This source file includes following definitions.
- moduleCompare
- trimWhite
- codesighs
- initOptions
- cleanOptions
- showHelp
- main
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <ctype.h>
#include <errno.h>
#define ERROR_REPORT(num, val, msg) fprintf(stderr, "error(%d):\t\"%s\"\t%s\n", (num), (val), (msg));
#define CLEANUP(ptr) do { if(NULL != ptr) { free(ptr); ptr = NULL; } } while(0)
typedef struct __struct_Options
{
const char* mProgramName;
FILE* mInput;
char* mInputName;
FILE* mOutput;
char* mOutputName;
int mHelp;
int mModules;
int mTotalOnly;
unsigned long mMinSize;
unsigned long mMaxSize;
char** mMatchScopes;
unsigned mMatchScopeCount;
char** mMatchClasses;
unsigned mMatchClassCount;
char** mMatchModules;
unsigned mMatchModuleCount;
char** mMatchSections;
unsigned mMatchSectionCount;
char** mMatchObjects;
unsigned mMatchObjectCount;
char** mMatchSymbols;
unsigned mMatchSymbolCount;
}
Options;
typedef struct __struct_Switch
{
const char* mLongName;
const char* mShortName;
int mHasValue;
const char* mValue;
const char* mDescription;
}
Switch;
#define DESC_NEWLINE "\n\t\t"
static Switch gInputSwitch = {"--input", "-i", 1, NULL, "Specify input file." DESC_NEWLINE "stdin is default."};
static Switch gOutputSwitch = {"--output", "-o", 1, NULL, "Specify output file." DESC_NEWLINE "Appends if file exists." DESC_NEWLINE "stdout is default."};
static Switch gHelpSwitch = {"--help", "-h", 0, NULL, "Information on usage."};
static Switch gModuleSwitch = {"--modules", "-m", 0, NULL, "Output individual module numbers as well."};
static Switch gTotalSwitch = {"--totalonly", "-t", 0, NULL, "Output only one number." DESC_NEWLINE "The total overall size." DESC_NEWLINE "Overrides other output options."};
static Switch gMinSize = {"--min-size", "-min", 1, NULL, "Only consider symbols equal to or greater than this size." DESC_NEWLINE "The default is 0x00000000."};
static Switch gMaxSize = {"--max-size", "-max", 1, NULL, "Only consider symbols equal to or smaller than this size." DESC_NEWLINE "The default is 0xFFFFFFFF."};
static Switch gMatchScope = {"--match-scope", "-msco", 1, NULL, "Only consider scopes that have a substring match." DESC_NEWLINE "Multiple uses allowed to specify a range of scopes," DESC_NEWLINE "though PUBLIC, STATIC, and UNDEF are your only choices."};
static Switch gMatchClass = {"--match-class", "-mcla", 1, NULL, "Only consider classes that have a substring match." DESC_NEWLINE "Multiple uses allowed to specify a range of classes," DESC_NEWLINE "though CODE and DATA are your only choices."};
static Switch gMatchModule = {"--match-module", "-mmod", 1, NULL, "Only consider modules that have a substring match." DESC_NEWLINE "Multiple uses allowed to specify an array of modules."};
static Switch gMatchSection = {"--match-section", "-msec", 1, NULL, "Only consider sections that have a substring match." DESC_NEWLINE "Multiple uses allowed to specify an array of sections." DESC_NEWLINE "Section is considered symbol type."};
static Switch gMatchObject = {"--match-object", "-mobj", 1, NULL, "Only consider objects that have a substring match." DESC_NEWLINE "Multiple uses allowed to specify an array of objects."};
static Switch gMatchSymbol = {"--match-symbol", "-msym", 1, NULL, "Only consider symbols that have a substring match." DESC_NEWLINE "Multiple uses allowed to specify an array of symbols."};
static Switch* gSwitches[] = {
&gInputSwitch,
&gOutputSwitch,
&gModuleSwitch,
&gTotalSwitch,
&gMinSize,
&gMaxSize,
&gMatchClass,
&gMatchScope,
&gMatchModule,
&gMatchSection,
&gMatchObject,
&gMatchSymbol,
&gHelpSwitch
};
typedef struct __struct_SizeStats
{
