mutex_;
  int64 mem_budget_;       // Total memory budget for all States.
  int64 state_budget_;     // Amount of memory remaining for new States.
  StateSet state_cache_;   // All States computed so far.
  StartInfo start_[kMaxStart];
  bool cache_warned_;      // have printed to LOG(INFO) about the cache
};

// Shorthand for casting to uint8*.
static inline const uint8* BytePtr(const void* v) {
  return reinterpret_cast<const uint8*>(v);
}

// Work queues

// Marks separate thread groups of different priority
// in the work queue when in leftmost-longest matching mode.
#define Mark (-1)

// Internally, the DFA uses a sparse array of
// program instruction pointers as a work queue.
// In leftmost longest mode, marks separate sections
// of workq that started executing at different
// locations in the string (earlier locations first).
class DFA::Workq : public SparseSet {
 public:
  // Constructor: n is number of normal slots, maxmark number of mark slots.
  Workq(int n, int maxmark) :
    SparseSet(n+maxmark),
    n_(n),
    maxmark_(maxmark),
    nextmark_(n),
    last_was_mark_(true) {
  }

  bool is_mark(int i) { return i >= n_; }

  int maxmark() { return maxmark_; }

  void clear() {
    SparseSet::clear();
    nextmark_ = n_;
  }

  void mark() {
    if (last_was_mark_)
      return;
    last_was_mark_ = false;
    SparseSet::insert_new(nextmark_++);
  }

  int size() {
    return n_ + maxmark_;
  }

  void insert(int id) {
    if (contains(id))
      return;
    insert_new(id);
  }

  void insert_new(int id) {
    last_was_mark_ = false;
    SparseSet::insert_new(id);
  }

 private:
  int n_;                // size excluding marks
  int maxmark_;          // maximum number of marks
  int nextmark_;         // id of next mark
  bool last_was_mark_;   // last inserted was mark
  DISALLOW_EVIL_CONSTRUCTORS(Workq);
};

DFA::DFA(Prog* prog, Prog::MatchKind kind, int64 max_mem)
  : prog_(prog),
    kind_(kind),
    init_failed_(false),
    q0_(NULL),
    q1_(NULL),
    astack_(NULL),
    mem_budget_(max_mem),
    cache_warned_(false) {
  if (DebugDFA)
    fprintf(stderr, "\nkind %d\n%s\n", (int)kind_, prog_->DumpUnanchored().c_str());
  int nmark = 0;
  start_unanchored_ = 0;
  if (kind_ == Prog::kLongestMatch) {
    nmark = prog->size();
    start_unanchored_ = prog->start_unanchored();
  }
  nastack_ = 2 * prog->size() + nmark;

  // Account for space needed for DFA, q0, q1, astack.
  mem_budget_ -= sizeof(DFA);
  mem_budget_ -= (prog_->size() + nmark) *
                 (sizeof(int)+sizeof(int)) * 2;  // q0, q1
  mem_budget_ -= nastack_ * sizeof(int);  // astack
  if (mem_budget_ < 0) {
    LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld",
                              prog_->size(), max_mem);
    init_failed_ = true;
    return;
  }

  state_budget_ = mem_budget_;

  // Make sure there is a reasonable amount of working room left.
  // At minimum, the search requires room for two states in order
  // to limp along, restarting frequently.  We'll get better performance
  // if there is room for a larger number of states, say 20.
  int64 one_state = sizeof(State) + (prog_->size()+nmark)*sizeof(int) +
                    (prog_->bytemap_range()+1)*sizeof(State*);
  if (state_budget_ < 20*one_state) {
    LOG(INFO) << StringPrintf("DFA out of memory: prog size %lld mem %lld",
                              prog_->size(), max_mem);
    init_failed_ = true;
    return;
  }

  q0_ = new Workq(prog->size(), nmark);
  q1_ = new Workq(prog->size(), nmark);
  astack_ = new int[nastack_];
}

DFA::~DFA() {
  delete q0_;
  delete q1_;
  delete[] astack_;
  ClearCache();
}

// In the DFA state graph, s->next[c] == NULL means that the
// state has not yet been computed and needs to be.  We need
// a different special value to signal that s->next[c] is a
// state that can never lead to a match (and thus the search
// can be called off).  Hence DeadState.
#define DeadState reinterpret_cast<State*>(1)

// Signals that the rest of the string matches no matter what it is.
#define FullMatchState reinterpret_cast<State*>(2)

#define SpecialStateMax FullMatchState

// Debugging printouts

// For debugging, returns a string representation of the work queue.
string DFA::DumpWorkq(Workq* q) {
  string s;
  const char* sep = "";
  for (DFA::Workq::iterator it = q->begin(); it != q->end(); ++it) {
    if (q->is_mark(*it)) {
      StringAppendF(&s, "|");
      sep = "";
    } else {
      StringAppendF(&s, "%s%d", sep, *it);
      sep = ",";
    }
  }
  return s;
}

// For debugging, returns a string representation of the state.
string DFA::DumpState(State* state) {
  if (state == NULL)
    return "_";
  if (state == DeadState)
    return "X";
  if (state == FullMatchState)
    return "*";
  string s;
  const char* sep = "";
  StringAppendF(&s, "(%p)", state);
  for (int i = 0; i < state->ninst_; i++) {
    if (state->inst_[i] == Mark) {
      StringAppendF(&s, "|");
      sep = "";
    } else {
      StringAppendF(&s, "%s%d", sep, state->inst_[i]);
      sep = ",";
    }
  }
  StringAppendF(&s, " flag=%#x", state->flag_);
  return s;
}

//////////////////////////////////////////////////////////////////////
//
// DFA state graph construction.
//
// The DFA state graph is a heavily-linked collection of State* structures.
// The state_cache_ is a set of all the State structures ever allocated,
// so that if the same state is reached by two different paths,
// the same State structure can be used.  This reduces allocation
// requirements and also avoids duplication of effort across the two
// identical states.
//
// A State is defined by an ordered list of instruction ids and a flag word.
//
// The choice of an ordered list of instructions differs from a typical
// textbook DFA implementation, which would use an unordered set.
// Textbook descriptions, however, only care about whether
// the DFA matches, not where it matches in the text.  To decide where the
// DFA matches, we need to mimic the behavior of the dominant backtracking
// implementations like PCRE, which try one possible regular expression
// execution, then another, then another, stopping when one of them succeeds.
// The DFA execution tries these many executions in parallel, representing
// each by an instruction id.  These pointers are ordered in the State.inst_
// list in the same order that the executions would happen in a backtracking
// search: if a match is found during execution of inst_[2], inst_[i] for i>=3
// can be discarded.
//
// Textbooks also typically do not consider context-aware empty string operators
// like ^ or $.  These are handled by the flag word, which specifies the set
// of empty-string operators that should be matched when executing at the
// current text position.  These flag bits are defined in prog.h.
// The flag word also contains two DFA-specific bits: kFlagMatch if the state
// is a matching state (one that reached a kInstMatch in the program)
// and kFlagLastWord if the last processed byte was a word character, for the
// implementation of \B and \b.
//
// The flag word also contains, shifted up 16 bits, the bits looked for by
// any kInstEmptyWidth instructions in the state.  These provide a useful
// summary indicating when new flags might be useful.
//
// The permanent representation of a State's instruction ids is just an array,
// but while a state is being analyzed, these instruction ids are represented
// as a Workq, which is an array that allows iteration in insertion order.

