root/mojo/examples/sample_app/spinning_cube.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. GenerateCube
  2. LoadShader
  3. LoadProgram
  4. LoadZero
  5. LoadIdentity
  6. Multiply
  7. Frustum
  8. Perspective
  9. Translate
  10. Rotate
  11. RotationForTimeDelta
  12. RotationForDragDistance
  13. OnGLContextLost
  14. direction_
  15. Init
  16. OnGLContextLost
  17. SetFlingMultiplier
  18. UpdateForTimeDelta
  19. UpdateForDragDistance
  20. Draw
  21. Update

// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This example program is based on Simple_VertexShader.c from:

//
// Book:      OpenGL(R) ES 2.0 Programming Guide
// Authors:   Aaftab Munshi, Dan Ginsburg, Dave Shreiner
// ISBN-10:   0321502795
// ISBN-13:   9780321502797
// Publisher: Addison-Wesley Professional
// URLs:      http://safari.informit.com/9780321563835
//            http://www.opengles-book.com
//

#include "mojo/examples/sample_app/spinning_cube.h"

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>

namespace mojo {
namespace examples {

namespace {

const float kPi = 3.14159265359f;

int GenerateCube(GLuint *vbo_vertices,
                 GLuint *vbo_indices) {
  const int num_indices = 36;

  const GLfloat cube_vertices[] = {
    -0.5f, -0.5f, -0.5f,
    -0.5f, -0.5f,  0.5f,
    0.5f, -0.5f,  0.5f,
    0.5f, -0.5f, -0.5f,
    -0.5f,  0.5f, -0.5f,
    -0.5f,  0.5f,  0.5f,
    0.5f,  0.5f,  0.5f,
    0.5f,  0.5f, -0.5f,
    -0.5f, -0.5f, -0.5f,
    -0.5f,  0.5f, -0.5f,
    0.5f,  0.5f, -0.5f,
    0.5f, -0.5f, -0.5f,
    -0.5f, -0.5f, 0.5f,
    -0.5f,  0.5f, 0.5f,
    0.5f,  0.5f, 0.5f,
    0.5f, -0.5f, 0.5f,
    -0.5f, -0.5f, -0.5f,
    -0.5f, -0.5f,  0.5f,
    -0.5f,  0.5f,  0.5f,
    -0.5f,  0.5f, -0.5f,
    0.5f, -0.5f, -0.5f,
    0.5f, -0.5f,  0.5f,
    0.5f,  0.5f,  0.5f,
    0.5f,  0.5f, -0.5f,
  };

  const GLushort cube_indices[] = {
    0, 2, 1,
    0, 3, 2,
    4, 5, 6,
    4, 6, 7,
    8, 9, 10,
    8, 10, 11,
    12, 15, 14,
    12, 14, 13,
    16, 17, 18,
    16, 18, 19,
    20, 23, 22,
    20, 22, 21
  };

  if (vbo_vertices) {
    glGenBuffers(1, vbo_vertices);
    glBindBuffer(GL_ARRAY_BUFFER, *vbo_vertices);
    glBufferData(GL_ARRAY_BUFFER,
                 sizeof(cube_vertices),
                 cube_vertices,
                 GL_STATIC_DRAW);
    glBindBuffer(GL_ARRAY_BUFFER, 0);
  }

  if (vbo_indices) {
    glGenBuffers(1, vbo_indices);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, *vbo_indices);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER,
                 sizeof(cube_indices),
                 cube_indices,
                 GL_STATIC_DRAW);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
  }

  return num_indices;
}

GLuint LoadShader(GLenum type,
                  const char* shader_source) {
  GLuint shader = glCreateShader(type);
  glShaderSource(shader, 1, &shader_source, NULL);
  glCompileShader(shader);