unsigned long mData;
unsigned long mCode;
}
SizeStats;
typedef struct __struct_ModuleStats
{
char* mModule;
SizeStats mSize;
}
ModuleStats;
typedef enum __enum_SegmentClass
{
CODE,
DATA
}
SegmentClass;
static int moduleCompare(const void* in1, const void* in2)
{
int retval = 0;
const ModuleStats* one = (const ModuleStats*)in1;
const ModuleStats* two = (const ModuleStats*)in2;
unsigned long oneSize = one->mSize.mCode + one->mSize.mData;
unsigned long twoSize = two->mSize.mCode + two->mSize.mData;
if(oneSize < twoSize)
{
retval = 1;
}
else if(oneSize > twoSize)
{
retval = -1;
}
return retval;
}
void trimWhite(char* inString)
{
int len = strlen(inString);
while(len)
{
len--;
if(isspace(*(inString + len)))
{
*(inString + len) = '\0';
}
else
{
break;
}
}
}
int codesighs(Options* inOptions)
{
int retval = 0;
char lineBuffer[0x1000];
int scanRes = 0;
unsigned long size;
char segClass[0x10];
char scope[0x10];
char module[0x100];
char segment[0x40];
char object[0x100];
char* symbol;
SizeStats overall;
ModuleStats* modules = NULL;
unsigned moduleCount = 0;
memset(&overall, 0, sizeof(overall));
while(0 == retval && NULL != fgets(lineBuffer, sizeof(lineBuffer), inOptions->mInput))
{
trimWhite(lineBuffer);
scanRes = sscanf(lineBuffer,
"%x\t%s\t%s\t%s\t%s\t%s\t",
(unsigned*)&size,
segClass,
scope,
module,
segment,
object);
if(6 == scanRes)
{
SegmentClass segmentClass = CODE;
symbol = strchr(lineBuffer, '\t') + 1;
if(0 == strcmp(segClass, "DATA"))
{
segmentClass = DATA;
}
else if(0 == strcmp(segClass, "CODE"))
{
segmentClass = CODE;
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, segClass, "Unable to determine segment class.");
}
if(0 == retval)
{
if(size < inOptions->mMinSize)
{
continue;
}
if(size > inOptions->mMaxSize)
{
continue;
}
if(0 != inOptions->mMatchClassCount)
{
unsigned loop = 0;
for(loop = 0; loop < inOptions->mMatchClassCount; loop++)
{
if(NULL != strstr(segClass, inOptions->mMatchClasses[loop]))
{
break;
}
}
if(loop == inOptions->mMatchClassCount)
{
continue;
}
}
if(0 != inOptions->mMatchScopeCount)
{
unsigned loop = 0;
for(loop = 0; loop < inOptions->mMatchScopeCount; loop++)
{
if(NULL != strstr(scope, inOptions->mMatchScopes[loop]))
{
break;
}
}
if(loop == inOptions->mMatchScopeCount)
{
continue;
}
}
if(0 != inOptions->mMatchModuleCount)
{
unsigned loop = 0;
for(loop = 0; loop < inOptions->mMatchModuleCount; loop++)
{
if(NULL != strstr(module, inOptions->mMatchModules[loop]))
{
break;
}
}
if(loop == inOptions->mMatchModuleCount)
{
continue;
}
}
if(0 != inOptions->mMatchSectionCount)
{
unsigned loop = 0;
for(loop = 0; loop < inOptions->mMatchSectionCount; loop++)
{
if(NULL != strstr(segment, inOptions->mMatchSections[loop]))
{
break;
}
}
if(loop == inOptions->mMatchSectionCount)
{
continue;
}
}
if(0 != inOptions->mMatchObjectCount)
{
unsigned loop = 0;
for(loop = 0; loop < inOptions->mMatchObjectCount; loop++)
{
if(NULL != strstr(object, inOptions->mMatchObjects[loop]))
{
break;
}
}
if(loop == inOptions->mMatchObjectCount)
{
continue;
}
}
if(0 != inOptions->mMatchSymbolCount)
{
unsigned loop = 0;
for(loop = 0; loop < inOptions->mMatchSymbolCount; loop++)
{
if(NULL != strstr(symbol, inOptions->mMatchSymbols[loop]))
{
break;
}
}
if(loop == inOptions->mMatchSymbolCount)
{
continue;
}
}
if(CODE == segmentClass)
{
overall.mCode += size;
}
else if(DATA == segmentClass)
{
overall.mData += size;
}
if(0 == inOptions->mTotalOnly)
{
if(inOptions->mModules)
{
unsigned index = 0;
for(index = 0; index < moduleCount; index++)
{
if(0 == strcmp(modules[index].mModule, module))
{
break;
}
}
if(index == moduleCount)
{
void* moved = NULL;
moved = realloc(modules, sizeof(ModuleStats) * (moduleCount + 1));