// NOTE(rsc): The choice of State construction determines whether the DFA
// mimics backtracking implementations (so-called leftmost first matching) or
// traditional DFA implementations (so-called leftmost longest matching as
// prescribed by POSIX).  This implementation chooses to mimic the
// backtracking implementations, because we want to replace PCRE.  To get
// POSIX behavior, the states would need to be considered not as a simple
// ordered list of instruction ids, but as a list of unordered sets of instruction
// ids.  A match by a state in one set would inhibit the running of sets
// farther down the list but not other instruction ids in the same set.  Each
// set would correspond to matches beginning at a given point in the string.
// This is implemented by separating different sets with Mark pointers.

// Looks in the State cache for a State matching q, flag.
// If one is found, returns it.  If one is not found, allocates one,
// inserts it in the cache, and returns it.
DFA::State* DFA::WorkqToCachedState(Workq* q, uint flag) {
  if (DEBUG_MODE)
    mutex_.AssertHeld();

  // Construct array of instruction ids for the new state.
  // Only ByteRange, EmptyWidth, and Match instructions are useful to keep:
  // those are the only operators with any effect in
  // RunWorkqOnEmptyString or RunWorkqOnByte.
  int* inst = new int[q->size()];
  int n = 0;
  uint needflags = 0;     // flags needed by kInstEmptyWidth instructions
  bool sawmatch = false;  // whether queue contains guaranteed kInstMatch
  bool sawmark = false;  // whether queue contains a Mark
  if (DebugDFA)
    fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag);
  for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
    int id = *it;
    if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id)))
      break;
    if (q->is_mark(id)) {
      if (n > 0 && inst[n-1] != Mark) {
        sawmark = true;
        inst[n++] = Mark;
      }
      continue;
    }
    Prog::Inst* ip = prog_->inst(id);
    switch (ip->opcode()) {
      case kInstAltMatch:
        // This state will continue to a match no matter what
        // the rest of the input is.  If it is the highest priority match
        // being considered, return the special FullMatchState
        // to indicate that it's all matches from here out.
        if (kind_ != Prog::kManyMatch &&
            (kind_ != Prog::kFirstMatch ||
             (it == q->begin() && ip->greedy(prog_))) &&
            (kind_ != Prog::kLongestMatch || !sawmark) &&
            (flag & kFlagMatch)) {
          delete[] inst;
          if (DebugDFA)
            fprintf(stderr, " -> FullMatchState\n");
          return FullMatchState;
        }
        // Fall through.
      case kInstByteRange:    // These are useful.
      case kInstEmptyWidth:
      case kInstMatch:
      case kInstAlt:          // Not useful, but necessary [*]
        inst[n++] = *it;
        if (ip->opcode() == kInstEmptyWidth)
          needflags |= ip->empty();
        if (ip->opcode() == kInstMatch && !prog_->anchor_end())
          sawmatch = true;
        break;

      default:                // The rest are not.
        break;
    }

    // [*] kInstAlt would seem useless to record in a state, since
    // we've already followed both its arrows and saved all the
    // interesting states we can reach from there.  The problem
    // is that one of the empty-width instructions might lead
    // back to the same kInstAlt (if an empty-width operator is starred),
    // producing a different evaluation order depending on whether
    // we keep the kInstAlt to begin with.  Sigh.
    // A specific case that this affects is /(^|a)+/ matching "a".
    // If we don't save the kInstAlt, we will match the whole "a" (0,1)
    // but in fact the correct leftmost-first match is the leading "" (0,0).
  }
  DCHECK_LE(n, q->size());
  if (n > 0 && inst[n-1] == Mark)
    n--;

  // If there are no empty-width instructions waiting to execute,
  // then the extra flag bits will not be used, so there is no
  // point in saving them.  (Discarding them reduces the number
  // of distinct states.)
  if (needflags == 0)
    flag &= kFlagMatch;

  // NOTE(rsc): The code above cannot do flag &= needflags,
  // because if the right flags were present to pass the current
  // kInstEmptyWidth instructions, new kInstEmptyWidth instructions
  // might be reached that in turn need different flags.
  // The only sure thing is that if there are no kInstEmptyWidth
  // instructions at all, no flags will be needed.
  // We could do the extra work to figure out the full set of
  // possibly needed flags by exploring past the kInstEmptyWidth
  // instructions, but the check above -- are any flags needed
  // at all? -- handles the most common case.  More fine-grained
  // analysis can only be justified by measurements showing that
  // too many redundant states are being allocated.

  // If there are no Insts in the list, it's a dead state,
  // which is useful to signal with a special pointer so that
  // the execution loop can stop early.  This is only okay
  // if the state is *not* a matching state.
  if (n == 0 && flag == 0) {
    delete[] inst;
    if (DebugDFA)
      fprintf(stderr, " -> DeadState\n");
    return DeadState;
  }

  // If we're in longest match mode, the state is a sequence of
  // unordered state sets separated by Marks.  Sort each set
  // to canonicalize, to reduce the number of distinct sets stored.
  if (kind_ == Prog::kLongestMatch) {
    int* ip = inst;
    int* ep = ip + n;
    while (ip < ep) {
      int* markp = ip;
      while (markp < ep && *markp != Mark)
        markp++;
      sort(ip, markp);
      if (markp < ep)
        markp++;
      ip = markp;
    }
  }

  // Save the needed empty-width flags in the top bits for use later.
  flag |= needflags << kFlagNeedShift;

  State* state = CachedState(inst, n, flag);
  delete[] inst;
  return state;
}

// Looks in the State cache for a State matching inst, ninst, flag.
// If one is found, returns it.  If one is not found, allocates one,
// inserts it in the cache, and returns it.
DFA::State* DFA::CachedState(int* inst, int ninst, uint flag) {
  if (DEBUG_MODE)
    mutex_.AssertHeld();

  // Look in the cache for a pre-existing state.
  State state = { inst, ninst, flag, NULL };
  StateSet::iterator it = state_cache_.find(&state);
  if (it != state_cache_.end()) {
    if (DebugDFA)
      fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str());
    return *it;
  }

  // Must have enough memory for new state.
  // In addition to what we're going to allocate,
  // the state cache hash table seems to incur about 32 bytes per
  // State*, empirically.
  const int kStateCacheOverhead = 32;
  int nnext = prog_->bytemap_range() + 1;  // + 1 for kByteEndText slot
  int mem = sizeof(State) + nnext*sizeof(State*) + ninst*sizeof(int);
  if (mem_budget_ < mem + kStateCacheOverhead) {
    mem_budget_ = -1;
    return NULL;
  }
  mem_budget_ -= mem + kStateCacheOverhead;

  // Allocate new state, along with room for next and inst.
  char* space = new char[mem];
  State* s = reinterpret_cast<State*>(space);
  s->next_ = reinterpret_cast<State**>(s + 1);
  s->inst_ = reinterpret_cast<int*>(s->next_ + nnext);
  memset(s->next_, 0, nnext*sizeof s->next_[0]);
  memmove(s->inst_, inst, ninst*sizeof s->inst_[0]);
  s->ninst_ = ninst;
  s->flag_ = flag;
  if (DebugDFA)
    fprintf(stderr, " -> %s\n", DumpState(s).c_str());

