This source file includes following definitions.
- GenerateCube
- LoadShader
- LoadProgram
- LoadZero
- LoadIdentity
- Multiply
- Frustum
- Perspective
- Translate
- Rotate
- RotationForTimeDelta
- RotationForDragDistance
- OnGLContextLost
- direction_
- Init
- OnGLContextLost
- SetFlingMultiplier
- UpdateForTimeDelta
- UpdateForDragDistance
- Draw
- Update
#include "mojo/examples/sample_app/spinning_cube.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
namespace mojo {
namespace examples {
namespace {
const float kPi = 3.14159265359f;
int GenerateCube(GLuint *vbo_vertices,
GLuint *vbo_indices) {
const int num_indices = 36;
const GLfloat cube_vertices[] = {
-0.5f, -0.5f, -0.5f,
-0.5f, -0.5f, 0.5f,
0.5f, -0.5f, 0.5f,
0.5f, -0.5f, -0.5f,
-0.5f, 0.5f, -0.5f,
-0.5f, 0.5f, 0.5f,
0.5f, 0.5f, 0.5f,
0.5f, 0.5f, -0.5f,
-0.5f, -0.5f, -0.5f,
-0.5f, 0.5f, -0.5f,
0.5f, 0.5f, -0.5f,
0.5f, -0.5f, -0.5f,
-0.5f, -0.5f, 0.5f,
-0.5f, 0.5f, 0.5f,
0.5f, 0.5f, 0.5f,
0.5f, -0.5f, 0.5f,
-0.5f, -0.5f, -0.5f,
-0.5f, -0.5f, 0.5f,
-0.5f, 0.5f, 0.5f,
-0.5f, 0.5f, -0.5f,
0.5f, -0.5f, -0.5f,
0.5f, -0.5f, 0.5f,
0.5f, 0.5f, 0.5f,
0.5f, 0.5f, -0.5f,
};
const GLushort cube_indices[] = {
0, 2, 1,
0, 3, 2,
4, 5, 6,
4, 6, 7,
8, 9, 10,
8, 10, 11,
12, 15, 14,
12, 14, 13,
16, 17, 18,
16, 18, 19,
20, 23, 22,
20, 22, 21
};
if (vbo_vertices) {
glGenBuffers(1, vbo_vertices);
glBindBuffer(GL_ARRAY_BUFFER, *vbo_vertices);
glBufferData(GL_ARRAY_BUFFER,
sizeof(cube_vertices),
cube_vertices,
GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
if (vbo_indices) {
glGenBuffers(1, vbo_indices);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, *vbo_indices);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
sizeof(cube_indices),
cube_indices,
GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
return num_indices;
}
GLuint LoadShader(GLenum type,
const char* shader_source) {
GLuint shader = glCreateShader(type);
glShaderSource(shader, 1, &shader_source, NULL);
glCompileShader(shader);
GLint compiled = 0;
glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);
if (!compiled) {
glDeleteShader(shader);
return 0;
}
return shader;
}
GLuint LoadProgram(const char* vertext_shader_source,
const char* fragment_shader_source) {
GLuint vertex_shader = LoadShader(GL_VERTEX_SHADER,
vertext_shader_source);
if (!vertex_shader)
return 0;
GLuint fragment_shader = LoadShader(GL_FRAGMENT_SHADER,
fragment_shader_source);
if (!fragment_shader) {
glDeleteShader(vertex_shader);
return 0;
}
GLuint program_object = glCreateProgram();
glAttachShader(program_object, vertex_shader);
glAttachShader(program_object, fragment_shader);
glLinkProgram(program_object);
glDeleteShader(vertex_shader);
glDeleteShader(fragment_shader);
GLint linked = 0;
glGetProgramiv(program_object, GL_LINK_STATUS, &linked);
if (!linked) {
glDeleteProgram(program_object);
return 0;
}
return program_object;
}
class ESMatrix {
public:
GLfloat m[4][4];
ESMatrix() {
LoadZero();
}
void LoadZero() {
memset(this, 0x0, sizeof(ESMatrix));
}
void LoadIdentity() {
LoadZero();
m[0][0] = 1.0f;
m[1][1] = 1.0f;
m[2][2] = 1.0f;
m[3][3] = 1.0f;
}
void Multiply(ESMatrix* a, ESMatrix* b) {
ESMatrix result;
for (int i = 0; i < 4; ++i) {
result.m[i][0] = (a->m[i][0] * b->m[0][0]) +
(a->m[i][1] * b->m[1][0]) +
(a->m[i][2] * b->m[2][0]) +
