root/skia/ext/image_operations_unittest.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. AveragePixel
  2. AveragePixel
  3. PrintPixel
  4. ColorsEuclidianDistance
  5. ColorsClose
  6. FillDataToBitmap
  7. DrawGridToBitmap
  8. DrawCheckerToBitmap
  9. SaveBitmapToPNG
  10. CheckResampleToSame
  11. CheckResizeMethodShouldAverageGrid
  12. TEST
  13. TEST
  14. TEST
  15. TEST
  16. TEST
  17. TEST
  18. TEST
  19. TEST
  20. TEST
  21. TEST
  22. TEST
  23. sinc
  24. lanczos3
  25. TEST

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <algorithm>
#include <cmath>
#include <iomanip>
#include <vector>

#include "base/basictypes.h"
#include "base/compiler_specific.h"
#include "base/file_util.h"
#include "base/strings/string_util.h"
#include "skia/ext/image_operations.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkRect.h"
#include "ui/gfx/codec/png_codec.h"
#include "ui/gfx/size.h"

namespace {

// Computes the average pixel value for the given range, inclusive.
uint32_t AveragePixel(const SkBitmap& bmp,
                      int x_min, int x_max,
                      int y_min, int y_max) {
  float accum[4] = {0, 0, 0, 0};
  int count = 0;
  for (int y = y_min; y <= y_max; y++) {
    for (int x = x_min; x <= x_max; x++) {
      uint32_t cur = *bmp.getAddr32(x, y);
      accum[0] += SkColorGetB(cur);
      accum[1] += SkColorGetG(cur);
      accum[2] += SkColorGetR(cur);
      accum[3] += SkColorGetA(cur);
      count++;
    }
  }

  return SkColorSetARGB(static_cast<unsigned char>(accum[3] / count),
                        static_cast<unsigned char>(accum[2] / count),
                        static_cast<unsigned char>(accum[1] / count),
                        static_cast<unsigned char>(accum[0] / count));
}

// Computes the average pixel (/color) value for the given colors.
SkColor AveragePixel(const SkColor colors[], size_t color_count) {
  float accum[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
  for (size_t i = 0; i < color_count; ++i) {
    const SkColor cur = colors[i];
    accum[0] += static_cast<float>(SkColorGetA(cur));
    accum[1] += static_cast<float>(SkColorGetR(cur));
    accum[2] += static_cast<float>(SkColorGetG(cur));
    accum[3] += static_cast<float>(SkColorGetB(cur));
  }
  const SkColor average_color =
      SkColorSetARGB(static_cast<uint8_t>(accum[0] / color_count),
                     static_cast<uint8_t>(accum[1] / color_count),
                     static_cast<uint8_t>(accum[2] / color_count),
                     static_cast<uint8_t>(accum[3] / color_count));
  return average_color;
}

void PrintPixel(const SkBitmap& bmp,
                int x_min, int x_max,
                int y_min, int y_max) {
  char str[128];

  for (int y = y_min; y <= y_max; ++y) {
    for (int x = x_min; x <= x_max; ++x) {
      const uint32_t cur = *bmp.getAddr32(x, y);
      base::snprintf(str, sizeof(str), "bmp[%d,%d] = %08X", x, y, cur);
      ADD_FAILURE() << str;
    }
  }
}

// Returns the euclidian distance between two RGBA colors interpreted
// as 4-components vectors.
//
// Notes:
// - This is a really poor definition of color distance. Yet it
//   is "good enough" for our uses here.
// - More realistic measures like the various Delta E formulas defined
//   by CIE are way more complex and themselves require the RGBA to
//   to transformed into CIELAB (typically via sRGB first).
// - The static_cast<int> below are needed to avoid interpreting "negative"
//   differences as huge positive values.
float ColorsEuclidianDistance(const SkColor a, const SkColor b) {
  int b_int_diff = static_cast<int>(SkColorGetB(a) - SkColorGetB(b));
  int g_int_diff = static_cast<int>(SkColorGetG(a) - SkColorGetG(b));
  int r_int_diff = static_cast<int>(SkColorGetR(a) - SkColorGetR(b));
  int a_int_diff = static_cast<int>(SkColorGetA(a) - SkColorGetA(b));

  float b_float_diff = static_cast<float>(b_int_diff);
  float g_float_diff = static_cast<float>(g_int_diff);
  float r_float_diff = static_cast<float>(r_int_diff);
  float a_float_diff = static_cast<float>(a_int_diff);

  return sqrtf((b_float_diff * b_float_diff) + (g_float_diff * g_float_diff) +
               (r_float_diff * r_float_diff) + (a_float_diff * a_float_diff));
}