  // Put state in cache and return it.
  state_cache_.insert(s);
  return s;
}

// Clear the cache.  Must hold cache_mutex_.w or be in destructor.
void DFA::ClearCache() {
  // In case state_cache_ doesn't support deleting entries
  // during iteration, copy into a vector and then delete.
  vector<State*> v;
  v.reserve(state_cache_.size());
  for (StateSet::iterator it = state_cache_.begin();
       it != state_cache_.end(); ++it)
    v.push_back(*it);
  state_cache_.clear();
  for (int i = 0; i < v.size(); i++)
    delete[] reinterpret_cast<const char*>(v[i]);
}

// Copies insts in state s to the work queue q.
void DFA::StateToWorkq(State* s, Workq* q) {
  q->clear();
  for (int i = 0; i < s->ninst_; i++) {
    if (s->inst_[i] == Mark)
      q->mark();
    else
      q->insert_new(s->inst_[i]);
  }
}

// Adds ip to the work queue, following empty arrows according to flag
// and expanding kInstAlt instructions (two-target gotos).
void DFA::AddToQueue(Workq* q, int id, uint flag) {

  // Use astack_ to hold our stack of states yet to process.
  // It is sized to have room for nastack_ == 2*prog->size() + nmark
  // instructions, which is enough: each instruction can be
  // processed by the switch below only once, and the processing
  // pushes at most two instructions plus maybe a mark.
  // (If we're using marks, nmark == prog->size(); otherwise nmark == 0.)
  int* stk = astack_;
  int nstk = 0;

  stk[nstk++] = id;
  while (nstk > 0) {
    DCHECK_LE(nstk, nastack_);
    id = stk[--nstk];

    if (id == Mark) {
      q->mark();
      continue;
    }

    if (id == 0)
      continue;

    // If ip is already on the queue, nothing to do.
    // Otherwise add it.  We don't actually keep all the ones
    // that get added -- for example, kInstAlt is ignored
    // when on a work queue -- but adding all ip's here
    // increases the likelihood of q->contains(id),
    // reducing the amount of duplicated work.
    if (q->contains(id))
      continue;
    q->insert_new(id);

    // Process instruction.
    Prog::Inst* ip = prog_->inst(id);
    switch (ip->opcode()) {
      case kInstFail:       // can't happen: discarded above
        break;

      case kInstByteRange:  // just save these on the queue
      case kInstMatch:
        break;

      case kInstCapture:    // DFA treats captures as no-ops.
      case kInstNop:
        stk[nstk++] = ip->out();
        break;

      case kInstAlt:        // two choices: expand both, in order
      case kInstAltMatch:
        // Want to visit out then out1, so push on stack in reverse order.
        // This instruction is the [00-FF]* loop at the beginning of
        // a leftmost-longest unanchored search, separate out from out1
        // with a Mark, so that out1's threads (which will start farther
        // to the right in the string being searched) are lower priority
        // than the current ones.
        stk[nstk++] = ip->out1();
        if (q->maxmark() > 0 &&
            id == prog_->start_unanchored() && id != prog_->start())
          stk[nstk++] = Mark;
        stk[nstk++] = ip->out();
        break;

      case kInstEmptyWidth:
        if ((ip->empty() & flag) == ip->empty())
          stk[nstk++] = ip->out();
        break;
    }
  }
}

// Running of work queues.  In the work queue, order matters:
// the queue is sorted in priority order.  If instruction i comes before j,
// then the instructions that i produces during the run must come before
// the ones that j produces.  In order to keep this invariant, all the
// work queue runners have to take an old queue to process and then
// also a new queue to fill in.  It's not acceptable to add to the end of
// an existing queue, because new instructions will not end up in the
// correct position.

// Runs the work queue, processing the empty strings indicated by flag.
// For example, flag == kEmptyBeginLine|kEmptyEndLine means to match
// both ^ and $.  It is important that callers pass all flags at once:
// processing both ^ and $ is not the same as first processing only ^
// and then processing only $.  Doing the two-step sequence won't match
// ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior
// exhibited by existing implementations).
void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint flag) {
  newq->clear();
  for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
    if (oldq->is_mark(*i))
      AddToQueue(newq, Mark, flag);
    else
      AddToQueue(newq, *i, flag);
  }
}

// Runs the work queue, processing the single byte c followed by any empty
// strings indicated by flag.  For example, c == 'a' and flag == kEmptyEndLine,
// means to match c$.  Sets the bool *ismatch to true if the end of the
// regular expression program has been reached (the regexp has matched).
void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq,
                         int c, uint flag, bool* ismatch,
                         Prog::MatchKind kind,
                         int new_byte_loop) {
  if (DEBUG_MODE)
    mutex_.AssertHeld();

  newq->clear();
  for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
    if (oldq->is_mark(*i)) {
      if (*ismatch)
        return;
      newq->mark();
      continue;
    }
    int id = *i;
    Prog::Inst* ip = prog_->inst(id);
    switch (ip->opcode()) {
      case kInstFail:        // never succeeds
      case kInstCapture:     // already followed
      case kInstNop:         // already followed
      case kInstAlt:         // already followed
      case kInstAltMatch:    // already followed
      case kInstEmptyWidth:  // already followed
        break;

      case kInstByteRange:   // can follow if c is in range
        if (ip->Matches(c))
          AddToQueue(newq, ip->out(), flag);
        break;

      case kInstMatch:
        if (prog_->anchor_end() && c != kByteEndText)
          break;
        *ismatch = true;
        if (kind == Prog::kFirstMatch) {
          // Can stop processing work queue since we found a match.
          return;
        }
        break;
    }
  }

  if (DebugDFA)
    fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n", DumpWorkq(oldq).c_str(),
            c, flag, DumpWorkq(newq).c_str(), *ismatch);
}

// Processes input byte c in state, returning new state.
// Caller does not hold mutex.
DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) {
  // Keep only one RunStateOnByte going
  // even if the DFA is being run by multiple threads.
  MutexLock l(&mutex_);
  return RunStateOnByte(state, c);
}

// Processes input byte c in state, returning new state.
DFA::State* DFA::RunStateOnByte(State* state, int c) {
  if (DEBUG_MODE)
    mutex_.AssertHeld();
  if (state <= SpecialStateMax) {
    if (state == FullMatchState) {
      // It is convenient for routines like PossibleMatchRange
      // if we implement RunStateOnByte for FullMatchState:
      // once you get into this state you never get out,
      // so it's pretty easy.
      return FullMatchState;
    }
    if (state == DeadState) {
      LOG(DFATAL) << "DeadState in RunStateOnByte";
      return NULL;
    }
    if (state == NULL) {
      LOG(DFATAL) << "NULL state in RunStateOnByte";
      return NULL;
    }
    LOG(DFATAL) << "Unexpected special state in RunStateOnByte";
    return NULL;
  }

  // If someone else already computed this, return it.
  MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
  State* ns = state->next_[ByteMap(c)];
  ANNOTATE_HAPPENS_AFTER(ns);
  if (ns != NULL)
    return ns;

  // Convert state into Workq.
  StateToWorkq(state, q0_);

  // Flags marking the kinds of empty-width things (^ $ etc)
  // around this byte.  Before the byte we have the flags recorded
  // in the State structure itself.  After the byte we have
  // nothing yet (but that will change: read on).
  uint needflag = state->flag_ >> kFlagNeedShift;
  uint beforeflag = state->flag_ & kFlagEmptyMask;
  uint oldbeforeflag = beforeflag;
  uint afterflag = 0;

  if (c == '\n') {
    // Insert implicit $ and ^ around \n
    beforeflag |= kEmptyEndLine;
    afterflag |= kEmptyBeginLine;
  }

  if (c == kByteEndText) {
    // Insert implicit $ and \z before the fake "end text" byte.
    beforeflag |= kEmptyEndLine | kEmptyEndText;
  }