(a->m[i][3] * b->m[3][0]);
result.m[i][1] = (a->m[i][0] * b->m[0][1]) +
(a->m[i][1] * b->m[1][1]) +
(a->m[i][2] * b->m[2][1]) +
(a->m[i][3] * b->m[3][1]);
result.m[i][2] = (a->m[i][0] * b->m[0][2]) +
(a->m[i][1] * b->m[1][2]) +
(a->m[i][2] * b->m[2][2]) +
(a->m[i][3] * b->m[3][2]);
result.m[i][3] = (a->m[i][0] * b->m[0][3]) +
(a->m[i][1] * b->m[1][3]) +
(a->m[i][2] * b->m[2][3]) +
(a->m[i][3] * b->m[3][3]);
}
*this = result;
}
void Frustum(float left,
float right,
float bottom,
float top,
float near_z,
float far_z) {
float delta_x = right - left;
float delta_y = top - bottom;
float delta_z = far_z - near_z;
if ((near_z <= 0.0f) ||
(far_z <= 0.0f) ||
(delta_z <= 0.0f) ||
(delta_y <= 0.0f) ||
(delta_y <= 0.0f))
return;
ESMatrix frust;
frust.m[0][0] = 2.0f * near_z / delta_x;
frust.m[0][1] = frust.m[0][2] = frust.m[0][3] = 0.0f;
frust.m[1][1] = 2.0f * near_z / delta_y;
frust.m[1][0] = frust.m[1][2] = frust.m[1][3] = 0.0f;
frust.m[2][0] = (right + left) / delta_x;
frust.m[2][1] = (top + bottom) / delta_y;
frust.m[2][2] = -(near_z + far_z) / delta_z;
frust.m[2][3] = -1.0f;
frust.m[3][2] = -2.0f * near_z * far_z / delta_z;
frust.m[3][0] = frust.m[3][1] = frust.m[3][3] = 0.0f;
Multiply(&frust, this);
}
void Perspective(float fov_y, float aspect, float near_z, float far_z) {
GLfloat frustum_h = tanf(fov_y / 360.0f * kPi) * near_z;
GLfloat frustum_w = frustum_h * aspect;
Frustum(-frustum_w, frustum_w, -frustum_h, frustum_h, near_z, far_z);
}
void Translate(GLfloat tx, GLfloat ty, GLfloat tz) {
m[3][0] += m[0][0] * tx + m[1][0] * ty + m[2][0] * tz;
m[3][1] += m[0][1] * tx + m[1][1] * ty + m[2][1] * tz;
m[3][2] += m[0][2] * tx + m[1][2] * ty + m[2][2] * tz;
m[3][3] += m[0][3] * tx + m[1][3] * ty + m[2][3] * tz;
}
void Rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) {
GLfloat mag = sqrtf(x * x + y * y + z * z);
GLfloat sin_angle = sinf(angle * kPi / 180.0f);
GLfloat cos_angle = cosf(angle * kPi / 180.0f);
if (mag > 0.0f) {
GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs;
GLfloat one_minus_cos;
ESMatrix rotation;
x /= mag;
y /= mag;
z /= mag;
xx = x * x;
yy = y * y;
zz = z * z;
xy = x * y;
yz = y * z;
zx = z * x;
xs = x * sin_angle;
ys = y * sin_angle;
zs = z * sin_angle;
one_minus_cos = 1.0f - cos_angle;
rotation.m[0][0] = (one_minus_cos * xx) + cos_angle;
rotation.m[0][1] = (one_minus_cos * xy) - zs;
rotation.m[0][2] = (one_minus_cos * zx) + ys;
rotation.m[0][3] = 0.0F;
rotation.m[1][0] = (one_minus_cos * xy) + zs;
rotation.m[1][1] = (one_minus_cos * yy) + cos_angle;
rotation.m[1][2] = (one_minus_cos * yz) - xs;
rotation.m[1][3] = 0.0F;
rotation.m[2][0] = (one_minus_cos * zx) - ys;
rotation.m[2][1] = (one_minus_cos * yz) + xs;
rotation.m[2][2] = (one_minus_cos * zz) + cos_angle;
rotation.m[2][3] = 0.0F;
rotation.m[3][0] = 0.0F;
rotation.m[3][1] = 0.0F;
rotation.m[3][2] = 0.0F;
rotation.m[3][3] = 1.0F;
Multiply(&rotation, this);
}
}
};
float RotationForTimeDelta(float delta_time) {
return delta_time * 40.0f;
}
float RotationForDragDistance(float drag_distance) {
return drag_distance / 5;
}
}
class SpinningCube::GLState {
public:
GLState();
void OnGLContextLost();
GLfloat angle_;
GLuint program_object_;
GLint position_location_;
GLint mvp_location_;
GLuint vbo_vertices_;
GLuint vbo_indices_;
int num_indices_;
ESMatrix mvp_matrix_;
};