  GLint compiled = 0;
  glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);

  if (!compiled) {
    glDeleteShader(shader);
    return 0;
  }

  return shader;
}

GLuint LoadProgram(const char* vertext_shader_source,
                   const char* fragment_shader_source) {
  GLuint vertex_shader = LoadShader(GL_VERTEX_SHADER,
                                    vertext_shader_source);
  if (!vertex_shader)
    return 0;

  GLuint fragment_shader = LoadShader(GL_FRAGMENT_SHADER,
                                      fragment_shader_source);
  if (!fragment_shader) {
    glDeleteShader(vertex_shader);
    return 0;
  }

  GLuint program_object = glCreateProgram();
  glAttachShader(program_object, vertex_shader);
  glAttachShader(program_object, fragment_shader);

  glLinkProgram(program_object);

  glDeleteShader(vertex_shader);
  glDeleteShader(fragment_shader);

  GLint linked = 0;
  glGetProgramiv(program_object, GL_LINK_STATUS, &linked);

  if (!linked) {
    glDeleteProgram(program_object);
    return 0;
  }

  return program_object;
}

class ESMatrix {
 public:
  GLfloat m[4][4];

  ESMatrix() {
    LoadZero();
  }

  void LoadZero() {
    memset(this, 0x0, sizeof(ESMatrix));
  }

  void LoadIdentity() {
    LoadZero();
    m[0][0] = 1.0f;
    m[1][1] = 1.0f;
    m[2][2] = 1.0f;
    m[3][3] = 1.0f;
  }

  void Multiply(ESMatrix* a, ESMatrix* b) {
    ESMatrix result;
    for (int i = 0; i < 4; ++i) {
      result.m[i][0] = (a->m[i][0] * b->m[0][0]) +
                       (a->m[i][1] * b->m[1][0]) +
                       (a->m[i][2] * b->m[2][0]) +
                       (a->m[i][3] * b->m[3][0]);

      result.m[i][1] = (a->m[i][0] * b->m[0][1]) +
                       (a->m[i][1] * b->m[1][1]) +
                       (a->m[i][2] * b->m[2][1]) +
                       (a->m[i][3] * b->m[3][1]);

      result.m[i][2] = (a->m[i][0] * b->m[0][2]) +
                       (a->m[i][1] * b->m[1][2]) +
                       (a->m[i][2] * b->m[2][2]) +
                       (a->m[i][3] * b->m[3][2]);

      result.m[i][3] = (a->m[i][0] * b->m[0][3]) +
                       (a->m[i][1] * b->m[1][3]) +
                       (a->m[i][2] * b->m[2][3]) +
                       (a->m[i][3] * b->m[3][3]);
    }
    *this = result;
  }

  void Frustum(float left,
               float right,
               float bottom,
               float top,
               float near_z,
               float far_z) {
    float delta_x = right - left;
    float delta_y = top - bottom;
    float delta_z = far_z - near_z;

    if ((near_z <= 0.0f) ||
        (far_z <= 0.0f) ||
        (delta_z <= 0.0f) ||
        (delta_y <= 0.0f) ||
        (delta_y <= 0.0f))
      return;

    ESMatrix frust;
    frust.m[0][0] = 2.0f * near_z / delta_x;
    frust.m[0][1] = frust.m[0][2] = frust.m[0][3] = 0.0f;

    frust.m[1][1] = 2.0f * near_z / delta_y;
    frust.m[1][0] = frust.m[1][2] = frust.m[1][3] = 0.0f;

    frust.m[2][0] = (right + left) / delta_x;
    frust.m[2][1] = (top + bottom) / delta_y;
    frust.m[2][2] = -(near_z + far_z) / delta_z;
    frust.m[2][3] = -1.0f;

    frust.m[3][2] = -2.0f * near_z * far_z / delta_z;
    frust.m[3][0] = frust.m[3][1] = frust.m[3][3] = 0.0f;