  // The state flag kFlagLastWord says whether the last
  // byte processed was a word character.  Use that info to
  // insert empty-width (non-)word boundaries.
  bool islastword = state->flag_ & kFlagLastWord;
  bool isword = (c != kByteEndText && Prog::IsWordChar(c));
  if (isword == islastword)
    beforeflag |= kEmptyNonWordBoundary;
  else
    beforeflag |= kEmptyWordBoundary;

  // Okay, finally ready to run.
  // Only useful to rerun on empty string if there are new, useful flags.
  if (beforeflag & ~oldbeforeflag & needflag) {
    RunWorkqOnEmptyString(q0_, q1_, beforeflag);
    swap(q0_, q1_);
  }
  bool ismatch = false;
  RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch, kind_, start_unanchored_);
  
  // Most of the time, we build the state from the output of
  // RunWorkqOnByte, so swap q0_ and q1_ here.  However, so that
  // RE2::Set can tell exactly which match instructions
  // contributed to the match, don't swap if c is kByteEndText.
  // The resulting state wouldn't be correct for further processing
  // of the string, but we're at the end of the text so that's okay.
  // Leaving q0_ alone preseves the match instructions that led to
  // the current setting of ismatch.
  if (c != kByteEndText || kind_ != Prog::kManyMatch)
    swap(q0_, q1_);

  // Save afterflag along with ismatch and isword in new state.
  uint flag = afterflag;
  if (ismatch)
    flag |= kFlagMatch;
  if (isword)
    flag |= kFlagLastWord;

  ns = WorkqToCachedState(q0_, flag);

  // Write barrier before updating state->next_ so that the
  // main search loop can proceed without any locking, for speed.
  // (Otherwise it would need one mutex operation per input byte.)
  // The annotations below tell race detectors that:
  //   a) the access to next_ should be ignored,
  //   b) 'ns' is properly published.
  WriteMemoryBarrier();  // Flush ns before linking to it.

  ANNOTATE_IGNORE_WRITES_BEGIN();
  ANNOTATE_HAPPENS_BEFORE(ns);
  state->next_[ByteMap(c)] = ns;
  ANNOTATE_IGNORE_WRITES_END();
  return ns;
}


//////////////////////////////////////////////////////////////////////
// DFA cache reset.

// Reader-writer lock helper.
//
// The DFA uses a reader-writer mutex to protect the state graph itself.
// Traversing the state graph requires holding the mutex for reading,
// and discarding the state graph and starting over requires holding the
// lock for writing.  If a search needs to expand the graph but is out
// of memory, it will need to drop its read lock and then acquire the
// write lock.  Since it cannot then atomically downgrade from write lock
// to read lock, it runs the rest of the search holding the write lock.
// (This probably helps avoid repeated contention, but really the decision
// is forced by the Mutex interface.)  It's a bit complicated to keep
// track of whether the lock is held for reading or writing and thread
// that through the search, so instead we encapsulate it in the RWLocker
// and pass that around.

class DFA::RWLocker {
 public:
  explicit RWLocker(Mutex* mu);
  ~RWLocker();

  // If the lock is only held for reading right now,
  // drop the read lock and re-acquire for writing.
  // Subsequent calls to LockForWriting are no-ops.
  // Notice that the lock is *released* temporarily.
  void LockForWriting();

  // Returns whether the lock is already held for writing.
  bool IsLockedForWriting() {
    return writing_;
  }

 private:
  Mutex* mu_;
  bool writing_;

  DISALLOW_EVIL_CONSTRUCTORS(RWLocker);
};

DFA::RWLocker::RWLocker(Mutex* mu)
  : mu_(mu), writing_(false) {

  mu_->ReaderLock();
}

// This function is marked as NO_THREAD_SAFETY_ANALYSIS because the annotations
// does not support lock upgrade.
void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS {
  if (!writing_) {
    mu_->ReaderUnlock();
    mu_->Lock();
    writing_ = true;
  }
}

DFA::RWLocker::~RWLocker() {
  if (writing_)
    mu_->WriterUnlock();
  else
    mu_->ReaderUnlock();
}


// When the DFA's State cache fills, we discard all the states in the
// cache and start over.  Many threads can be using and adding to the
// cache at the same time, so we synchronize using the cache_mutex_
// to keep from stepping on other threads.  Specifically, all the
// threads using the current cache hold cache_mutex_ for reading.
// When a thread decides to flush the cache, it drops cache_mutex_
// and then re-acquires it for writing.  That ensures there are no
// other threads accessing the cache anymore.  The rest of the search
// runs holding cache_mutex_ for writing, avoiding any contention
// with or cache pollution caused by other threads.

void DFA::ResetCache(RWLocker* cache_lock) {
  // Re-acquire the cache_mutex_ for writing (exclusive use).
  bool was_writing = cache_lock->IsLockedForWriting();
  cache_lock->LockForWriting();

  // If we already held cache_mutex_ for writing, it means
  // this invocation of Search() has already reset the
  // cache once already.  That's a pretty clear indication
  // that the cache is too small.  Warn about that, once.
  // TODO(rsc): Only warn if state_cache_.size() < some threshold.
  if (was_writing && !cache_warned_) {
    LOG(INFO) << "DFA memory cache could be too small: "
              << "only room for " << state_cache_.size() << " states.";
    cache_warned_ = true;
  }

  // Clear the cache, reset the memory budget.
  for (int i = 0; i < kMaxStart; i++) {
    start_[i].start = NULL;
    start_[i].firstbyte = kFbUnknown;
  }
  ClearCache();
  mem_budget_ = state_budget_;
}

// Typically, a couple States do need to be preserved across a cache
// reset, like the State at the current point in the search.
// The StateSaver class helps keep States across cache resets.
// It makes a copy of the state's guts outside the cache (before the reset)
// and then can be asked, after the reset, to recreate the State
// in the new cache.  For example, in a DFA method ("this" is a DFA):
//
//   StateSaver saver(this, s);
//   ResetCache(cache_lock);
//   s = saver.Restore();
//
// The saver should always have room in the cache to re-create the state,
// because resetting the cache locks out all other threads, and the cache
// is known to have room for at least a couple states (otherwise the DFA
// constructor fails).

class DFA::StateSaver {
 public:
  explicit StateSaver(DFA* dfa, State* state);
  ~StateSaver();

  // Recreates and returns a state equivalent to the
  // original state passed to the constructor.
  // Returns NULL if the cache has filled, but
  // since the DFA guarantees to have room in the cache
  // for a couple states, should never return NULL
  // if used right after ResetCache.
  State* Restore();

 private:
  DFA* dfa_;         // the DFA to use
  int* inst_;        // saved info from State
  int ninst_;
  uint flag_;
  bool is_special_;  // whether original state was special
  State* special_;   // if is_special_, the original state

  DISALLOW_EVIL_CONSTRUCTORS(StateSaver);
};