if(NULL != moved)
{
modules = (ModuleStats*)moved;
moduleCount++;
memset(modules + index, 0, sizeof(ModuleStats));
modules[index].mModule = strdup(module);
if(NULL == modules[index].mModule)
{
retval = __LINE__;
ERROR_REPORT(retval, module, "Unable to duplicate string.");
}
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, inOptions->mProgramName, "Unable to allocate module memory.");
}
}
if(0 == retval)
{
if(CODE == segmentClass)
{
modules[index].mSize.mCode += size;
}
else if(DATA == segmentClass)
{
modules[index].mSize.mData += size;
}
}
}
}
}
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, inOptions->mInputName, "Problem extracting values from file.");
}
}
if(0 == retval && 0 != ferror(inOptions->mInput))
{
retval = __LINE__;
ERROR_REPORT(retval, inOptions->mInputName, "Unable to read file.");
}
if(0 == retval)
{
if(inOptions->mTotalOnly)
{
fprintf(inOptions->mOutput, "%u\n", (unsigned)(overall.mCode + overall.mData));
}
else
{
fprintf(inOptions->mOutput, "Overall Size\n");
fprintf(inOptions->mOutput, "\tTotal:\t%10u\n", (unsigned)(overall.mCode + overall.mData));
fprintf(inOptions->mOutput, "\tCode:\t%10u\n", (unsigned)overall.mCode);
fprintf(inOptions->mOutput, "\tData:\t%10u\n", (unsigned)overall.mData);
}
if(inOptions->mModules && moduleCount)
{
unsigned loop = 0;
qsort(modules, (size_t)moduleCount, sizeof(ModuleStats), moduleCompare);
for(loop = 0; loop < moduleCount; loop++)
{
fprintf(inOptions->mOutput, "\n");
fprintf(inOptions->mOutput, "%s\n", modules[loop].mModule);
fprintf(inOptions->mOutput, "\tTotal:\t%10u\n", (unsigned)(modules[loop].mSize.mCode + modules[loop].mSize.mData));
fprintf(inOptions->mOutput, "\tCode:\t%10u\n", (unsigned)modules[loop].mSize.mCode);
fprintf(inOptions->mOutput, "\tData:\t%10u\n", (unsigned)modules[loop].mSize.mData);
CLEANUP(modules[loop].mModule);
}
CLEANUP(modules);
moduleCount = 0;
}
}
return retval;
}
int initOptions(Options* outOptions, int inArgc, char** inArgv)
{
int retval = 0;
int loop = 0;
int switchLoop = 0;
int match = 0;
const int switchCount = sizeof(gSwitches) / sizeof(gSwitches[0]);
Switch* current = NULL;
memset(outOptions, 0, sizeof(Options));
outOptions->mProgramName = inArgv[0];
outOptions->mInput = stdin;
outOptions->mInputName = strdup("stdin");
outOptions->mOutput = stdout;
outOptions->mOutputName = strdup("stdout");
outOptions->mMaxSize = 0xFFFFFFFFU;
if(NULL == outOptions->mOutputName || NULL == outOptions->mInputName)
{
retval = __LINE__;
ERROR_REPORT(retval, "stdin/stdout", "Unable to strdup.");
}
for(loop = 1; loop < inArgc && 0 == retval; loop++)
{
match = 0;
current = NULL;
for(switchLoop = 0; switchLoop < switchCount && 0 == retval; switchLoop++)
{
if(0 == strcmp(gSwitches[switchLoop]->mLongName, inArgv[loop]))
{
match = __LINE__;
}
else if(0 == strcmp(gSwitches[switchLoop]->mShortName, inArgv[loop]))
{
match = __LINE__;
}
if(match)
{
if(gSwitches[switchLoop]->mHasValue)
{
if(loop + 1 < inArgc)
{
loop++;
current = gSwitches[switchLoop];
current->mValue = inArgv[loop];
}
}
else
{
current = gSwitches[switchLoop];
}
break;
}
}
if(0 == match)
{
outOptions->mHelp = __LINE__;
retval = __LINE__;
ERROR_REPORT(retval, inArgv[loop], "Unknown command line switch.");
}
else if(NULL == current)
{
outOptions->mHelp = __LINE__;
retval = __LINE__;
ERROR_REPORT(retval, inArgv[loop], "Command line switch requires a value.");
}
else
{
if(current == &gInputSwitch)
{
CLEANUP(outOptions->mInputName);
if(NULL != outOptions->mInput && stdin != outOptions->mInput)
{
fclose(outOptions->mInput);
outOptions->mInput = NULL;
}
outOptions->mInput = fopen(current->mValue, "r");
