root/third_party/protobuf/java/src/main/java/com/google/protobuf/CodedInputStream.java

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. newInstance
  2. newInstance
  3. newInstance
  4. readTag
  5. checkLastTagWas
  6. skipField
  7. skipMessage
  8. readDouble
  9. readFloat
  10. readUInt64
  11. readInt64
  12. readInt32
  13. readFixed64
  14. readFixed32
  15. readBool
  16. readString
  17. readGroup
  18. readGroup
  19. readUnknownGroup
  20. readMessage
  21. readMessage
  22. readBytes
  23. readUInt32
  24. readEnum
  25. readSFixed32
  26. readSFixed64
  27. readSInt32
  28. readSInt64
  29. readRawVarint32
  30. readRawVarint32
  31. readRawVarint32
  32. readRawVarint64
  33. readRawLittleEndian32
  34. readRawLittleEndian64
  35. decodeZigZag32
  36. decodeZigZag64
  37. setRecursionLimit
  38. setSizeLimit
  39. resetSizeCounter
  40. pushLimit
  41. recomputeBufferSizeAfterLimit
  42. popLimit
  43. getBytesUntilLimit
  44. isAtEnd
  45. getTotalBytesRead
  46. refillBuffer
  47. readRawByte
  48. readRawBytes
  49. skipRawBytes

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package com.google.protobuf;

import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;

/**
 * Reads and decodes protocol message fields.
 *
 * This class contains two kinds of methods:  methods that read specific
 * protocol message constructs and field types (e.g. {@link #readTag()} and
 * {@link #readInt32()}) and methods that read low-level values (e.g.
 * {@link #readRawVarint32()} and {@link #readRawBytes}).  If you are reading
 * encoded protocol messages, you should use the former methods, but if you are
 * reading some other format of your own design, use the latter.
 *
 * @author kenton@google.com Kenton Varda
 */
public final class CodedInputStream {
  /**
   * Create a new CodedInputStream wrapping the given InputStream.
   */
  public static CodedInputStream newInstance(final InputStream input) {
    return new CodedInputStream(input);
  }

  /**
   * Create a new CodedInputStream wrapping the given byte array.
   */
  public static CodedInputStream newInstance(final byte[] buf) {
    return newInstance(buf, 0, buf.length);
  }

  /**
   * Create a new CodedInputStream wrapping the given byte array slice.
   */
  public static CodedInputStream newInstance(final byte[] buf, final int off,
                                             final int len) {
    CodedInputStream result = new CodedInputStream(buf, off, len);
    try {
      // Some uses of CodedInputStream can be more efficient if they know
      // exactly how many bytes are available.  By pushing the end point of the
      // buffer as a limit, we allow them to get this information via
      // getBytesUntilLimit().  Pushing a limit that we know is at the end of
      // the stream can never hurt, since we can never past that point anyway.
      result.pushLimit(len);
    } catch (InvalidProtocolBufferException ex) {
      // The only reason pushLimit() might throw an exception here is if len
      // is negative. Normally pushLimit()'s parameter comes directly off the
      // wire, so it's important to catch exceptions in case of corrupt or
      // malicious data. However, in this case, we expect that len is not a
      // user-supplied value, so we can assume that it being negative indicates
      // a programming error. Therefore, throwing an unchecked exception is
      // appropriate.
      throw new IllegalArgumentException(ex);
    }
    return result;
  }

  // -----------------------------------------------------------------

  /**
   * Attempt to read a field tag, returning zero if we have reached EOF.
   * Protocol message parsers use this to read tags, since a protocol message
   * may legally end wherever a tag occurs, and zero is not a valid tag number.
   */
  public int readTag() throws IOException {
    if (isAtEnd()) {
      lastTag = 0;
      return 0;
    }

    lastTag = readRawVarint32();
    if (WireFormat.getTagFieldNumber(lastTag) == 0) {
      // If we actually read zero (or any tag number corresponding to field
      // number zero), that's not a valid tag.
      throw InvalidProtocolBufferException.invalidTag();
    }
    return lastTag;
  }

  /**
   * Verifies that the last call to readTag() returned the given tag value.
   * This is used to verify that a nested group ended with the correct
   * end tag.
   *
   * @throws InvalidProtocolBufferException {@code value} does not match the
   *                                        last tag.
   */
  public void checkLastTagWas(final int value)
                              throws InvalidProtocolBufferException {
    if (lastTag != value) {
      throw InvalidProtocolBufferException.invalidEndTag();
    }
  }

