root/ui/gfx/color_analysis.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. Reset
  2. SetCentroid
  3. GetCentroid
  4. IsAtCentroid
  5. RecomputeCentroid
  6. AddPoint
  7. GetDistanceSqr
  8. CompareCentroidWithAggregate
  9. GetWeight
  10. SortKMeanClusterByWeight
  11. UnPreMultiply
  12. GetSample
  13. FindClosestColor
  14. CalculateKMeanColorOfBuffer
  15. CalculateKMeanColorOfPNG
  16. CalculateKMeanColorOfBitmap
  17. ComputeColorCovariance
  18. ApplyColorReduction
  19. ComputePrincipalComponentImage

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/gfx/color_analysis.h"

#include <algorithm>
#include <limits>
#include <vector>

#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkUnPreMultiply.h"
#include "ui/gfx/codec/png_codec.h"

namespace {

// RGBA KMean Constants
const uint32_t kNumberOfClusters = 4;
const int kNumberOfIterations = 50;
const uint32_t kMaxBrightness = 665;
const uint32_t kMinDarkness = 100;

// Background Color Modification Constants
const SkColor kDefaultBgColor = SK_ColorWHITE;

// Support class to hold information about each cluster of pixel data in
// the KMean algorithm. While this class does not contain all of the points
// that exist in the cluster, it keeps track of the aggregate sum so it can
// compute the new center appropriately.
class KMeanCluster {
 public:
  KMeanCluster() {
    Reset();
  }

  void Reset() {
    centroid[0] = centroid[1] = centroid[2] = 0;
    aggregate[0] = aggregate[1] = aggregate[2] = 0;
    counter = 0;
    weight = 0;
  }

  inline void SetCentroid(uint8_t r, uint8_t g, uint8_t b) {
    centroid[0] = r;
    centroid[1] = g;
    centroid[2] = b;
  }

  inline void GetCentroid(uint8_t* r, uint8_t* g, uint8_t* b) {
    *r = centroid[0];
    *g = centroid[1];
    *b = centroid[2];
  }

  inline bool IsAtCentroid(uint8_t r, uint8_t g, uint8_t b) {
    return r == centroid[0] && g == centroid[1] && b == centroid[2];
  }

  // Recomputes the centroid of the cluster based on the aggregate data. The
  // number of points used to calculate this center is stored for weighting
  // purposes. The aggregate and counter are then cleared to be ready for the
  // next iteration.
  inline void RecomputeCentroid() {
    if (counter > 0) {
      centroid[0] = aggregate[0] / counter;
      centroid[1] = aggregate[1] / counter;
      centroid[2] = aggregate[2] / counter;

      aggregate[0] = aggregate[1] = aggregate[2] = 0;
      weight = counter;
      counter = 0;
    }
  }

  inline void AddPoint(uint8_t r, uint8_t g, uint8_t b) {
    aggregate[0] += r;
    aggregate[1] += g;
    aggregate[2] += b;
    ++counter;
  }

  // Just returns the distance^2. Since we are comparing relative distances
  // there is no need to perform the expensive sqrt() operation.
  inline uint32_t GetDistanceSqr(uint8_t r, uint8_t g, uint8_t b) {
    return (r - centroid[0]) * (r - centroid[0]) +
           (g - centroid[1]) * (g - centroid[1]) +
           (b - centroid[2]) * (b - centroid[2]);
  }

  // In order to determine if we have hit convergence or not we need to see
  // if the centroid of the cluster has moved. This determines whether or
  // not the centroid is the same as the aggregate sum of points that will be
  // used to generate the next centroid.
  inline bool CompareCentroidWithAggregate() {
    if (counter == 0)
      return false;

    return aggregate[0] / counter == centroid[0] &&
           aggregate[1] / counter == centroid[1] &&
           aggregate[2] / counter == centroid[2];
  }

  // Returns the previous counter, which is used to determine the weight
  // of the cluster for sorting.
  inline uint32_t GetWeight() const {
    return weight;
  }

  static bool SortKMeanClusterByWeight(const KMeanCluster& a,
                                       const KMeanCluster& b) {
    return a.GetWeight() > b.GetWeight();
  }

 private:
  uint8_t centroid[3];