if(NULL == outOptions->mInput)
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to open input file.");
}
else
{
outOptions->mInputName = strdup(current->mValue);
if(NULL == outOptions->mInputName)
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to strdup.");
}
}
}
else if(current == &gOutputSwitch)
{
CLEANUP(outOptions->mOutputName);
if(NULL != outOptions->mOutput && stdout != outOptions->mOutput)
{
fclose(outOptions->mOutput);
outOptions->mOutput = NULL;
}
outOptions->mOutput = fopen(current->mValue, "a");
if(NULL == outOptions->mOutput)
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to open output file.");
}
else
{
outOptions->mOutputName = strdup(current->mValue);
if(NULL == outOptions->mOutputName)
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to strdup.");
}
}
}
else if(current == &gHelpSwitch)
{
outOptions->mHelp = __LINE__;
}
else if(current == &gModuleSwitch)
{
outOptions->mModules = __LINE__;
}
else if(current == &gTotalSwitch)
{
outOptions->mTotalOnly = __LINE__;
}
else if(current == &gMinSize)
{
unsigned long arg = 0;
char* endScan = NULL;
errno = 0;
arg = strtoul(current->mValue, &endScan, 0);
if(0 == errno && endScan != current->mValue)
{
outOptions->mMinSize = arg;
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to convert to a number.");
}
}
else if(current == &gMaxSize)
{
unsigned long arg = 0;
char* endScan = NULL;
errno = 0;
arg = strtoul(current->mValue, &endScan, 0);
if(0 == errno && endScan != current->mValue)
{
outOptions->mMaxSize = arg;
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to convert to a number.");
}
}
else if(current == &gMatchClass)
{
char* dupMatch = NULL;
dupMatch = strdup(current->mValue);
if(NULL != dupMatch)
{
void* moved = NULL;
moved = realloc(outOptions->mMatchClasses, sizeof(char*) * (outOptions->mMatchClassCount + 1));
if(NULL != moved)
{
outOptions->mMatchClasses = (char**)moved;
outOptions->mMatchClasses[outOptions->mMatchClassCount] = dupMatch;
outOptions->mMatchClassCount++;
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mLongName, "Unable to expand array.");
}
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to duplicate string.");
}
}
else if(current == &gMatchScope)
{
char* dupMatch = NULL;
dupMatch = strdup(current->mValue);
if(NULL != dupMatch)
{
void* moved = NULL;
moved = realloc(outOptions->mMatchScopes, sizeof(char*) * (outOptions->mMatchScopeCount + 1));
if(NULL != moved)
{
outOptions->mMatchScopes = (char**)moved;
outOptions->mMatchScopes[outOptions->mMatchScopeCount] = dupMatch;
outOptions->mMatchScopeCount++;
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mLongName, "Unable to expand array.");
}
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to duplicate string.");
}
}
else if(current == &gMatchModule)
{
char* dupMatch = NULL;
dupMatch = strdup(current->mValue);
if(NULL != dupMatch)
{
void* moved = NULL;
moved = realloc(outOptions->mMatchModules, sizeof(char*) * (outOptions->mMatchModuleCount + 1));
if(NULL != moved)
{
outOptions->mMatchModules = (char**)moved;
outOptions->mMatchModules[outOptions->mMatchModuleCount] = dupMatch;
outOptions->mMatchModuleCount++;
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mLongName, "Unable to expand array.");
}
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to duplicate string.");
}
}
else if(current == &gMatchSection)
{
char* dupMatch = NULL;
dupMatch = strdup(current->mValue);
if(NULL != dupMatch)
{
void* moved = NULL;
moved = realloc(outOptions->mMatchSections, sizeof(char*) * (outOptions->mMatchSectionCount + 1));
if(NULL != moved)
{
outOptions->mMatchSections = (char**)moved;