  /**
   * Reads and discards a single field, given its tag value.
   *
   * @return {@code false} if the tag is an endgroup tag, in which case
   *         nothing is skipped.  Otherwise, returns {@code true}.
   */
  public boolean skipField(final int tag) throws IOException {
    switch (WireFormat.getTagWireType(tag)) {
      case WireFormat.WIRETYPE_VARINT:
        readInt32();
        return true;
      case WireFormat.WIRETYPE_FIXED64:
        readRawLittleEndian64();
        return true;
      case WireFormat.WIRETYPE_LENGTH_DELIMITED:
        skipRawBytes(readRawVarint32());
        return true;
      case WireFormat.WIRETYPE_START_GROUP:
        skipMessage();
        checkLastTagWas(
          WireFormat.makeTag(WireFormat.getTagFieldNumber(tag),
                             WireFormat.WIRETYPE_END_GROUP));
        return true;
      case WireFormat.WIRETYPE_END_GROUP:
        return false;
      case WireFormat.WIRETYPE_FIXED32:
        readRawLittleEndian32();
        return true;
      default:
        throw InvalidProtocolBufferException.invalidWireType();
    }
  }

  /**
   * Reads and discards an entire message.  This will read either until EOF
   * or until an endgroup tag, whichever comes first.
   */
  public void skipMessage() throws IOException {
    while (true) {
      final int tag = readTag();
      if (tag == 0 || !skipField(tag)) {
        return;
      }
    }
  }

  // -----------------------------------------------------------------

  /** Read a {@code double} field value from the stream. */
  public double readDouble() throws IOException {
    return Double.longBitsToDouble(readRawLittleEndian64());
  }

  /** Read a {@code float} field value from the stream. */
  public float readFloat() throws IOException {
    return Float.intBitsToFloat(readRawLittleEndian32());
  }

  /** Read a {@code uint64} field value from the stream. */
  public long readUInt64() throws IOException {
    return readRawVarint64();
  }

  /** Read an {@code int64} field value from the stream. */
  public long readInt64() throws IOException {
    return readRawVarint64();
  }

  /** Read an {@code int32} field value from the stream. */
  public int readInt32() throws IOException {
    return readRawVarint32();
  }

  /** Read a {@code fixed64} field value from the stream. */
  public long readFixed64() throws IOException {
    return readRawLittleEndian64();
  }

  /** Read a {@code fixed32} field value from the stream. */
  public int readFixed32() throws IOException {
    return readRawLittleEndian32();
  }

  /** Read a {@code bool} field value from the stream. */
  public boolean readBool() throws IOException {
    return readRawVarint32() != 0;
  }

  /** Read a {@code string} field value from the stream. */
  public String readString() throws IOException {
    final int size = readRawVarint32();
    if (size <= (bufferSize - bufferPos) && size > 0) {
      // Fast path:  We already have the bytes in a contiguous buffer, so
      //   just copy directly from it.
      final String result = new String(buffer, bufferPos, size, "UTF-8");
      bufferPos += size;
      return result;
    } else {
      // Slow path:  Build a byte array first then copy it.
      return new String(readRawBytes(size), "UTF-8");
    }
  }

  /** Read a {@code group} field value from the stream. */
  public void readGroup(final int fieldNumber,
                        final MessageLite.Builder builder,
                        final ExtensionRegistryLite extensionRegistry)
      throws IOException {
    if (recursionDepth >= recursionLimit) {
      throw InvalidProtocolBufferException.recursionLimitExceeded();
    }
    ++recursionDepth;
    builder.mergeFrom(this, extensionRegistry);
    checkLastTagWas(
      WireFormat.makeTag(fieldNumber, WireFormat.WIRETYPE_END_GROUP));
    --recursionDepth;
  }

  /** Read a {@code group} field value from the stream. */
  public <T extends MessageLite> T readGroup(
      final int fieldNumber,
      final Parser<T> parser,
      final ExtensionRegistryLite extensionRegistry)
      throws IOException {
    if (recursionDepth >= recursionLimit) {
      throw InvalidProtocolBufferException.recursionLimitExceeded();
    }
    ++recursionDepth;
    T result = parser.parsePartialFrom(this, extensionRegistry);
    checkLastTagWas(
      WireFormat.makeTag(fieldNumber, WireFormat.WIRETYPE_END_GROUP));
    --recursionDepth;
    return result;
  }