// Returns true if each channel of the given two colors are "close." This is
// used for comparing colors where rounding errors may cause off-by-one.
bool ColorsClose(uint32_t a, uint32_t b) {
  return abs(static_cast<int>(SkColorGetB(a) - SkColorGetB(b))) < 2 &&
         abs(static_cast<int>(SkColorGetG(a) - SkColorGetG(b))) < 2 &&
         abs(static_cast<int>(SkColorGetR(a) - SkColorGetR(b))) < 2 &&
         abs(static_cast<int>(SkColorGetA(a) - SkColorGetA(b))) < 2;
}

void FillDataToBitmap(int w, int h, SkBitmap* bmp) {
  bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h);
  bmp->allocPixels();

  for (int y = 0; y < h; ++y) {
    for (int x = 0; x < w; ++x) {
      const uint8_t component = static_cast<uint8_t>(y * w + x);
      const SkColor pixel = SkColorSetARGB(component, component,
                                           component, component);
      *bmp->getAddr32(x, y) = pixel;
    }
  }
}

// Draws a horizontal and vertical grid into the w x h bitmap passed in.
// Each line in the grid is drawn with a width of "grid_width" pixels,
// and those lines repeat every "grid_pitch" pixels. The top left pixel (0, 0)
// is considered to be part of a grid line.
// The pixels that fall on a line are colored with "grid_color", while those
// outside of the lines are colored in "background_color".
// Note that grid_with can be greather than or equal to grid_pitch, in which
// case the resulting bitmap will be a solid color "grid_color".
void DrawGridToBitmap(int w, int h,
                      SkColor background_color, SkColor grid_color,
                      int grid_pitch, int grid_width,
                      SkBitmap* bmp) {
  ASSERT_GT(grid_pitch, 0);
  ASSERT_GT(grid_width, 0);
  ASSERT_NE(background_color, grid_color);

  bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h);
  bmp->allocPixels();

  for (int y = 0; y < h; ++y) {
    bool y_on_grid = ((y % grid_pitch) < grid_width);

    for (int x = 0; x < w; ++x) {
      bool on_grid = (y_on_grid || ((x % grid_pitch) < grid_width));

      *bmp->getAddr32(x, y) = (on_grid ? grid_color : background_color);
    }
  }
}

// Draws a checkerboard pattern into the w x h bitmap passed in.
// Each rectangle is rect_w in width, rect_h in height.
// The colors alternate between color1 and color2, color1 being used
// in the rectangle at the top left corner.
void DrawCheckerToBitmap(int w, int h,
                         SkColor color1, SkColor color2,
                         int rect_w, int rect_h,
                         SkBitmap* bmp) {
  ASSERT_GT(rect_w, 0);
  ASSERT_GT(rect_h, 0);
  ASSERT_NE(color1, color2);

  bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h);
  bmp->allocPixels();

  for (int y = 0; y < h; ++y) {
    bool y_bit = (((y / rect_h) & 0x1) == 0);

    for (int x = 0; x < w; ++x) {
      bool x_bit = (((x / rect_w) & 0x1) == 0);

      bool use_color2 = (x_bit != y_bit);  // xor

      *bmp->getAddr32(x, y) = (use_color2 ? color2 : color1);
    }
  }
}

// DEBUG_BITMAP_GENERATION (0 or 1) controls whether the routines
// to save the test bitmaps are present. By default the test just fails
// without reading/writing files but it is then convenient to have
// a simple way to make the failing tests write out the input/output images
// to check them visually.
#define DEBUG_BITMAP_GENERATION (0)