  // Holds the sum of all the points that make up this cluster. Used to
  // generate the next centroid as well as to check for convergence.
  uint32_t aggregate[3];
  uint32_t counter;

  // The weight of the cluster, determined by how many points were used
  // to generate the previous centroid.
  uint32_t weight;
};

// Un-premultiplies each pixel in |bitmap| into an output |buffer|. Requires
// approximately 10 microseconds for a 16x16 icon on an Intel Core i5.
void UnPreMultiply(const SkBitmap& bitmap, uint32_t* buffer, int buffer_size) {
  SkAutoLockPixels auto_lock(bitmap);
  uint32_t* in = static_cast<uint32_t*>(bitmap.getPixels());
  uint32_t* out = buffer;
  int pixel_count = std::min(bitmap.width() * bitmap.height(), buffer_size);
  for (int i = 0; i < pixel_count; ++i)
    *out++ = SkUnPreMultiply::PMColorToColor(*in++);
}

} // namespace

namespace color_utils {

KMeanImageSampler::KMeanImageSampler() {
}

KMeanImageSampler::~KMeanImageSampler() {
}

GridSampler::GridSampler() : calls_(0) {
}

GridSampler::~GridSampler() {
}

int GridSampler::GetSample(int width, int height) {
  // Hand-drawn bitmaps often have special outlines or feathering at the edges.
  // Start our sampling inset from the top and left edges. For example, a 10x10
  // image with 4 clusters would be sampled like this:
  // ..........
  // .0.4.8....
  // ..........
  // .1.5.9....
  // ..........
  // .2.6......
  // ..........
  // .3.7......
  // ..........
  const int kPadX = 1;
  const int kPadY = 1;
  int x = kPadX +
      (calls_ / kNumberOfClusters) * ((width - 2 * kPadX) / kNumberOfClusters);
  int y = kPadY +
      (calls_ % kNumberOfClusters) * ((height - 2 * kPadY) / kNumberOfClusters);
  int index = x + (y * width);
  ++calls_;
  return index % (width * height);
}

SkColor FindClosestColor(const uint8_t* image,
                         int width,
                         int height,
                         SkColor color) {
  uint8_t in_r = SkColorGetR(color);
  uint8_t in_g = SkColorGetG(color);
  uint8_t in_b = SkColorGetB(color);
  // Search using distance-squared to avoid expensive sqrt() operations.
  int best_distance_squared = kint32max;
  SkColor best_color = color;
  const uint8_t* byte = image;
  for (int i = 0; i < width * height; ++i) {
    uint8_t b = *(byte++);
    uint8_t g = *(byte++);
    uint8_t r = *(byte++);
    uint8_t a = *(byte++);
    // Ignore fully transparent pixels.
    if (a == 0)
      continue;
    int distance_squared =
        (in_b - b) * (in_b - b) +
        (in_g - g) * (in_g - g) +
        (in_r - r) * (in_r - r);
    if (distance_squared < best_distance_squared) {
      best_distance_squared = distance_squared;
      best_color = SkColorSetRGB(r, g, b);
    }
  }
  return best_color;
}

// For a 16x16 icon on an Intel Core i5 this function takes approximately
// 0.5 ms to run.
// TODO(port): This code assumes the CPU architecture is little-endian.
SkColor CalculateKMeanColorOfBuffer(uint8_t* decoded_data,
                                    int img_width,
                                    int img_height,
                                    uint32_t darkness_limit,
                                    uint32_t brightness_limit,
                                    KMeanImageSampler* sampler) {
  SkColor color = kDefaultBgColor;
  if (img_width > 0 && img_height > 0) {
    std::vector<KMeanCluster> clusters;
    clusters.resize(kNumberOfClusters, KMeanCluster());

    // Pick a starting point for each cluster
    std::vector<KMeanCluster>::iterator cluster = clusters.begin();
    while (cluster != clusters.end()) {
      // Try up to 10 times to find a unique color. If no unique color can be
      // found, destroy this cluster.
      bool color_unique = false;
      for (int i = 0; i < 10; ++i) {
        int pixel_pos = sampler->GetSample(img_width, img_height) %
            (img_width * img_height);

        uint8_t b = decoded_data[pixel_pos * 4];
        uint8_t g = decoded_data[pixel_pos * 4 + 1];
        uint8_t r = decoded_data[pixel_pos * 4 + 2];
        uint8_t a = decoded_data[pixel_pos * 4 + 3];
        // Skip fully transparent pixels as they usually contain black in their
        // RGB channels but do not contribute to the visual image.
        if (a == 0)
          continue;