  /**
   * Reads a {@code group} field value from the stream and merges it into the
   * given {@link UnknownFieldSet}.
   *
   * @deprecated UnknownFieldSet.Builder now implements MessageLite.Builder, so
   *             you can just call {@link #readGroup}.
   */
  @Deprecated
  public void readUnknownGroup(final int fieldNumber,
                               final MessageLite.Builder builder)
      throws IOException {
    // We know that UnknownFieldSet will ignore any ExtensionRegistry so it
    // is safe to pass null here.  (We can't call
    // ExtensionRegistry.getEmptyRegistry() because that would make this
    // class depend on ExtensionRegistry, which is not part of the lite
    // library.)
    readGroup(fieldNumber, builder, null);
  }

  /** Read an embedded message field value from the stream. */
  public void readMessage(final MessageLite.Builder builder,
                          final ExtensionRegistryLite extensionRegistry)
      throws IOException {
    final int length = readRawVarint32();
    if (recursionDepth >= recursionLimit) {
      throw InvalidProtocolBufferException.recursionLimitExceeded();
    }
    final int oldLimit = pushLimit(length);
    ++recursionDepth;
    builder.mergeFrom(this, extensionRegistry);
    checkLastTagWas(0);
    --recursionDepth;
    popLimit(oldLimit);
  }

  /** Read an embedded message field value from the stream. */
  public <T extends MessageLite> T readMessage(
      final Parser<T> parser,
      final ExtensionRegistryLite extensionRegistry)
      throws IOException {
    int length = readRawVarint32();
    if (recursionDepth >= recursionLimit) {
      throw InvalidProtocolBufferException.recursionLimitExceeded();
    }
    final int oldLimit = pushLimit(length);
    ++recursionDepth;
    T result = parser.parsePartialFrom(this, extensionRegistry);
    checkLastTagWas(0);
    --recursionDepth;
    popLimit(oldLimit);
    return result;
  }

  /** Read a {@code bytes} field value from the stream. */
  public ByteString readBytes() throws IOException {
    final int size = readRawVarint32();
    if (size == 0) {
      return ByteString.EMPTY;
    } else if (size <= (bufferSize - bufferPos) && size > 0) {
      // Fast path:  We already have the bytes in a contiguous buffer, so
      //   just copy directly from it.
      final ByteString result = ByteString.copyFrom(buffer, bufferPos, size);
      bufferPos += size;
      return result;
    } else {
      // Slow path:  Build a byte array first then copy it.
      return ByteString.copyFrom(readRawBytes(size));
    }
  }

  /** Read a {@code uint32} field value from the stream. */
  public int readUInt32() throws IOException {
    return readRawVarint32();
  }

  /**
   * Read an enum field value from the stream.  Caller is responsible
   * for converting the numeric value to an actual enum.
   */
  public int readEnum() throws IOException {
    return readRawVarint32();
  }

  /** Read an {@code sfixed32} field value from the stream. */
  public int readSFixed32() throws IOException {
    return readRawLittleEndian32();
  }

  /** Read an {@code sfixed64} field value from the stream. */
  public long readSFixed64() throws IOException {
    return readRawLittleEndian64();
  }

  /** Read an {@code sint32} field value from the stream. */
  public int readSInt32() throws IOException {
    return decodeZigZag32(readRawVarint32());
  }

  /** Read an {@code sint64} field value from the stream. */
  public long readSInt64() throws IOException {
    return decodeZigZag64(readRawVarint64());
  }

  // =================================================================

  /**
   * Read a raw Varint from the stream.  If larger than 32 bits, discard the
   * upper bits.
   */
  public int readRawVarint32() throws IOException {
    byte tmp = readRawByte();
    if (tmp >= 0) {
      return tmp;
    }
    int result = tmp & 0x7f;
    if ((tmp = readRawByte()) >= 0) {
      result |= tmp << 7;
    } else {
      result |= (tmp & 0x7f) << 7;
      if ((tmp = readRawByte()) >= 0) {
        result |= tmp << 14;
      } else {
        result |= (tmp & 0x7f) << 14;
        if ((tmp = readRawByte()) >= 0) {
          result |= tmp << 21;
        } else {
          result |= (tmp & 0x7f) << 21;
          result |= (tmp = readRawByte()) << 28;
          if (tmp < 0) {
            // Discard upper 32 bits.
            for (int i = 0; i < 5; i++) {
              if (readRawByte() >= 0) {
                return result;
              }
            }
            throw InvalidProtocolBufferException.malformedVarint();
          }
        }
      }
    }
    return result;
  }