#if DEBUG_BITMAP_GENERATION
void SaveBitmapToPNG(const SkBitmap& bmp, const char* path) {
  SkAutoLockPixels lock(bmp);
  std::vector<unsigned char> png;
  gfx::PNGCodec::ColorFormat color_format = gfx::PNGCodec::FORMAT_RGBA;
  if (!gfx::PNGCodec::Encode(
          reinterpret_cast<const unsigned char*>(bmp.getPixels()),
          color_format, gfx::Size(bmp.width(), bmp.height()),
          static_cast<int>(bmp.rowBytes()),
          false, std::vector<gfx::PNGCodec::Comment>(), &png)) {
    FAIL() << "Failed to encode image";
  }

  const base::FilePath fpath(path);
  const int num_written =
      base::WriteFile(fpath, reinterpret_cast<const char*>(&png[0]),
                           png.size());
  if (num_written != static_cast<int>(png.size())) {
    FAIL() << "Failed to write dest \"" << path << '"';
  }
}
#endif  // #if DEBUG_BITMAP_GENERATION

void CheckResampleToSame(skia::ImageOperations::ResizeMethod method) {
  // Make our source bitmap.
  const int src_w = 16, src_h = 34;
  SkBitmap src;
  FillDataToBitmap(src_w, src_h, &src);

  // Do a resize of the full bitmap to the same size. The lanczos filter is good
  // enough that we should get exactly the same image for output.
  SkBitmap results = skia::ImageOperations::Resize(src, method, src_w, src_h);
  ASSERT_EQ(src_w, results.width());
  ASSERT_EQ(src_h, results.height());

  SkAutoLockPixels src_lock(src);
  SkAutoLockPixels results_lock(results);
  for (int y = 0; y < src_h; y++) {
    for (int x = 0; x < src_w; x++) {
      EXPECT_EQ(*src.getAddr32(x, y), *results.getAddr32(x, y));
    }
  }
}

// Types defined outside of the ResizeShouldAverageColors test to allow
// use of the arraysize() macro.
//
// 'max_color_distance_override' is used in a max() call together with
// the value of 'max_color_distance' defined in a TestedPixel instance.
// Hence a value of 0.0 in 'max_color_distance_override' means
// "use the pixel-specific value" and larger values can be used to allow
// worse computation errors than provided in a TestedPixel instance.
struct TestedResizeMethod {
  skia::ImageOperations::ResizeMethod method;
  const char* name;
  float max_color_distance_override;
};

struct TestedPixel {
  int         x;
  int         y;
  float       max_color_distance;
  const char* name;
};

// Helper function used by the test "ResizeShouldAverageColors" below.
// Note that ASSERT_EQ does a "return;" on failure, hence we can't have
// a "bool" return value to reflect success. Hence "all_pixels_pass"
void CheckResizeMethodShouldAverageGrid(
    const SkBitmap& src,
    const TestedResizeMethod& tested_method,
    int dest_w, int dest_h, SkColor average_color,
    bool* method_passed) {
  *method_passed = false;

  const TestedPixel tested_pixels[] = {
    // Corners
    { 0,          0,           2.3f, "Top left corner"  },
    { 0,          dest_h - 1,  2.3f, "Bottom left corner" },
    { dest_w - 1, 0,           2.3f, "Top right corner" },
    { dest_w - 1, dest_h - 1,  2.3f, "Bottom right corner" },
    // Middle points of each side
    { dest_w / 2, 0,           1.0f, "Top middle" },
    { dest_w / 2, dest_h - 1,  1.0f, "Bottom middle" },
    { 0,          dest_h / 2,  1.0f, "Left middle" },
    { dest_w - 1, dest_h / 2,  1.0f, "Right middle" },
    // Center
    { dest_w / 2, dest_h / 2,  1.0f, "Center" }
  };

  // Resize the src
  const skia::ImageOperations::ResizeMethod method = tested_method.method;

  SkBitmap dest = skia::ImageOperations::Resize(src, method, dest_w, dest_h);
  ASSERT_EQ(dest_w, dest.width());
  ASSERT_EQ(dest_h, dest.height());

  // Check that pixels match the expected average.
  float max_observed_distance = 0.0f;
  bool all_pixels_ok = true;

  SkAutoLockPixels dest_lock(dest);

  for (size_t pixel_index = 0;
       pixel_index < arraysize(tested_pixels);
       ++pixel_index) {
    const TestedPixel& tested_pixel = tested_pixels[pixel_index];

    const int   x = tested_pixel.x;
    const int   y = tested_pixel.y;
    const float max_allowed_distance =
        std::max(tested_pixel.max_color_distance,
                 tested_method.max_color_distance_override);

    const SkColor actual_color = *dest.getAddr32(x, y);

    // Check that the pixels away from the border region are very close
    // to the expected average color
    float distance = ColorsEuclidianDistance(average_color, actual_color);