        // Loop through the previous clusters and check to see if we have seen
        // this color before.
        color_unique = true;
        for (std::vector<KMeanCluster>::iterator
            cluster_check = clusters.begin();
            cluster_check != cluster; ++cluster_check) {
          if (cluster_check->IsAtCentroid(r, g, b)) {
            color_unique = false;
            break;
          }
        }

        // If we have a unique color set the center of the cluster to
        // that color.
        if (color_unique) {
          cluster->SetCentroid(r, g, b);
          break;
        }
      }

      // If we don't have a unique color erase this cluster.
      if (!color_unique) {
        cluster = clusters.erase(cluster);
      } else {
        // Have to increment the iterator here, otherwise the increment in the
        // for loop will skip a cluster due to the erase if the color wasn't
        // unique.
        ++cluster;
      }
    }

    // If all pixels in the image are transparent we will have no clusters.
    if (clusters.empty())
      return color;

    bool convergence = false;
    for (int iteration = 0;
        iteration < kNumberOfIterations && !convergence;
        ++iteration) {

      // Loop through each pixel so we can place it in the appropriate cluster.
      uint8_t* pixel = decoded_data;
      uint8_t* decoded_data_end = decoded_data + (img_width * img_height * 4);
      while (pixel < decoded_data_end) {
        uint8_t b = *(pixel++);
        uint8_t g = *(pixel++);
        uint8_t r = *(pixel++);
        uint8_t a = *(pixel++);
        // Skip transparent pixels, see above.
        if (a == 0)
          continue;

        uint32_t distance_sqr_to_closest_cluster = UINT_MAX;
        std::vector<KMeanCluster>::iterator closest_cluster = clusters.begin();

        // Figure out which cluster this color is closest to in RGB space.
        for (std::vector<KMeanCluster>::iterator cluster = clusters.begin();
            cluster != clusters.end(); ++cluster) {
          uint32_t distance_sqr = cluster->GetDistanceSqr(r, g, b);

          if (distance_sqr < distance_sqr_to_closest_cluster) {
            distance_sqr_to_closest_cluster = distance_sqr;
            closest_cluster = cluster;
          }
        }

        closest_cluster->AddPoint(r, g, b);
      }

      // Calculate the new cluster centers and see if we've converged or not.
      convergence = true;
      for (std::vector<KMeanCluster>::iterator cluster = clusters.begin();
          cluster != clusters.end(); ++cluster) {
        convergence &= cluster->CompareCentroidWithAggregate();

        cluster->RecomputeCentroid();
      }
    }

    // Sort the clusters by population so we can tell what the most popular
    // color is.
    std::sort(clusters.begin(), clusters.end(),
              KMeanCluster::SortKMeanClusterByWeight);

    // Loop through the clusters to figure out which cluster has an appropriate
    // color. Skip any that are too bright/dark and go in order of weight.
    for (std::vector<KMeanCluster>::iterator cluster = clusters.begin();
        cluster != clusters.end(); ++cluster) {
      uint8_t r, g, b;
      cluster->GetCentroid(&r, &g, &b);
      // Sum the RGB components to determine if the color is too bright or too
      // dark.
      // TODO (dtrainor): Look into using HSV here instead. This approximation
      // might be fine though.
      uint32_t summed_color = r + g + b;

      if (summed_color < brightness_limit && summed_color > darkness_limit) {
        // If we found a valid color just set it and break. We don't want to
        // check the other ones.
        color = SkColorSetARGB(0xFF, r, g, b);
        break;
      } else if (cluster == clusters.begin()) {
        // We haven't found a valid color, but we are at the first color so
        // set the color anyway to make sure we at least have a value here.
        color = SkColorSetARGB(0xFF, r, g, b);
      }
    }
  }

  // Find a color that actually appears in the image (the K-mean cluster center
  // will not usually be a color that appears in the image).
  return FindClosestColor(decoded_data, img_width, img_height, color);
}