DFA::StateSaver::StateSaver(DFA* dfa, State* state) {
  dfa_ = dfa;
  if (state <= SpecialStateMax) {
    inst_ = NULL;
    ninst_ = 0;
    flag_ = 0;
    is_special_ = true;
    special_ = state;
    return;
  }
  is_special_ = false;
  special_ = NULL;
  flag_ = state->flag_;
  ninst_ = state->ninst_;
  inst_ = new int[ninst_];
  memmove(inst_, state->inst_, ninst_*sizeof inst_[0]);
}

DFA::StateSaver::~StateSaver() {
  if (!is_special_)
    delete[] inst_;
}

DFA::State* DFA::StateSaver::Restore() {
  if (is_special_)
    return special_;
  MutexLock l(&dfa_->mutex_);
  State* s = dfa_->CachedState(inst_, ninst_, flag_);
  if (s == NULL)
    LOG(DFATAL) << "StateSaver failed to restore state.";
  return s;
}


//////////////////////////////////////////////////////////////////////
//
// DFA execution.
//
// The basic search loop is easy: start in a state s and then for each
// byte c in the input, s = s->next[c].
//
// This simple description omits a few efficiency-driven complications.
//
// First, the State graph is constructed incrementally: it is possible
// that s->next[c] is null, indicating that that state has not been
// fully explored.  In this case, RunStateOnByte must be invoked to
// determine the next state, which is cached in s->next[c] to save
// future effort.  An alternative reason for s->next[c] to be null is
// that the DFA has reached a so-called "dead state", in which any match
// is no longer possible.  In this case RunStateOnByte will return NULL
// and the processing of the string can stop early.
//
// Second, a 256-element pointer array for s->next_ makes each State
// quite large (2kB on 64-bit machines).  Instead, dfa->bytemap_[]
// maps from bytes to "byte classes" and then next_ only needs to have
// as many pointers as there are byte classes.  A byte class is simply a
// range of bytes that the regexp never distinguishes between.
// A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1,
// 'a', 'b' to 'c', and 'c' to 0xFF.  The bytemap slows us a little bit
// but in exchange we typically cut the size of a State (and thus our
// memory footprint) by about 5-10x.  The comments still refer to
// s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]].
//
// Third, it is common for a DFA for an unanchored match to begin in a
// state in which only one particular byte value can take the DFA to a
// different state.  That is, s->next[c] != s for only one c.  In this
// situation, the DFA can do better than executing the simple loop.
// Instead, it can call memchr to search very quickly for the byte c.
// Whether the start state has this property is determined during a
// pre-compilation pass, and if so, the byte b is passed to the search
// loop as the "firstbyte" argument, along with a boolean "have_firstbyte".
//
// Fourth, the desired behavior is to search for the leftmost-best match
// (approximately, the same one that Perl would find), which is not
// necessarily the match ending earliest in the string.  Each time a
// match is found, it must be noted, but the DFA must continue on in
// hope of finding a higher-priority match.  In some cases, the caller only
// cares whether there is any match at all, not which one is found.
// The "want_earliest_match" flag causes the search to stop at the first
// match found.
//
// Fifth, one algorithm that uses the DFA needs it to run over the
// input string backward, beginning at the end and ending at the beginning.
// Passing false for the "run_forward" flag causes the DFA to run backward.
//
// The checks for these last three cases, which in a naive implementation
// would be performed once per input byte, slow the general loop enough
// to merit specialized versions of the search loop for each of the
// eight possible settings of the three booleans.  Rather than write
// eight different functions, we write one general implementation and then
// inline it to create the specialized ones.
//
// Note that matches are delayed by one byte, to make it easier to
// accomodate match conditions depending on the next input byte (like $ and \b).
// When s->next[c]->IsMatch(), it means that there is a match ending just
// *before* byte c.

// The generic search loop.  Searches text for a match, returning
// the pointer to the end of the chosen match, or NULL if no match.
// The bools are equal to the same-named variables in params, but
// making them function arguments lets the inliner specialize
// this function to each combination (see two paragraphs above).
inline bool DFA::InlinedSearchLoop(SearchParams* params,
                                   bool have_firstbyte,
                                   bool want_earliest_match,
                                   bool run_forward) {
  State* start = params->start;
  const uint8* bp = BytePtr(params->text.begin());  // start of text
  const uint8* p = bp;                              // text scanning point
  const uint8* ep = BytePtr(params->text.end());    // end of text
  const uint8* resetp = NULL;                       // p at last cache reset
  if (!run_forward)
    swap(p, ep);

  const uint8* bytemap = prog_->bytemap();
  const uint8* lastmatch = NULL;   // most recent matching position in text
  bool matched = false;
  State* s = start;

  if (s->IsMatch()) {
    matched = true;
    lastmatch = p;
    if (want_earliest_match) {
      params->ep = reinterpret_cast<const char*>(lastmatch);
      return true;
    }
  }

  while (p != ep) {
    if (DebugDFA)
      fprintf(stderr, "@%d: %s\n", static_cast<int>(p - bp),
              DumpState(s).c_str());
    if (have_firstbyte && s == start) {
      // In start state, only way out is to find firstbyte,
      // so use optimized assembly in memchr to skip ahead.
      // If firstbyte isn't found, we can skip to the end
      // of the string.
      if (run_forward) {
        if ((p = BytePtr(memchr(p, params->firstbyte, ep - p))) == NULL) {
          p = ep;
          break;
        }
      } else {
        if ((p = BytePtr(memrchr(ep, params->firstbyte, p - ep))) == NULL) {
          p = ep;
          break;
        }
        p++;
      }
    }

    int c;
    if (run_forward)
      c = *p++;
    else
      c = *--p;

    // Note that multiple threads might be consulting
    // s->next_[bytemap[c]] simultaneously.
    // RunStateOnByte takes care of the appropriate locking,
    // including a memory barrier so that the unlocked access
    // (sometimes known as "double-checked locking") is safe.
    // The alternative would be either one DFA per thread
    // or one mutex operation per input byte.
    //
    // ns == DeadState means the state is known to be dead
    // (no more matches are possible).
    // ns == NULL means the state has not yet been computed
    // (need to call RunStateOnByteUnlocked).
    // RunStateOnByte returns ns == NULL if it is out of memory.
    // ns == FullMatchState means the rest of the string matches.
    //
    // Okay to use bytemap[] not ByteMap() here, because
    // c is known to be an actual byte and not kByteEndText.

    MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
    State* ns = s->next_[bytemap[c]];
    ANNOTATE_HAPPENS_AFTER(ns);
    if (ns == NULL) {
      ns = RunStateOnByteUnlocked(s, c);
      if (ns == NULL) {
        // After we reset the cache, we hold cache_mutex exclusively,
        // so if resetp != NULL, it means we filled the DFA state
        // cache with this search alone (without any other threads).
        // Benchmarks show that doing a state computation on every
        // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the
        // same at about 2 MB/s.  Unless we're processing an average
        // of 10 bytes per state computation, fail so that RE2 can
        // fall back to the NFA.
        if (FLAGS_re2_dfa_bail_when_slow && resetp != NULL &&
            (p - resetp) < 10*state_cache_.size()) {
          params->failed = true;
          return false;
        }
        resetp = p;

        // Prepare to save start and s across the reset.
        StateSaver save_start(this, start);
        StateSaver save_s(this, s);

        // Discard all the States in the cache.
        ResetCache(params->cache_lock);