    Multiply(&frust, this);
  }

  void Perspective(float fov_y, float aspect, float near_z, float far_z) {
    GLfloat frustum_h = tanf(fov_y / 360.0f * kPi) * near_z;
    GLfloat frustum_w = frustum_h * aspect;
    Frustum(-frustum_w, frustum_w, -frustum_h, frustum_h, near_z, far_z);
  }

  void Translate(GLfloat tx, GLfloat ty, GLfloat tz) {
    m[3][0] += m[0][0] * tx + m[1][0] * ty + m[2][0] * tz;
    m[3][1] += m[0][1] * tx + m[1][1] * ty + m[2][1] * tz;
    m[3][2] += m[0][2] * tx + m[1][2] * ty + m[2][2] * tz;
    m[3][3] += m[0][3] * tx + m[1][3] * ty + m[2][3] * tz;
  }

  void Rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) {
    GLfloat mag = sqrtf(x * x + y * y + z * z);

    GLfloat sin_angle = sinf(angle * kPi / 180.0f);
    GLfloat cos_angle = cosf(angle * kPi / 180.0f);
    if (mag > 0.0f) {
      GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs;
      GLfloat one_minus_cos;
      ESMatrix rotation;

      x /= mag;
      y /= mag;
      z /= mag;

      xx = x * x;
      yy = y * y;
      zz = z * z;
      xy = x * y;
      yz = y * z;
      zx = z * x;
      xs = x * sin_angle;
      ys = y * sin_angle;
      zs = z * sin_angle;
      one_minus_cos = 1.0f - cos_angle;

      rotation.m[0][0] = (one_minus_cos * xx) + cos_angle;
      rotation.m[0][1] = (one_minus_cos * xy) - zs;
      rotation.m[0][2] = (one_minus_cos * zx) + ys;
      rotation.m[0][3] = 0.0F;

      rotation.m[1][0] = (one_minus_cos * xy) + zs;
      rotation.m[1][1] = (one_minus_cos * yy) + cos_angle;
      rotation.m[1][2] = (one_minus_cos * yz) - xs;
      rotation.m[1][3] = 0.0F;

      rotation.m[2][0] = (one_minus_cos * zx) - ys;
      rotation.m[2][1] = (one_minus_cos * yz) + xs;
      rotation.m[2][2] = (one_minus_cos * zz) + cos_angle;
      rotation.m[2][3] = 0.0F;

      rotation.m[3][0] = 0.0F;
      rotation.m[3][1] = 0.0F;
      rotation.m[3][2] = 0.0F;
      rotation.m[3][3] = 1.0F;

      Multiply(&rotation, this);
    }
  }
};

float RotationForTimeDelta(float delta_time) {
  return delta_time * 40.0f;
}

float RotationForDragDistance(float drag_distance) {
  return drag_distance / 5; // Arbitrary damping.
}

}  // namespace

class SpinningCube::GLState {
 public:
  GLState();

  void OnGLContextLost();

  GLfloat angle_;  // Survives losing the GL context.

  GLuint program_object_;
  GLint position_location_;
  GLint mvp_location_;
  GLuint vbo_vertices_;
  GLuint vbo_indices_;
  int num_indices_;
  ESMatrix mvp_matrix_;
};

SpinningCube::GLState::GLState()
    : angle_(0) {
  OnGLContextLost();
}

void SpinningCube::GLState::OnGLContextLost() {
  program_object_ = 0;
  position_location_ = 0;
  mvp_location_ = 0;
  vbo_vertices_ = 0;
  vbo_indices_ = 0;
  num_indices_ = 0;
}

SpinningCube::SpinningCube()
    : initialized_(false),
      width_(0),
      height_(0),
      state_(new GLState()),
      fling_multiplier_(1.0f),
      direction_(1) {
  state_->angle_ = 45.0f;
}