  /**
   * Reads a varint from the input one byte at a time, so that it does not
   * read any bytes after the end of the varint.  If you simply wrapped the
   * stream in a CodedInputStream and used {@link #readRawVarint32(InputStream)}
   * then you would probably end up reading past the end of the varint since
   * CodedInputStream buffers its input.
   */
  static int readRawVarint32(final InputStream input) throws IOException {
    final int firstByte = input.read();
    if (firstByte == -1) {
      throw InvalidProtocolBufferException.truncatedMessage();
    }
    return readRawVarint32(firstByte, input);
  }

  /**
   * Like {@link #readRawVarint32(InputStream)}, but expects that the caller
   * has already read one byte.  This allows the caller to determine if EOF
   * has been reached before attempting to read.
   */
  public static int readRawVarint32(
      final int firstByte, final InputStream input) throws IOException {
    if ((firstByte & 0x80) == 0) {
      return firstByte;
    }

    int result = firstByte & 0x7f;
    int offset = 7;
    for (; offset < 32; offset += 7) {
      final int b = input.read();
      if (b == -1) {
        throw InvalidProtocolBufferException.truncatedMessage();
      }
      result |= (b & 0x7f) << offset;
      if ((b & 0x80) == 0) {
        return result;
      }
    }
    // Keep reading up to 64 bits.
    for (; offset < 64; offset += 7) {
      final int b = input.read();
      if (b == -1) {
        throw InvalidProtocolBufferException.truncatedMessage();
      }
      if ((b & 0x80) == 0) {
        return result;
      }
    }
    throw InvalidProtocolBufferException.malformedVarint();
  }

  /** Read a raw Varint from the stream. */
  public long readRawVarint64() throws IOException {
    int shift = 0;
    long result = 0;
    while (shift < 64) {
      final byte b = readRawByte();
      result |= (long)(b & 0x7F) << shift;
      if ((b & 0x80) == 0) {
        return result;
      }
      shift += 7;
    }
    throw InvalidProtocolBufferException.malformedVarint();
  }

  /** Read a 32-bit little-endian integer from the stream. */
  public int readRawLittleEndian32() throws IOException {
    final byte b1 = readRawByte();
    final byte b2 = readRawByte();
    final byte b3 = readRawByte();
    final byte b4 = readRawByte();
    return (((int)b1 & 0xff)      ) |
           (((int)b2 & 0xff) <<  8) |
           (((int)b3 & 0xff) << 16) |
           (((int)b4 & 0xff) << 24);
  }

  /** Read a 64-bit little-endian integer from the stream. */
  public long readRawLittleEndian64() throws IOException {
    final byte b1 = readRawByte();
    final byte b2 = readRawByte();
    final byte b3 = readRawByte();
    final byte b4 = readRawByte();
    final byte b5 = readRawByte();
    final byte b6 = readRawByte();
    final byte b7 = readRawByte();
    final byte b8 = readRawByte();
    return (((long)b1 & 0xff)      ) |
           (((long)b2 & 0xff) <<  8) |
           (((long)b3 & 0xff) << 16) |
           (((long)b4 & 0xff) << 24) |
           (((long)b5 & 0xff) << 32) |
           (((long)b6 & 0xff) << 40) |
           (((long)b7 & 0xff) << 48) |
           (((long)b8 & 0xff) << 56);
  }

  /**
   * Decode a ZigZag-encoded 32-bit value.  ZigZag encodes signed integers
   * into values that can be efficiently encoded with varint.  (Otherwise,
   * negative values must be sign-extended to 64 bits to be varint encoded,
   * thus always taking 10 bytes on the wire.)
   *
   * @param n An unsigned 32-bit integer, stored in a signed int because
   *          Java has no explicit unsigned support.
   * @return A signed 32-bit integer.
   */
  public static int decodeZigZag32(final int n) {
    return (n >>> 1) ^ -(n & 1);
  }

  /**
   * Decode a ZigZag-encoded 64-bit value.  ZigZag encodes signed integers
   * into values that can be efficiently encoded with varint.  (Otherwise,
   * negative values must be sign-extended to 64 bits to be varint encoded,
   * thus always taking 10 bytes on the wire.)
   *
   * @param n An unsigned 64-bit integer, stored in a signed int because
   *          Java has no explicit unsigned support.
   * @return A signed 64-bit integer.
   */
  public static long decodeZigZag64(final long n) {
    return (n >>> 1) ^ -(n & 1);
  }