        // Restore start and s so we can continue.
        if ((start = save_start.Restore()) == NULL ||
            (s = save_s.Restore()) == NULL) {
          // Restore already did LOG(DFATAL).
          params->failed = true;
          return false;
        }
        ns = RunStateOnByteUnlocked(s, c);
        if (ns == NULL) {
          LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache";
          params->failed = true;
          return false;
        }
      }
    }
    if (ns <= SpecialStateMax) {
      if (ns == DeadState) {
        params->ep = reinterpret_cast<const char*>(lastmatch);
        return matched;
      }
      // FullMatchState
      params->ep = reinterpret_cast<const char*>(ep);
      return true;
    }
    s = ns;

    if (s->IsMatch()) {
      matched = true;
      // The DFA notices the match one byte late,
      // so adjust p before using it in the match.
      if (run_forward)
        lastmatch = p - 1;
      else
        lastmatch = p + 1;
      if (DebugDFA)
        fprintf(stderr, "match @%d! [%s]\n",
                static_cast<int>(lastmatch - bp),
                DumpState(s).c_str());

      if (want_earliest_match) {
        params->ep = reinterpret_cast<const char*>(lastmatch);
        return true;
      }
    }
  }

  // Process one more byte to see if it triggers a match.
  // (Remember, matches are delayed one byte.)
  int lastbyte;
  if (run_forward) {
    if (params->text.end() == params->context.end())
      lastbyte = kByteEndText;
    else
      lastbyte = params->text.end()[0] & 0xFF;
  } else {
    if (params->text.begin() == params->context.begin())
      lastbyte = kByteEndText;
    else
      lastbyte = params->text.begin()[-1] & 0xFF;
  }

  MaybeReadMemoryBarrier(); // On alpha we need to ensure read ordering
  State* ns = s->next_[ByteMap(lastbyte)];
  ANNOTATE_HAPPENS_AFTER(ns);
  if (ns == NULL) {
    ns = RunStateOnByteUnlocked(s, lastbyte);
    if (ns == NULL) {
      StateSaver save_s(this, s);
      ResetCache(params->cache_lock);
      if ((s = save_s.Restore()) == NULL) {
        params->failed = true;
        return false;
      }
      ns = RunStateOnByteUnlocked(s, lastbyte);
      if (ns == NULL) {
        LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset";
        params->failed = true;
        return false;
      }
    }
  }
  s = ns;
  if (DebugDFA)
    fprintf(stderr, "@_: %s\n", DumpState(s).c_str());
  if (s == FullMatchState) {
    params->ep = reinterpret_cast<const char*>(ep);
    return true;
  }
  if (s > SpecialStateMax && s->IsMatch()) {
    matched = true;
    lastmatch = p;
    if (params->matches && kind_ == Prog::kManyMatch) {
      vector<int>* v = params->matches;
      v->clear();
      for (int i = 0; i < s->ninst_; i++) {
        Prog::Inst* ip = prog_->inst(s->inst_[i]);
        if (ip->opcode() == kInstMatch)
          v->push_back(ip->match_id());
      }
    }
    if (DebugDFA)
      fprintf(stderr, "match @%d! [%s]\n", static_cast<int>(lastmatch - bp),
              DumpState(s).c_str());
  }
  params->ep = reinterpret_cast<const char*>(lastmatch);
  return matched;
}

// Inline specializations of the general loop.
bool DFA::SearchFFF(SearchParams* params) {
  return InlinedSearchLoop(params, 0, 0, 0);
}
bool DFA::SearchFFT(SearchParams* params) {
  return InlinedSearchLoop(params, 0, 0, 1);
}
bool DFA::SearchFTF(SearchParams* params) {
  return InlinedSearchLoop(params, 0, 1, 0);
}
bool DFA::SearchFTT(SearchParams* params) {
  return InlinedSearchLoop(params, 0, 1, 1);
}
bool DFA::SearchTFF(SearchParams* params) {
  return InlinedSearchLoop(params, 1, 0, 0);
}
bool DFA::SearchTFT(SearchParams* params) {
  return InlinedSearchLoop(params, 1, 0, 1);
}
bool DFA::SearchTTF(SearchParams* params) {
  return InlinedSearchLoop(params, 1, 1, 0);
}
bool DFA::SearchTTT(SearchParams* params) {
  return InlinedSearchLoop(params, 1, 1, 1);
}

// For debugging, calls the general code directly.
bool DFA::SlowSearchLoop(SearchParams* params) {
  return InlinedSearchLoop(params,
                           params->firstbyte >= 0,
                           params->want_earliest_match,
                           params->run_forward);
}

// For performance, calls the appropriate specialized version
// of InlinedSearchLoop.
bool DFA::FastSearchLoop(SearchParams* params) {
  // Because the methods are private, the Searches array
  // cannot be declared at top level.
  static bool (DFA::*Searches[])(SearchParams*) = {
    &DFA::SearchFFF,
    &DFA::SearchFFT,
    &DFA::SearchFTF,
    &DFA::SearchFTT,
    &DFA::SearchTFF,
    &DFA::SearchTFT,
    &DFA::SearchTTF,
    &DFA::SearchTTT,
  };

  bool have_firstbyte = (params->firstbyte >= 0);
  int index = 4 * have_firstbyte +
              2 * params->want_earliest_match +
              1 * params->run_forward;
  return (this->*Searches[index])(params);
}


// The discussion of DFA execution above ignored the question of how
// to determine the initial state for the search loop.  There are two
// factors that influence the choice of start state.
//
// The first factor is whether the search is anchored or not.
// The regexp program (Prog*) itself has
// two different entry points: one for anchored searches and one for
// unanchored searches.  (The unanchored version starts with a leading ".*?"
// and then jumps to the anchored one.)
//
// The second factor is where text appears in the larger context, which
// determines which empty-string operators can be matched at the beginning
// of execution.  If text is at the very beginning of context, \A and ^ match.
// Otherwise if text is at the beginning of a line, then ^ matches.
// Otherwise it matters whether the character before text is a word character
// or a non-word character.
//
// The two cases (unanchored vs not) and four cases (empty-string flags)
// combine to make the eight cases recorded in the DFA's begin_text_[2],
// begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached
// StartInfos.  The start state for each is filled in the first time it
// is used for an actual search.

// Examines text, context, and anchored to determine the right start
// state for the DFA search loop.  Fills in params and returns true on success.
// Returns false on failure.
bool DFA::AnalyzeSearch(SearchParams* params) {
  const StringPiece& text = params->text;
  const StringPiece& context = params->context;

  // Sanity check: make sure that text lies within context.
  if (text.begin() < context.begin() || text.end() > context.end()) {
    LOG(DFATAL) << "Text is not inside context.";
    params->start = DeadState;
    return true;
  }

  // Determine correct search type.
  int start;
  uint flags;
  if (params->run_forward) {
    if (text.begin() == context.begin()) {
      start = kStartBeginText;
      flags = kEmptyBeginText|kEmptyBeginLine;
    } else if (text.begin()[-1] == '\n') {
      start = kStartBeginLine;
      flags = kEmptyBeginLine;
    } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) {
      start = kStartAfterWordChar;
      flags = kFlagLastWord;
    } else {
      start = kStartAfterNonWordChar;
      flags = 0;
    }
  } else {
    if (text.end() == context.end()) {
      start = kStartBeginText;
      flags = kEmptyBeginText|kEmptyBeginLine;
    } else if (text.end()[0] == '\n') {
      start = kStartBeginLine;
      flags = kEmptyBeginLine;
    } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) {
      start = kStartAfterWordChar;
      flags = kFlagLastWord;
    } else {
      start = kStartAfterNonWordChar;
      flags = 0;
    }
  }
  if (params->anchored || prog_->anchor_start())
    start |= kStartAnchored;
  StartInfo* info = &start_[start];