    EXPECT_LE(distance, max_allowed_distance)
        << "Resizing method: " << tested_method.name
        << ", pixel tested: " << tested_pixel.name
        << "(" << x << ", " << y << ")"
        << std::hex << std::showbase
        << ", expected (avg) hex: " <<  average_color
        << ", actual hex: " << actual_color;

    if (distance > max_allowed_distance) {
      all_pixels_ok = false;
    }
    if (distance > max_observed_distance) {
      max_observed_distance = distance;
    }
  }

  if (!all_pixels_ok) {
    ADD_FAILURE() << "Maximum observed color distance for method "
                  << tested_method.name << ": " << max_observed_distance;

#if DEBUG_BITMAP_GENERATION
    char path[128];
    base::snprintf(path, sizeof(path),
                   "/tmp/ResizeShouldAverageColors_%s_dest.png",
                   tested_method.name);
    SaveBitmapToPNG(dest, path);
#endif  // #if DEBUG_BITMAP_GENERATION
  }

  *method_passed = all_pixels_ok;
}


}  // namespace

// Helper tests that saves bitmaps to PNGs in /tmp/ to visually check
// that the bitmap generation functions work as expected.
// Those tests are not enabled by default as verification is done
// manually/visually, however it is convenient to leave the functions
// in place.
#if 0 && DEBUG_BITMAP_GENERATION
TEST(ImageOperations, GenerateGradientBitmap) {
  // Make our source bitmap.
  const int src_w = 640, src_h = 480;
  SkBitmap src;
  FillDataToBitmap(src_w, src_h, &src);

  SaveBitmapToPNG(src, "/tmp/gradient_640x480.png");
}

TEST(ImageOperations, GenerateGridBitmap) {
  const int src_w = 640, src_h = 480, src_grid_pitch = 10, src_grid_width = 4;
  const SkColor grid_color = SK_ColorRED, background_color = SK_ColorBLUE;
  SkBitmap src;
  DrawGridToBitmap(src_w, src_h,
                   background_color, grid_color,
                   src_grid_pitch, src_grid_width,
                   &src);

  SaveBitmapToPNG(src, "/tmp/grid_640x408_10_4_red_blue.png");
}

TEST(ImageOperations, GenerateCheckerBitmap) {
  const int src_w = 640, src_h = 480, rect_w = 10, rect_h = 4;
  const SkColor color1 = SK_ColorRED, color2 = SK_ColorBLUE;
  SkBitmap src;
  DrawCheckerToBitmap(src_w, src_h, color1, color2, rect_w, rect_h, &src);

  SaveBitmapToPNG(src, "/tmp/checker_640x408_10_4_red_blue.png");
}
#endif  // #if ... && DEBUG_BITMAP_GENERATION

// Makes the bitmap 50% the size as the original using a box filter. This is
// an easy operation that we can check the results for manually.
TEST(ImageOperations, Halve) {
  // Make our source bitmap.
  int src_w = 30, src_h = 38;
  SkBitmap src;
  FillDataToBitmap(src_w, src_h, &src);

  // Do a halving of the full bitmap.
  SkBitmap actual_results = skia::ImageOperations::Resize(
      src, skia::ImageOperations::RESIZE_BOX, src_w / 2, src_h / 2);
  ASSERT_EQ(src_w / 2, actual_results.width());
  ASSERT_EQ(src_h / 2, actual_results.height());

  // Compute the expected values & compare.
  SkAutoLockPixels lock(actual_results);
  for (int y = 0; y < actual_results.height(); y++) {
    for (int x = 0; x < actual_results.width(); x++) {
      // Note that those expressions take into account the "half-pixel"
      // offset that comes into play due to considering the coordinates
      // of the center of the pixels. So x * 2 is a simplification
      // of ((x+0.5) * 2 - 1) and (x * 2 + 1) is really (x + 0.5) * 2.
      int first_x = x * 2;
      int last_x = std::min(src_w - 1, x * 2 + 1);

      int first_y = y * 2;
      int last_y = std::min(src_h - 1, y * 2 + 1);

      const uint32_t expected_color = AveragePixel(src,
                                                   first_x, last_x,
                                                   first_y, last_y);
      const uint32_t actual_color = *actual_results.getAddr32(x, y);
      const bool close = ColorsClose(expected_color, actual_color);
      EXPECT_TRUE(close);
      if (!close) {
        char str[128];
        base::snprintf(str, sizeof(str),
                       "exp[%d,%d] = %08X, actual[%d,%d] = %08X",
                       x, y, expected_color, x, y, actual_color);
        ADD_FAILURE() << str;
        PrintPixel(src, first_x, last_x, first_y, last_y);
      }
    }
  }
}