SkColor CalculateKMeanColorOfPNG(scoped_refptr<base::RefCountedMemory> png,
                                 uint32_t darkness_limit,
                                 uint32_t brightness_limit,
                                 KMeanImageSampler* sampler) {
  int img_width = 0;
  int img_height = 0;
  std::vector<uint8_t> decoded_data;
  SkColor color = kDefaultBgColor;

  if (png.get() &&
      png->size() &&
      gfx::PNGCodec::Decode(png->front(),
                            png->size(),
                            gfx::PNGCodec::FORMAT_BGRA,
                            &decoded_data,
                            &img_width,
                            &img_height)) {
    return CalculateKMeanColorOfBuffer(&decoded_data[0],
                                       img_width,
                                       img_height,
                                       darkness_limit,
                                       brightness_limit,
                                       sampler);
  }
  return color;
}

SkColor CalculateKMeanColorOfBitmap(const SkBitmap& bitmap) {
  // SkBitmap uses pre-multiplied alpha but the KMean clustering function
  // above uses non-pre-multiplied alpha. Transform the bitmap before we
  // analyze it because the function reads each pixel multiple times.
  int pixel_count = bitmap.width() * bitmap.height();
  scoped_ptr<uint32_t[]> image(new uint32_t[pixel_count]);
  UnPreMultiply(bitmap, image.get(), pixel_count);

  GridSampler sampler;
  SkColor color = CalculateKMeanColorOfBuffer(
      reinterpret_cast<uint8_t*>(image.get()),
      bitmap.width(),
      bitmap.height(),
      kMinDarkness,
      kMaxBrightness,
      &sampler);
  return color;
}

gfx::Matrix3F ComputeColorCovariance(const SkBitmap& bitmap) {
  // First need basic stats to normalize each channel separately.
  SkAutoLockPixels bitmap_lock(bitmap);
  gfx::Matrix3F covariance = gfx::Matrix3F::Zeros();
  if (!bitmap.getPixels())
    return covariance;

  // Assume ARGB_8888 format.
  DCHECK(bitmap.colorType() == kPMColor_SkColorType);

  int64_t r_sum = 0;
  int64_t g_sum = 0;
  int64_t b_sum = 0;
  int64_t rr_sum = 0;
  int64_t gg_sum = 0;
  int64_t bb_sum = 0;
  int64_t rg_sum = 0;
  int64_t rb_sum = 0;
  int64_t gb_sum = 0;

  for (int y = 0; y < bitmap.height(); ++y) {
    SkPMColor* current_color = static_cast<uint32_t*>(bitmap.getAddr32(0, y));
    for (int x = 0; x < bitmap.width(); ++x, ++current_color) {
      SkColor c = SkUnPreMultiply::PMColorToColor(*current_color);
      SkColor r = SkColorGetR(c);
      SkColor g = SkColorGetG(c);
      SkColor b = SkColorGetB(c);

      r_sum += r;
      g_sum += g;
      b_sum += b;
      rr_sum += r * r;
      gg_sum += g * g;
      bb_sum += b * b;
      rg_sum += r * g;
      rb_sum += r * b;
      gb_sum += g * b;
    }
  }

  // Covariance (not normalized) is E(X*X.t) - m * m.t and this is how it
  // is calculated below.
  // Each row below represents a row of the matrix describing (co)variances
  // of R, G and B channels with (R, G, B)
  int pixel_n = bitmap.width() * bitmap.height();
  covariance.set(
      (static_cast<double>(rr_sum) / pixel_n -
       static_cast<double>(r_sum * r_sum) / pixel_n / pixel_n),
      (static_cast<double>(rg_sum) / pixel_n -
       static_cast<double>(r_sum * g_sum) / pixel_n / pixel_n),
      (static_cast<double>(rb_sum) / pixel_n -
       static_cast<double>(r_sum * b_sum) / pixel_n / pixel_n),
      (static_cast<double>(rg_sum) / pixel_n -
       static_cast<double>(r_sum * g_sum) / pixel_n / pixel_n),
      (static_cast<double>(gg_sum) / pixel_n -
       static_cast<double>(g_sum * g_sum) / pixel_n / pixel_n),
      (static_cast<double>(gb_sum) / pixel_n -
       static_cast<double>(g_sum * b_sum) / pixel_n / pixel_n),
      (static_cast<double>(rb_sum) / pixel_n -
       static_cast<double>(r_sum * b_sum) / pixel_n / pixel_n),
      (static_cast<double>(gb_sum) / pixel_n -
       static_cast<double>(g_sum * b_sum) / pixel_n / pixel_n),
      (static_cast<double>(bb_sum) / pixel_n -
       static_cast<double>(b_sum * b_sum) / pixel_n / pixel_n));
  return covariance;
}