SpinningCube::~SpinningCube() {
  if (!initialized_)
    return;
  if (state_->vbo_vertices_)
    glDeleteBuffers(1, &state_->vbo_vertices_);
  if (state_->vbo_indices_)
    glDeleteBuffers(1, &state_->vbo_indices_);
  if (state_->program_object_)
    glDeleteProgram(state_->program_object_);
}

void SpinningCube::Init(uint32_t width, uint32_t height) {
  width_ = width;
  height_ = height;

  const char vertext_shader_source[] =
      "uniform mat4 u_mvpMatrix;                   \n"
      "attribute vec4 a_position;                  \n"
      "void main()                                 \n"
      "{                                           \n"
      "   gl_Position = u_mvpMatrix * a_position;  \n"
      "}                                           \n";

  const char fragment_shader_source[] =
      "precision mediump float;                            \n"
      "void main()                                         \n"
      "{                                                   \n"
      "  gl_FragColor = vec4( 0.0, 1.0, 0.0, 1.0 );        \n"
      "}                                                   \n";

  state_->program_object_ = LoadProgram(
      vertext_shader_source, fragment_shader_source);
  state_->position_location_ = glGetAttribLocation(
      state_->program_object_, "a_position");
  state_->mvp_location_ = glGetUniformLocation(
      state_->program_object_, "u_mvpMatrix");
  state_->num_indices_ = GenerateCube(
      &state_->vbo_vertices_, &state_->vbo_indices_);

  glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
  initialized_ = true;
}

void SpinningCube::OnGLContextLost() {
  initialized_ = false;
  height_ = 0;
  width_ = 0;
  state_->OnGLContextLost();
}

void SpinningCube::SetFlingMultiplier(float drag_distance,
                                      float drag_time) {
  fling_multiplier_ = RotationForDragDistance(drag_distance) /
      RotationForTimeDelta(drag_time);

}

void SpinningCube::UpdateForTimeDelta(float delta_time) {
  state_->angle_ += RotationForTimeDelta(delta_time) * fling_multiplier_;
  if (state_->angle_ >= 360.0f)
    state_->angle_ -= 360.0f;

  // Arbitrary 50-step linear reduction in spin speed.
  if (fling_multiplier_ > 1.0f) {
    fling_multiplier_ =
        std::max(1.0f, fling_multiplier_ - (fling_multiplier_ - 1.0f) / 50);
  }

  Update();
}

void SpinningCube::UpdateForDragDistance(float distance) {
  state_->angle_ += RotationForDragDistance(distance);
  if (state_->angle_ >= 360.0f )
    state_->angle_ -= 360.0f;

  Update();
}

void SpinningCube::Draw() {
  glViewport(0, 0, width_, height_);
  glClear(GL_COLOR_BUFFER_BIT);
  glUseProgram(state_->program_object_);
  glBindBuffer(GL_ARRAY_BUFFER, state_->vbo_vertices_);
  glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, state_->vbo_indices_);
  glVertexAttribPointer(state_->position_location_,
                           3,
                           GL_FLOAT,
                           GL_FALSE, 3 * sizeof(GLfloat),
                           0);
  glEnableVertexAttribArray(state_->position_location_);
  glUniformMatrix4fv(state_->mvp_location_,
                        1,
                        GL_FALSE,
                        (GLfloat*) &state_->mvp_matrix_.m[0][0]);
  glDrawElements(GL_TRIANGLES,
                    state_->num_indices_,
                    GL_UNSIGNED_SHORT,
                    0);
}

void SpinningCube::Update() {
  float aspect = static_cast<GLfloat>(width_) / static_cast<GLfloat>(height_);

  ESMatrix perspective;
  perspective.LoadIdentity();
  perspective.Perspective(60.0f, aspect, 1.0f, 20.0f );

  ESMatrix modelview;
  modelview.LoadIdentity();
  modelview.Translate(0.0, 0.0, -2.0);
  modelview.Rotate(state_->angle_ * direction_, 1.0, 0.0, 1.0);

  state_->mvp_matrix_.Multiply(&modelview, &perspective);
}

}  // namespace examples
}  // namespace mojo

/* [<][>][^][v][top][bottom][index][help] */