TEST(ImageOperations, HalveSubset) {
  // Make our source bitmap.
  int src_w = 16, src_h = 34;
  SkBitmap src;
  FillDataToBitmap(src_w, src_h, &src);

  // Do a halving of the full bitmap.
  SkBitmap full_results = skia::ImageOperations::Resize(
      src, skia::ImageOperations::RESIZE_BOX, src_w / 2, src_h / 2);
  ASSERT_EQ(src_w / 2, full_results.width());
  ASSERT_EQ(src_h / 2, full_results.height());

  // Now do a halving of a a subset, recall the destination subset is in the
  // destination coordinate system (max = half of the original image size).
  SkIRect subset_rect = { 2, 3, 3, 6 };
  SkBitmap subset_results = skia::ImageOperations::Resize(
      src, skia::ImageOperations::RESIZE_BOX,
      src_w / 2, src_h / 2, subset_rect);
  ASSERT_EQ(subset_rect.width(), subset_results.width());
  ASSERT_EQ(subset_rect.height(), subset_results.height());

  // The computed subset and the corresponding subset of the original image
  // should be the same.
  SkAutoLockPixels full_lock(full_results);
  SkAutoLockPixels subset_lock(subset_results);
  for (int y = 0; y < subset_rect.height(); y++) {
    for (int x = 0; x < subset_rect.width(); x++) {
      ASSERT_EQ(
          *full_results.getAddr32(x + subset_rect.fLeft, y + subset_rect.fTop),
          *subset_results.getAddr32(x, y));
    }
  }
}

TEST(ImageOperations, InvalidParams) {
  // Make our source bitmap.
  SkBitmap src;
  src.setConfig(SkBitmap::kA8_Config, 16, 34);
  src.allocPixels();

  // Scale it, don't die.
  SkBitmap full_results = skia::ImageOperations::Resize(
      src, skia::ImageOperations::RESIZE_BOX, 10, 20);
}

// Resamples an image to the same image, it should give the same result.
TEST(ImageOperations, ResampleToSameHamming1) {
  CheckResampleToSame(skia::ImageOperations::RESIZE_HAMMING1);
}

TEST(ImageOperations, ResampleToSameLanczos2) {
  CheckResampleToSame(skia::ImageOperations::RESIZE_LANCZOS2);
}

TEST(ImageOperations, ResampleToSameLanczos3) {
  CheckResampleToSame(skia::ImageOperations::RESIZE_LANCZOS3);
}

// Check that all Good/Better/Best, Box, Lanczos2 and Lanczos3 generate purple
// when resizing a 4x8 red/blue checker pattern by 1/16x1/16.
TEST(ImageOperations, ResizeShouldAverageColors) {
  // Make our source bitmap.
  const int src_w = 640, src_h = 480, checker_rect_w = 4, checker_rect_h = 8;
  const SkColor checker_color1 = SK_ColorRED, checker_color2 = SK_ColorBLUE;

  const int dest_w = src_w / (4 * checker_rect_w);
  const int dest_h = src_h / (2 * checker_rect_h);

  // Compute the expected (average) color
  const SkColor colors[] = { checker_color1, checker_color2 };
  const SkColor average_color = AveragePixel(colors, arraysize(colors));