  // Try once without cache_lock for writing.
  // Try again after resetting the cache
  // (ResetCache will relock cache_lock for writing).
  if (!AnalyzeSearchHelper(params, info, flags)) {
    ResetCache(params->cache_lock);
    if (!AnalyzeSearchHelper(params, info, flags)) {
      LOG(DFATAL) << "Failed to analyze start state.";
      params->failed = true;
      return false;
    }
  }

  if (DebugDFA)
    fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s firstbyte=%d\n",
            params->anchored, params->run_forward, flags,
            DumpState(info->start).c_str(), info->firstbyte);

  params->start = info->start;
  params->firstbyte = ANNOTATE_UNPROTECTED_READ(info->firstbyte);

  return true;
}

// Fills in info if needed.  Returns true on success, false on failure.
bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
                              uint flags) {
  // Quick check; okay because of memory barriers below.
  if (ANNOTATE_UNPROTECTED_READ(info->firstbyte) != kFbUnknown) {
    ANNOTATE_HAPPENS_AFTER(&info->firstbyte);
    return true;
  }

  MutexLock l(&mutex_);
  if (info->firstbyte != kFbUnknown) {
    ANNOTATE_HAPPENS_AFTER(&info->firstbyte);
    return true;
  }

  q0_->clear();
  AddToQueue(q0_,
             params->anchored ? prog_->start() : prog_->start_unanchored(),
             flags);
  info->start = WorkqToCachedState(q0_, flags);
  if (info->start == NULL)
    return false;

  if (info->start == DeadState) {
    ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
    WriteMemoryBarrier();  // Synchronize with "quick check" above.
    info->firstbyte = kFbNone;
    return true;
  }

  if (info->start == FullMatchState) {
    ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
    WriteMemoryBarrier();  // Synchronize with "quick check" above.
    info->firstbyte = kFbNone;  // will be ignored
    return true;
  }

  // Compute info->firstbyte by running state on all
  // possible byte values, looking for a single one that
  // leads to a different state.
  int firstbyte = kFbNone;
  for (int i = 0; i < 256; i++) {
    State* s = RunStateOnByte(info->start, i);
    if (s == NULL) {
      ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
      WriteMemoryBarrier();  // Synchronize with "quick check" above.
      info->firstbyte = firstbyte;
      return false;
    }
    if (s == info->start)
      continue;
    // Goes to new state...
    if (firstbyte == kFbNone) {
      firstbyte = i;        // ... first one
    } else {
      firstbyte = kFbMany;  // ... too many
      break;
    }
  }
  ANNOTATE_HAPPENS_BEFORE(&info->firstbyte);
  WriteMemoryBarrier();  // Synchronize with "quick check" above.
  info->firstbyte = firstbyte;
  return true;
}

// The actual DFA search: calls AnalyzeSearch and then FastSearchLoop.
bool DFA::Search(const StringPiece& text,
                 const StringPiece& context,
                 bool anchored,
                 bool want_earliest_match,
                 bool run_forward,
                 bool* failed,
                 const char** epp,
                 vector<int>* matches) {
  *epp = NULL;
  if (!ok()) {
    *failed = true;
    return false;
  }
  *failed = false;

  if (DebugDFA) {
    fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str());
    fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n",
            text.as_string().c_str(), anchored, want_earliest_match,
            run_forward, kind_);
  }

  RWLocker l(&cache_mutex_);
  SearchParams params(text, context, &l);
  params.anchored = anchored;
  params.want_earliest_match = want_earliest_match;
  params.run_forward = run_forward;
  params.matches = matches;

  if (!AnalyzeSearch(&params)) {
    *failed = true;
    return false;
  }
  if (params.start == DeadState)
    return false;
  if (params.start == FullMatchState) {
    if (run_forward == want_earliest_match)
      *epp = text.begin();
    else
      *epp = text.end();
    return true;
  }
  if (DebugDFA)
    fprintf(stderr, "start %s\n", DumpState(params.start).c_str());
  bool ret = FastSearchLoop(&params);
  if (params.failed) {
    *failed = true;
    return false;
  }
  *epp = params.ep;
  return ret;
}

// Deletes dfa.
//
// This is a separate function so that
// prog.h can be used without moving the definition of
// class DFA out of this file.  If you set
//   prog->dfa_ = dfa;
// then you also have to set
//   prog->delete_dfa_ = DeleteDFA;
// so that ~Prog can delete the dfa.
static void DeleteDFA(DFA* dfa) {
  delete dfa;
}

DFA* Prog::GetDFA(MatchKind kind) {
  DFA*volatile* pdfa;
  if (kind == kFirstMatch || kind == kManyMatch) {
    pdfa = &dfa_first_;
  } else {
    kind = kLongestMatch;
    pdfa = &dfa_longest_;
  }

  // Quick check; okay because of memory barrier below.
  DFA *dfa = ANNOTATE_UNPROTECTED_READ(*pdfa);
  if (dfa != NULL) {
    ANNOTATE_HAPPENS_AFTER(dfa);
    return dfa;
  }

  MutexLock l(&dfa_mutex_);
  dfa = *pdfa;
  if (dfa != NULL) {
    ANNOTATE_HAPPENS_AFTER(dfa);
    return dfa;
  }

  // For a forward DFA, half the memory goes to each DFA.
  // For a reverse DFA, all the memory goes to the
  // "longest match" DFA, because RE2 never does reverse
  // "first match" searches.
  int64 m = dfa_mem_/2;
  if (reversed_) {
    if (kind == kLongestMatch || kind == kManyMatch)
      m = dfa_mem_;
    else
      m = 0;
  }
  dfa = new DFA(this, kind, m);
  delete_dfa_ = DeleteDFA;

  // Synchronize with "quick check" above.
  ANNOTATE_HAPPENS_BEFORE(dfa);
  WriteMemoryBarrier();
  *pdfa = dfa;

  return dfa;
}


// Executes the regexp program to search in text,
// which itself is inside the larger context.  (As a convenience,
// passing a NULL context is equivalent to passing text.)
// Returns true if a match is found, false if not.
// If a match is found, fills in match0->end() to point at the end of the match
// and sets match0->begin() to text.begin(), since the DFA can't track
// where the match actually began.
//
// This is the only external interface (class DFA only exists in this file).
//
bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context,
                     Anchor anchor, MatchKind kind,
                     StringPiece* match0, bool* failed, vector<int>* matches) {
  *failed = false;

  StringPiece context = const_context;
  if (context.begin() == NULL)
    context = text;
  bool carat = anchor_start();
  bool dollar = anchor_end();
  if (reversed_) {
    bool t = carat;
    carat = dollar;
    dollar = t;
  }
  if (carat && context.begin() != text.begin())
    return false;
  if (dollar && context.end() != text.end())
    return false;

  // Handle full match by running an anchored longest match
  // and then checking if it covers all of text.
  bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch;
  bool endmatch = false;
  if (kind == kManyMatch) {
    endmatch = true;
  } else if (kind == kFullMatch || anchor_end()) {
    endmatch = true;
    kind = kLongestMatch;
  }