outOptions->mMatchSections[outOptions->mMatchSectionCount] = dupMatch;
outOptions->mMatchSectionCount++;
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mLongName, "Unable to expand array.");
}
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to duplicate string.");
}
}
else if(current == &gMatchObject)
{
char* dupMatch = NULL;
dupMatch = strdup(current->mValue);
if(NULL != dupMatch)
{
void* moved = NULL;
moved = realloc(outOptions->mMatchObjects, sizeof(char*) * (outOptions->mMatchObjectCount + 1));
if(NULL != moved)
{
outOptions->mMatchObjects = (char**)moved;
outOptions->mMatchObjects[outOptions->mMatchObjectCount] = dupMatch;
outOptions->mMatchObjectCount++;
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mLongName, "Unable to expand array.");
}
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to duplicate string.");
}
}
else if(current == &gMatchSymbol)
{
char* dupMatch = NULL;
dupMatch = strdup(current->mValue);
if(NULL != dupMatch)
{
void* moved = NULL;
moved = realloc(outOptions->mMatchSymbols, sizeof(char*) * (outOptions->mMatchSymbolCount + 1));
if(NULL != moved)
{
outOptions->mMatchSymbols = (char**)moved;
outOptions->mMatchSymbols[outOptions->mMatchSymbolCount] = dupMatch;
outOptions->mMatchSymbolCount++;
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mLongName, "Unable to expand array.");
}
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mValue, "Unable to duplicate string.");
}
}
else
{
retval = __LINE__;
ERROR_REPORT(retval, current->mLongName, "No handler for command line switch.");
}
}
}
return retval;
}
void cleanOptions(Options* inOptions)
{
unsigned loop = 0;
CLEANUP(inOptions->mInputName);
if(NULL != inOptions->mInput && stdin != inOptions->mInput)
{
fclose(inOptions->mInput);
}
CLEANUP(inOptions->mOutputName);
if(NULL != inOptions->mOutput && stdout != inOptions->mOutput)
{
fclose(inOptions->mOutput);
}
for(loop = 0; loop < inOptions->mMatchClassCount; loop++)
{
CLEANUP(inOptions->mMatchClasses[loop]);
}
CLEANUP(inOptions->mMatchClasses);
for(loop = 0; loop < inOptions->mMatchScopeCount; loop++)
{
CLEANUP(inOptions->mMatchScopes[loop]);
}
CLEANUP(inOptions->mMatchScopes);
for(loop = 0; loop < inOptions->mMatchModuleCount; loop++)
{
CLEANUP(inOptions->mMatchModules[loop]);
}
CLEANUP(inOptions->mMatchModules);
for(loop = 0; loop < inOptions->mMatchSectionCount; loop++)
{
CLEANUP(inOptions->mMatchSections[loop]);
}
CLEANUP(inOptions->mMatchSections);
for(loop = 0; loop < inOptions->mMatchObjectCount; loop++)
{
CLEANUP(inOptions->mMatchObjects[loop]);
}
CLEANUP(inOptions->mMatchObjects);
for(loop = 0; loop < inOptions->mMatchSymbolCount; loop++)
{
CLEANUP(inOptions->mMatchSymbols[loop]);
}
CLEANUP(inOptions->mMatchSymbols);
memset(inOptions, 0, sizeof(Options));
}
void showHelp(Options* inOptions)
{
int loop = 0;
const int switchCount = sizeof(gSwitches) / sizeof(gSwitches[0]);
const char* valueText = NULL;
printf("usage:\t%s [arguments]\n", inOptions->mProgramName);
printf("\n");
printf("arguments:\n");
for(loop = 0; loop < switchCount; loop++)
{
if(gSwitches[loop]->mHasValue)
{
valueText = " <value>";
}
else
{
valueText = "";
}
printf("\t%s%s\n", gSwitches[loop]->mLongName, valueText);
printf("\t %s%s", gSwitches[loop]->mShortName, valueText);
printf(DESC_NEWLINE "%s\n\n", gSwitches[loop]->mDescription);
}
printf("This tool takes a tsv file and reports composite code and data sizes.\n");
}
int main(int inArgc, char** inArgv)
{
int retval = 0;
Options options;
retval = initOptions(&options, inArgc, inArgv);
if(options.mHelp)
{
showHelp(&options);
}
else if(0 == retval)
{
retval = codesighs(&options);
}
cleanOptions(&options);
return retval;
}