  // RESIZE_SUBPIXEL is only supported on Linux/non-GTV platforms.
  static const TestedResizeMethod tested_methods[] = {
    { skia::ImageOperations::RESIZE_GOOD,     "GOOD",     0.0f },
    { skia::ImageOperations::RESIZE_BETTER,   "BETTER",   0.0f },
    { skia::ImageOperations::RESIZE_BEST,     "BEST",     0.0f },
    { skia::ImageOperations::RESIZE_BOX,      "BOX",      0.0f },
    { skia::ImageOperations::RESIZE_HAMMING1, "HAMMING1", 0.0f },
    { skia::ImageOperations::RESIZE_LANCZOS2, "LANCZOS2", 0.0f },
    { skia::ImageOperations::RESIZE_LANCZOS3, "LANCZOS3", 0.0f },
#if defined(OS_LINUX) && !defined(GTV)
    // SUBPIXEL has slightly worse performance than the other filters:
    //   6.324  Bottom left/right corners
    //   5.099  Top left/right corners
    //   2.828  Bottom middle
    //   1.414  Top/Left/Right middle, center
    //
    // This is expected since, in order to judge RESIZE_SUBPIXEL accurately,
    // we'd need to compute distances for each sub-pixel, and potentially
    // tweak the test parameters so that expectations were realistic when
    // looking at sub-pixels in isolation.
    //
    // Rather than going to these lengths, we added the "max_distance_override"
    // field in TestedResizeMethod, intended for RESIZE_SUBPIXEL. It allows
    // us to to enable its testing without having to lower the success criteria
    // for the other methods. This procedure is  distateful but defining
    // a distance limit for each tested pixel for each method was judged to add
    // unneeded complexity.
    { skia::ImageOperations::RESIZE_SUBPIXEL, "SUBPIXEL", 6.4f },
#endif
  };

  // Create our source bitmap.
  SkBitmap src;
  DrawCheckerToBitmap(src_w, src_h,
                      checker_color1, checker_color2,
                      checker_rect_w, checker_rect_h,
                      &src);

  // For each method, downscale by 16 in each dimension,
  // and check each tested pixel against the expected average color.
  bool all_methods_ok ALLOW_UNUSED = true;

  for (size_t method_index = 0;
       method_index < arraysize(tested_methods);
       ++method_index) {
    bool pass = true;
    CheckResizeMethodShouldAverageGrid(src,
                                       tested_methods[method_index],
                                       dest_w, dest_h, average_color,
                                       &pass);
    if (!pass) {
      all_methods_ok = false;
    }
  }

#if DEBUG_BITMAP_GENERATION
  if (!all_methods_ok) {
    SaveBitmapToPNG(src, "/tmp/ResizeShouldAverageColors_src.png");
  }
#endif  // #if DEBUG_BITMAP_GENERATION
}


// Check that Lanczos2 and Lanczos3 thumbnails produce similar results
TEST(ImageOperations, CompareLanczosMethods) {
  const int src_w = 640, src_h = 480, src_grid_pitch = 8, src_grid_width = 4;

  const int dest_w = src_w / 4;
  const int dest_h = src_h / 4;

  // 5.0f is the maximum distance we see in this test given the current
  // parameters. The value is very ad-hoc and the parameters of the scaling
  // were picked to produce a small value. So this test is very much about
  // revealing egregious regression rather than doing a good job at checking
  // the math behind the filters.
  // TODO(evannier): because of the half pixel error mentioned inside
  // image_operations.cc, this distance is much larger than it should be.
  // This should read:
  // const float max_color_distance = 5.0f;
  const float max_color_distance = 12.1f;

  // Make our source bitmap.
  SkColor grid_color = SK_ColorRED, background_color = SK_ColorBLUE;
  SkBitmap src;
  DrawGridToBitmap(src_w, src_h,
                   background_color, grid_color,
                   src_grid_pitch, src_grid_width,
                   &src);

  // Resize the src using both methods.
  SkBitmap dest_l2 = skia::ImageOperations::Resize(
      src,
      skia::ImageOperations::RESIZE_LANCZOS2,
      dest_w, dest_h);
  ASSERT_EQ(dest_w, dest_l2.width());
  ASSERT_EQ(dest_h, dest_l2.height());

  SkBitmap dest_l3 = skia::ImageOperations::Resize(
      src,
      skia::ImageOperations::RESIZE_LANCZOS3,
      dest_w, dest_h);
  ASSERT_EQ(dest_w, dest_l3.width());
  ASSERT_EQ(dest_h, dest_l3.height());

  // Compare the pixels produced by both methods.
  float max_observed_distance = 0.0f;
  bool all_pixels_ok = true;

  SkAutoLockPixels l2_lock(dest_l2);
  SkAutoLockPixels l3_lock(dest_l3);
  for (int y = 0; y < dest_h; ++y) {
    for (int x = 0; x < dest_w; ++x) {
      const SkColor color_lanczos2 = *dest_l2.getAddr32(x, y);
      const SkColor color_lanczos3 = *dest_l3.getAddr32(x, y);

      float distance = ColorsEuclidianDistance(color_lanczos2, color_lanczos3);