  // -----------------------------------------------------------------

  private final byte[] buffer;
  private int bufferSize;
  private int bufferSizeAfterLimit;
  private int bufferPos;
  private final InputStream input;
  private int lastTag;

  /**
   * The total number of bytes read before the current buffer.  The total
   * bytes read up to the current position can be computed as
   * {@code totalBytesRetired + bufferPos}.  This value may be negative if
   * reading started in the middle of the current buffer (e.g. if the
   * constructor that takes a byte array and an offset was used).
   */
  private int totalBytesRetired;

  /** The absolute position of the end of the current message. */
  private int currentLimit = Integer.MAX_VALUE;

  /** See setRecursionLimit() */
  private int recursionDepth;
  private int recursionLimit = DEFAULT_RECURSION_LIMIT;

  /** See setSizeLimit() */
  private int sizeLimit = DEFAULT_SIZE_LIMIT;

  private static final int DEFAULT_RECURSION_LIMIT = 64;
  private static final int DEFAULT_SIZE_LIMIT = 64 << 20;  // 64MB
  private static final int BUFFER_SIZE = 4096;

  private CodedInputStream(final byte[] buffer, final int off, final int len) {
    this.buffer = buffer;
    bufferSize = off + len;
    bufferPos = off;
    totalBytesRetired = -off;
    input = null;
  }

  private CodedInputStream(final InputStream input) {
    buffer = new byte[BUFFER_SIZE];
    bufferSize = 0;
    bufferPos = 0;
    totalBytesRetired = 0;
    this.input = input;
  }

  /**
   * Set the maximum message recursion depth.  In order to prevent malicious
   * messages from causing stack overflows, {@code CodedInputStream} limits
   * how deeply messages may be nested.  The default limit is 64.
   *
   * @return the old limit.
   */
  public int setRecursionLimit(final int limit) {
    if (limit < 0) {
      throw new IllegalArgumentException(
        "Recursion limit cannot be negative: " + limit);
    }
    final int oldLimit = recursionLimit;
    recursionLimit = limit;
    return oldLimit;
  }

  /**
   * Set the maximum message size.  In order to prevent malicious
   * messages from exhausting memory or causing integer overflows,
   * {@code CodedInputStream} limits how large a message may be.
   * The default limit is 64MB.  You should set this limit as small
   * as you can without harming your app's functionality.  Note that
   * size limits only apply when reading from an {@code InputStream}, not
   * when constructed around a raw byte array (nor with
   * {@link ByteString#newCodedInput}).
   * <p>
   * If you want to read several messages from a single CodedInputStream, you
   * could call {@link #resetSizeCounter()} after each one to avoid hitting the
   * size limit.
   *
   * @return the old limit.
   */
  public int setSizeLimit(final int limit) {
    if (limit < 0) {
      throw new IllegalArgumentException(
        "Size limit cannot be negative: " + limit);
    }
    final int oldLimit = sizeLimit;
    sizeLimit = limit;
    return oldLimit;
  }

  /**
   * Resets the current size counter to zero (see {@link #setSizeLimit(int)}).
   */
  public void resetSizeCounter() {
    totalBytesRetired = -bufferPos;
  }

  /**
   * Sets {@code currentLimit} to (current position) + {@code byteLimit}.  This
   * is called when descending into a length-delimited embedded message.
   *
   * <p>Note that {@code pushLimit()} does NOT affect how many bytes the
   * {@code CodedInputStream} reads from an underlying {@code InputStream} when
   * refreshing its buffer.  If you need to prevent reading past a certain
   * point in the underlying {@code InputStream} (e.g. because you expect it to
   * contain more data after the end of the message which you need to handle
   * differently) then you must place a wrapper around your {@code InputStream}
   * which limits the amount of data that can be read from it.
   *
   * @return the old limit.
   */
  public int pushLimit(int byteLimit) throws InvalidProtocolBufferException {
    if (byteLimit < 0) {
      throw InvalidProtocolBufferException.negativeSize();
    }
    byteLimit += totalBytesRetired + bufferPos;
    final int oldLimit = currentLimit;
    if (byteLimit > oldLimit) {
      throw InvalidProtocolBufferException.truncatedMessage();
    }
    currentLimit = byteLimit;

    recomputeBufferSizeAfterLimit();

    return oldLimit;
  }

  private void recomputeBufferSizeAfterLimit() {
    bufferSize += bufferSizeAfterLimit;
    final int bufferEnd = totalBytesRetired + bufferSize;
    if (bufferEnd > currentLimit) {
      // Limit is in current buffer.
      bufferSizeAfterLimit = bufferEnd - currentLimit;
      bufferSize -= bufferSizeAfterLimit;
    } else {
      bufferSizeAfterLimit = 0;
    }
  }