bool ApplyColorReduction(const SkBitmap& source_bitmap,
                         const gfx::Vector3dF& color_transform,
                         bool fit_to_range,
                         SkBitmap* target_bitmap) {
  DCHECK(target_bitmap);
  SkAutoLockPixels source_lock(source_bitmap);
  SkAutoLockPixels target_lock(*target_bitmap);

  DCHECK(source_bitmap.getPixels());
  DCHECK(target_bitmap->getPixels());
  DCHECK_EQ(kPMColor_SkColorType, source_bitmap.colorType());
  DCHECK_EQ(kAlpha_8_SkColorType, target_bitmap->colorType());
  DCHECK_EQ(source_bitmap.height(), target_bitmap->height());
  DCHECK_EQ(source_bitmap.width(), target_bitmap->width());
  DCHECK(!source_bitmap.empty());

  // Elements of color_transform are explicitly off-loaded to local values for
  // efficiency reasons. Note that in practice images may correspond to entire
  // tab captures.
  float t0 = 0.0;
  float tr = color_transform.x();
  float tg = color_transform.y();
  float tb = color_transform.z();

  if (fit_to_range) {
    // We will figure out min/max in a preprocessing step and adjust
    // actual_transform as required.
    float max_val = std::numeric_limits<float>::min();
    float min_val = std::numeric_limits<float>::max();
    for (int y = 0; y < source_bitmap.height(); ++y) {
      const SkPMColor* source_color_row = static_cast<SkPMColor*>(
          source_bitmap.getAddr32(0, y));
      for (int x = 0; x < source_bitmap.width(); ++x) {
        SkColor c = SkUnPreMultiply::PMColorToColor(source_color_row[x]);
        float r = SkColorGetR(c);
        float g = SkColorGetG(c);
        float b = SkColorGetB(c);
        float gray_level = tr * r + tg * g + tb * b;
        max_val = std::max(max_val, gray_level);
        min_val = std::min(min_val, gray_level);
      }
    }

    // Adjust the transform so that the result is scaling.
    float scale = 0.0;
    t0 = -min_val;
    if (max_val > min_val)
      scale = 255.0 / (max_val - min_val);
    t0 *= scale;
    tr *= scale;
    tg *= scale;
    tb *= scale;
  }

  for (int y = 0; y < source_bitmap.height(); ++y) {
    const SkPMColor* source_color_row = static_cast<SkPMColor*>(
        source_bitmap.getAddr32(0, y));
    uint8_t* target_color_row = target_bitmap->getAddr8(0, y);
    for (int x = 0; x < source_bitmap.width(); ++x) {
      SkColor c = SkUnPreMultiply::PMColorToColor(source_color_row[x]);
      float r = SkColorGetR(c);
      float g = SkColorGetG(c);
      float b = SkColorGetB(c);

      float gl = t0 + tr * r + tg * g + tb * b;
      if (gl < 0)
        gl = 0;
      if (gl > 0xFF)
        gl = 0xFF;
      target_color_row[x] = static_cast<uint8_t>(gl);
    }
  }

  return true;
}

bool ComputePrincipalComponentImage(const SkBitmap& source_bitmap,
                                    SkBitmap* target_bitmap) {
  if (!target_bitmap) {
    NOTREACHED();
    return false;
  }

  gfx::Matrix3F covariance = ComputeColorCovariance(source_bitmap);
  gfx::Matrix3F eigenvectors = gfx::Matrix3F::Zeros();
  gfx::Vector3dF eigenvals = covariance.SolveEigenproblem(&eigenvectors);
  gfx::Vector3dF principal = eigenvectors.get_column(0);
  if (eigenvals == gfx::Vector3dF() || principal == gfx::Vector3dF())
    return false;  // This may happen for some edge cases.
  return ApplyColorReduction(source_bitmap, principal, true, target_bitmap);
}

}  // color_utils

/* [<][>][^][v][top][bottom][index][help] */