  // If the caller doesn't care where the match is (just whether one exists),
  // then we can stop at the very first match we find, the so-called
  // "shortest match".
  bool want_shortest_match = false;
  if (match0 == NULL && !endmatch) {
    want_shortest_match = true;
    kind = kLongestMatch;
  }

  DFA* dfa = GetDFA(kind);
  const char* ep;
  bool matched = dfa->Search(text, context, anchored,
                             want_shortest_match, !reversed_,
                             failed, &ep, matches);
  if (*failed)
    return false;
  if (!matched)
    return false;
  if (endmatch && ep != (reversed_ ? text.begin() : text.end()))
    return false;

  // If caller cares, record the boundary of the match.
  // We only know where it ends, so use the boundary of text
  // as the beginning.
  if (match0) {
    if (reversed_)
      *match0 = StringPiece(ep, text.end() - ep);
    else
      *match0 = StringPiece(text.begin(), ep - text.begin());
  }
  return true;
}

// Build out all states in DFA.  Returns number of states.
int DFA::BuildAllStates() {
  if (!ok())
    return 0;

  // Pick out start state for unanchored search
  // at beginning of text.
  RWLocker l(&cache_mutex_);
  SearchParams params(NULL, NULL, &l);
  params.anchored = false;
  if (!AnalyzeSearch(&params) || params.start <= SpecialStateMax)
    return 0;

  // Add start state to work queue.
  StateSet queued;
  vector<State*> q;
  queued.insert(params.start);
  q.push_back(params.start);

  // Flood to expand every state.
  for (int i = 0; i < q.size(); i++) {
    State* s = q[i];
    for (int c = 0; c < 257; c++) {
      State* ns = RunStateOnByteUnlocked(s, c);
      if (ns > SpecialStateMax && queued.find(ns) == queued.end()) {
        queued.insert(ns);
        q.push_back(ns);
      }
    }
  }

  return q.size();
}

// Build out all states in DFA for kind.  Returns number of states.
int Prog::BuildEntireDFA(MatchKind kind) {
  //LOG(ERROR) << "BuildEntireDFA is only for testing.";
  return GetDFA(kind)->BuildAllStates();
}

// Computes min and max for matching string.
// Won't return strings bigger than maxlen.
bool DFA::PossibleMatchRange(string* min, string* max, int maxlen) {
  if (!ok())
    return false;

  // NOTE: if future users of PossibleMatchRange want more precision when
  // presented with infinitely repeated elements, consider making this a
  // parameter to PossibleMatchRange.
  static int kMaxEltRepetitions = 0;

  // Keep track of the number of times we've visited states previously. We only
  // revisit a given state if it's part of a repeated group, so if the value
  // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set
  // |*max| to |PrefixSuccessor(*max)|.
  //
  // Also note that previously_visited_states[UnseenStatePtr] will, in the STL
  // tradition, implicitly insert a '0' value at first use. We take advantage
  // of that property below.
  map<State*, int> previously_visited_states;

  // Pick out start state for anchored search at beginning of text.
  RWLocker l(&cache_mutex_);
  SearchParams params(NULL, NULL, &l);
  params.anchored = true;
  if (!AnalyzeSearch(&params))
    return false;
  if (params.start == DeadState) {  // No matching strings
    *min = "";
    *max = "";
    return true;
  }
  if (params.start == FullMatchState)  // Every string matches: no max
    return false;

  // The DFA is essentially a big graph rooted at params.start,
  // and paths in the graph correspond to accepted strings.
  // Each node in the graph has potentially 256+1 arrows
  // coming out, one for each byte plus the magic end of
  // text character kByteEndText.

  // To find the smallest possible prefix of an accepted
  // string, we just walk the graph preferring to follow
  // arrows with the lowest bytes possible.  To find the
  // largest possible prefix, we follow the largest bytes
  // possible.

  // The test for whether there is an arrow from s on byte j is
  //    ns = RunStateOnByteUnlocked(s, j);
  //    if (ns == NULL)
  //      return false;
  //    if (ns != DeadState && ns->ninst > 0)
  // The RunStateOnByteUnlocked call asks the DFA to build out the graph.
  // It returns NULL only if the DFA has run out of memory,
  // in which case we can't be sure of anything.
  // The second check sees whether there was graph built
  // and whether it is interesting graph.  Nodes might have
  // ns->ninst == 0 if they exist only to represent the fact
  // that a match was found on the previous byte.

  // Build minimum prefix.
  State* s = params.start;
  min->clear();
  for (int i = 0; i < maxlen; i++) {
    if (previously_visited_states[s] > kMaxEltRepetitions) {
      VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions
        << " for state s=" << s << " and min=" << CEscape(*min);
      break;
    }
    previously_visited_states[s]++;

    // Stop if min is a match.
    State* ns = RunStateOnByteUnlocked(s, kByteEndText);
    if (ns == NULL)  // DFA out of memory
      return false;
    if (ns != DeadState && (ns == FullMatchState || ns->IsMatch()))
      break;

    // Try to extend the string with low bytes.
    bool extended = false;
    for (int j = 0; j < 256; j++) {
      ns = RunStateOnByteUnlocked(s, j);
      if (ns == NULL)  // DFA out of memory
        return false;
      if (ns == FullMatchState ||
          (ns > SpecialStateMax && ns->ninst_ > 0)) {
        extended = true;
        min->append(1, j);
        s = ns;
        break;
      }
    }
    if (!extended)
      break;
  }

  // Build maximum prefix.
  previously_visited_states.clear();
  s = params.start;
  max->clear();
  for (int i = 0; i < maxlen; i++) {
    if (previously_visited_states[s] > kMaxEltRepetitions) {
      VLOG(2) << "Hit kMaxEltRepetitions=" << kMaxEltRepetitions
        << " for state s=" << s << " and max=" << CEscape(*max);
      break;
    }
    previously_visited_states[s] += 1;

    // Try to extend the string with high bytes.
    bool extended = false;
    for (int j = 255; j >= 0; j--) {
      State* ns = RunStateOnByteUnlocked(s, j);
      if (ns == NULL)
        return false;
      if (ns == FullMatchState ||
          (ns > SpecialStateMax && ns->ninst_ > 0)) {
        extended = true;
        max->append(1, j);
        s = ns;
        break;
      }
    }
    if (!extended) {
      // Done, no need for PrefixSuccessor.
      return true;
    }
  }

  // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b
  *max = PrefixSuccessor(*max);

  // If there are no bytes left, we have no way to say "there is no maximum
  // string".  We could make the interface more complicated and be able to
  // return "there is no maximum but here is a minimum", but that seems like
  // overkill -- the most common no-max case is all possible strings, so not
  // telling the caller that the empty string is the minimum match isn't a
  // great loss.
  if (max->empty())
    return false;

  return true;
}

// PossibleMatchRange for a Prog.
bool Prog::PossibleMatchRange(string* min, string* max, int maxlen) {
  DFA* dfa = NULL;
  {
    MutexLock l(&dfa_mutex_);
    // Have to use dfa_longest_ to get all strings for full matches.
    // For example, (a|aa) never matches aa in first-match mode.
    if (dfa_longest_ == NULL) {
      dfa_longest_ = new DFA(this, Prog::kLongestMatch, dfa_mem_/2);
      delete_dfa_ = DeleteDFA;
    }
    dfa = dfa_longest_;
  }
  return dfa->PossibleMatchRange(min, max, maxlen);
}

}  // namespace re2

/* [<][>][^][v][top][bottom][index][help] */