  /**
   * Discards the current limit, returning to the previous limit.
   *
   * @param oldLimit The old limit, as returned by {@code pushLimit}.
   */
  public void popLimit(final int oldLimit) {
    currentLimit = oldLimit;
    recomputeBufferSizeAfterLimit();
  }

  /**
   * Returns the number of bytes to be read before the current limit.
   * If no limit is set, returns -1.
   */
  public int getBytesUntilLimit() {
    if (currentLimit == Integer.MAX_VALUE) {
      return -1;
    }

    final int currentAbsolutePosition = totalBytesRetired + bufferPos;
    return currentLimit - currentAbsolutePosition;
  }

  /**
   * Returns true if the stream has reached the end of the input.  This is the
   * case if either the end of the underlying input source has been reached or
   * if the stream has reached a limit created using {@link #pushLimit(int)}.
   */
  public boolean isAtEnd() throws IOException {
    return bufferPos == bufferSize && !refillBuffer(false);
  }

  /**
   * The total bytes read up to the current position. Calling
   * {@link #resetSizeCounter()} resets this value to zero.
   */
  public int getTotalBytesRead() {
      return totalBytesRetired + bufferPos;
  }

  /**
   * Called with {@code this.buffer} is empty to read more bytes from the
   * input.  If {@code mustSucceed} is true, refillBuffer() guarantees that
   * either there will be at least one byte in the buffer when it returns
   * or it will throw an exception.  If {@code mustSucceed} is false,
   * refillBuffer() returns false if no more bytes were available.
   */
  private boolean refillBuffer(final boolean mustSucceed) throws IOException {
    if (bufferPos < bufferSize) {
      throw new IllegalStateException(
        "refillBuffer() called when buffer wasn't empty.");
    }

    if (totalBytesRetired + bufferSize == currentLimit) {
      // Oops, we hit a limit.
      if (mustSucceed) {
        throw InvalidProtocolBufferException.truncatedMessage();
      } else {
        return false;
      }
    }

    totalBytesRetired += bufferSize;

    bufferPos = 0;
    bufferSize = (input == null) ? -1 : input.read(buffer);
    if (bufferSize == 0 || bufferSize < -1) {
      throw new IllegalStateException(
          "InputStream#read(byte[]) returned invalid result: " + bufferSize +
          "\nThe InputStream implementation is buggy.");
    }
    if (bufferSize == -1) {
      bufferSize = 0;
      if (mustSucceed) {
        throw InvalidProtocolBufferException.truncatedMessage();
      } else {
        return false;
      }
    } else {
      recomputeBufferSizeAfterLimit();
      final int totalBytesRead =
        totalBytesRetired + bufferSize + bufferSizeAfterLimit;
      if (totalBytesRead > sizeLimit || totalBytesRead < 0) {
        throw InvalidProtocolBufferException.sizeLimitExceeded();
      }
      return true;
    }
  }

  /**
   * Read one byte from the input.
   *
   * @throws InvalidProtocolBufferException The end of the stream or the current
   *                                        limit was reached.
   */
  public byte readRawByte() throws IOException {
    if (bufferPos == bufferSize) {
      refillBuffer(true);
    }
    return buffer[bufferPos++];
  }

  /**
   * Read a fixed size of bytes from the input.
   *
   * @throws InvalidProtocolBufferException The end of the stream or the current
   *                                        limit was reached.
   */
  public byte[] readRawBytes(final int size) throws IOException {
    if (size < 0) {
      throw InvalidProtocolBufferException.negativeSize();
    }

    if (totalBytesRetired + bufferPos + size > currentLimit) {
      // Read to the end of the stream anyway.
      skipRawBytes(currentLimit - totalBytesRetired - bufferPos);
      // Then fail.
      throw InvalidProtocolBufferException.truncatedMessage();
    }

    if (size <= bufferSize - bufferPos) {
      // We have all the bytes we need already.
      final byte[] bytes = new byte[size];
      System.arraycopy(buffer, bufferPos, bytes, 0, size);
      bufferPos += size;
      return bytes;
    } else if (size < BUFFER_SIZE) {
      // Reading more bytes than are in the buffer, but not an excessive number
      // of bytes.  We can safely allocate the resulting array ahead of time.