SpinningCube::GLState::GLState()
: angle_(0) {
OnGLContextLost();
}
void SpinningCube::GLState::OnGLContextLost() {
program_object_ = 0;
position_location_ = 0;
mvp_location_ = 0;
vbo_vertices_ = 0;
vbo_indices_ = 0;
num_indices_ = 0;
}
SpinningCube::SpinningCube()
: initialized_(false),
width_(0),
height_(0),
state_(new GLState()),
fling_multiplier_(1.0f),
direction_(1) {
state_->angle_ = 45.0f;
}
SpinningCube::~SpinningCube() {
if (!initialized_)
return;
if (state_->vbo_vertices_)
glDeleteBuffers(1, &state_->vbo_vertices_);
if (state_->vbo_indices_)
glDeleteBuffers(1, &state_->vbo_indices_);
if (state_->program_object_)
glDeleteProgram(state_->program_object_);
}
void SpinningCube::Init(uint32_t width, uint32_t height) {
width_ = width;
height_ = height;
const char vertext_shader_source[] =
"uniform mat4 u_mvpMatrix; \n"
"attribute vec4 a_position; \n"
"void main() \n"
"{ \n"
" gl_Position = u_mvpMatrix * a_position; \n"
"} \n";
const char fragment_shader_source[] =
"precision mediump float; \n"
"void main() \n"
"{ \n"
" gl_FragColor = vec4( 0.0, 1.0, 0.0, 1.0 ); \n"
"} \n";
state_->program_object_ = LoadProgram(
vertext_shader_source, fragment_shader_source);
state_->position_location_ = glGetAttribLocation(
state_->program_object_, "a_position");
state_->mvp_location_ = glGetUniformLocation(
state_->program_object_, "u_mvpMatrix");
state_->num_indices_ = GenerateCube(
&state_->vbo_vertices_, &state_->vbo_indices_);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
initialized_ = true;
}
void SpinningCube::OnGLContextLost() {
initialized_ = false;
height_ = 0;
width_ = 0;
state_->OnGLContextLost();
}
void SpinningCube::SetFlingMultiplier(float drag_distance,
float drag_time) {
fling_multiplier_ = RotationForDragDistance(drag_distance) /
RotationForTimeDelta(drag_time);
}
void SpinningCube::UpdateForTimeDelta(float delta_time) {
state_->angle_ += RotationForTimeDelta(delta_time) * fling_multiplier_;
if (state_->angle_ >= 360.0f)
state_->angle_ -= 360.0f;
if (fling_multiplier_ > 1.0f) {
fling_multiplier_ =
std::max(1.0f, fling_multiplier_ - (fling_multiplier_ - 1.0f) / 50);
}
Update();
}
void SpinningCube::UpdateForDragDistance(float distance) {
state_->angle_ += RotationForDragDistance(distance);
if (state_->angle_ >= 360.0f )
state_->angle_ -= 360.0f;
Update();
}
void SpinningCube::Draw() {
glViewport(0, 0, width_, height_);
glClear(GL_COLOR_BUFFER_BIT);
glUseProgram(state_->program_object_);
glBindBuffer(GL_ARRAY_BUFFER, state_->vbo_vertices_);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, state_->vbo_indices_);
glVertexAttribPointer(state_->position_location_,
3,
GL_FLOAT,
GL_FALSE, 3 * sizeof(GLfloat),
0);
glEnableVertexAttribArray(state_->position_location_);
glUniformMatrix4fv(state_->mvp_location_,
1,
GL_FALSE,
(GLfloat*) &state_->mvp_matrix_.m[0][0]);
glDrawElements(GL_TRIANGLES,
state_->num_indices_,
GL_UNSIGNED_SHORT,
0);
}
void SpinningCube::Update() {
float aspect = static_cast<GLfloat>(width_) / static_cast<GLfloat>(height_);
ESMatrix perspective;
perspective.LoadIdentity();
perspective.Perspective(60.0f, aspect, 1.0f, 20.0f );
ESMatrix modelview;
modelview.LoadIdentity();
modelview.Translate(0.0, 0.0, -2.0);
modelview.Rotate(state_->angle_ * direction_, 1.0, 0.0, 1.0);
state_->mvp_matrix_.Multiply(&modelview, &perspective);
}
}
}