      EXPECT_LE(distance, max_color_distance)
          << "pixel tested: (" << x << ", " << y
          << std::hex << std::showbase
          << "), lanczos2 hex: " << color_lanczos2
          << ", lanczos3 hex: " << color_lanczos3
          << std::setprecision(2)
          << ", distance: " << distance;

      if (distance > max_color_distance) {
        all_pixels_ok = false;
      }
      if (distance > max_observed_distance) {
        max_observed_distance = distance;
      }
    }
  }

  if (!all_pixels_ok) {
    ADD_FAILURE() << "Maximum observed color distance: "
                  << max_observed_distance;

#if DEBUG_BITMAP_GENERATION
    SaveBitmapToPNG(src, "/tmp/CompareLanczosMethods_source.png");
    SaveBitmapToPNG(dest_l2, "/tmp/CompareLanczosMethods_lanczos2.png");
    SaveBitmapToPNG(dest_l3, "/tmp/CompareLanczosMethods_lanczos3.png");
#endif  // #if DEBUG_BITMAP_GENERATION
  }
}

#ifndef M_PI
// No M_PI in math.h on windows? No problem.
#define M_PI 3.14159265358979323846
#endif

static double sinc(double x) {
  if (x == 0.0) return 1.0;
  x *= M_PI;
  return sin(x) / x;
}

static double lanczos3(double offset) {
  if (fabs(offset) >= 3) return 0.0;
  return sinc(offset) * sinc(offset / 3.0);
}

TEST(ImageOperations, ScaleUp) {
  const int src_w = 3;
  const int src_h = 3;
  const int dst_w = 9;
  const int dst_h = 9;
  SkBitmap src;
  src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
  src.allocPixels();

  for (int src_y = 0; src_y < src_h; ++src_y) {
    for (int src_x = 0; src_x < src_w; ++src_x) {
      *src.getAddr32(src_x, src_y) = SkColorSetARGBInline(255,
                                                          10 + src_x * 100,
                                                          10 + src_y * 100,
                                                          0);
    }
  }

  SkBitmap dst = skia::ImageOperations::Resize(
      src,
      skia::ImageOperations::RESIZE_LANCZOS3,
      dst_w, dst_h);
  SkAutoLockPixels dst_lock(dst);
  for (int dst_y = 0; dst_y < dst_h; ++dst_y) {
    for (int dst_x = 0; dst_x < dst_w; ++dst_x) {
      float dst_x_in_src = (dst_x + 0.5) * src_w / dst_w;
      float dst_y_in_src = (dst_y + 0.5) * src_h / dst_h;
      float a = 0.0f;
      float r = 0.0f;
      float g = 0.0f;
      float b = 0.0f;
      float sum = 0.0f;
      for (int src_y = 0; src_y < src_h; ++src_y) {
        for (int src_x = 0; src_x < src_w; ++src_x) {
          double coeff =
              lanczos3(src_x + 0.5 - dst_x_in_src) *
              lanczos3(src_y + 0.5 - dst_y_in_src);
          sum += coeff;
          SkColor tmp = *src.getAddr32(src_x, src_y);
          a += coeff * SkColorGetA(tmp);
          r += coeff * SkColorGetR(tmp);
          g += coeff * SkColorGetG(tmp);
          b += coeff * SkColorGetB(tmp);
        }
      }
      a /= sum;
      r /= sum;
      g /= sum;
      b /= sum;
      if (a < 0.0f) a = 0.0f;
      if (r < 0.0f) r = 0.0f;
      if (g < 0.0f) g = 0.0f;
      if (b < 0.0f) b = 0.0f;
      if (a > 255.0f) a = 255.0f;
      if (r > 255.0f) r = 255.0f;
      if (g > 255.0f) g = 255.0f;
      if (b > 255.0f) b = 255.0f;
      SkColor dst_color = *dst.getAddr32(dst_x, dst_y);
      EXPECT_LE(fabs(SkColorGetA(dst_color) - a), 1.5f);
      EXPECT_LE(fabs(SkColorGetR(dst_color) - r), 1.5f);
      EXPECT_LE(fabs(SkColorGetG(dst_color) - g), 1.5f);
      EXPECT_LE(fabs(SkColorGetB(dst_color) - b), 1.5f);
      if (HasFailure()) {
        return;
      }
    }
  }
}

/* [<][>][^][v][top][bottom][index][help] */