      // First copy what we have.
      final byte[] bytes = new byte[size];
      int pos = bufferSize - bufferPos;
      System.arraycopy(buffer, bufferPos, bytes, 0, pos);
      bufferPos = bufferSize;

      // We want to use refillBuffer() and then copy from the buffer into our
      // byte array rather than reading directly into our byte array because
      // the input may be unbuffered.
      refillBuffer(true);

      while (size - pos > bufferSize) {
        System.arraycopy(buffer, 0, bytes, pos, bufferSize);
        pos += bufferSize;
        bufferPos = bufferSize;
        refillBuffer(true);
      }

      System.arraycopy(buffer, 0, bytes, pos, size - pos);
      bufferPos = size - pos;

      return bytes;
    } else {
      // The size is very large.  For security reasons, we can't allocate the
      // entire byte array yet.  The size comes directly from the input, so a
      // maliciously-crafted message could provide a bogus very large size in
      // order to trick the app into allocating a lot of memory.  We avoid this
      // by allocating and reading only a small chunk at a time, so that the
      // malicious message must actually *be* extremely large to cause
      // problems.  Meanwhile, we limit the allowed size of a message elsewhere.

      // Remember the buffer markers since we'll have to copy the bytes out of
      // it later.
      final int originalBufferPos = bufferPos;
      final int originalBufferSize = bufferSize;

      // Mark the current buffer consumed.
      totalBytesRetired += bufferSize;
      bufferPos = 0;
      bufferSize = 0;

      // Read all the rest of the bytes we need.
      int sizeLeft = size - (originalBufferSize - originalBufferPos);
      final List<byte[]> chunks = new ArrayList<byte[]>();

      while (sizeLeft > 0) {
        final byte[] chunk = new byte[Math.min(sizeLeft, BUFFER_SIZE)];
        int pos = 0;
        while (pos < chunk.length) {
          final int n = (input == null) ? -1 :
            input.read(chunk, pos, chunk.length - pos);
          if (n == -1) {
            throw InvalidProtocolBufferException.truncatedMessage();
          }
          totalBytesRetired += n;
          pos += n;
        }
        sizeLeft -= chunk.length;
        chunks.add(chunk);
      }

      // OK, got everything.  Now concatenate it all into one buffer.
      final byte[] bytes = new byte[size];

      // Start by copying the leftover bytes from this.buffer.
      int pos = originalBufferSize - originalBufferPos;
      System.arraycopy(buffer, originalBufferPos, bytes, 0, pos);

      // And now all the chunks.
      for (final byte[] chunk : chunks) {
        System.arraycopy(chunk, 0, bytes, pos, chunk.length);
        pos += chunk.length;
      }

      // Done.
      return bytes;
    }
  }

  /**
   * Reads and discards {@code size} bytes.
   *
   * @throws InvalidProtocolBufferException The end of the stream or the current
   *                                        limit was reached.
   */
  public void skipRawBytes(final int size) throws IOException {
    if (size < 0) {
      throw InvalidProtocolBufferException.negativeSize();
    }

    if (totalBytesRetired + bufferPos + size > currentLimit) {
      // Read to the end of the stream anyway.
      skipRawBytes(currentLimit - totalBytesRetired - bufferPos);
      // Then fail.
      throw InvalidProtocolBufferException.truncatedMessage();
    }

    if (size <= bufferSize - bufferPos) {
      // We have all the bytes we need already.
      bufferPos += size;
    } else {
      // Skipping more bytes than are in the buffer.  First skip what we have.
      int pos = bufferSize - bufferPos;
      bufferPos = bufferSize;

      // Keep refilling the buffer until we get to the point we wanted to skip
      // to.  This has the side effect of ensuring the limits are updated
      // correctly.
      refillBuffer(true);
      while (size - pos > bufferSize) {
        pos += bufferSize;
        bufferPos = bufferSize;
        refillBuffer(true);
      }

      bufferPos = size - pos;
    }
  }
}

/* [<][>][^][v][top][bottom][index][help] */