root/third_party/protobuf/java/src/main/java/com/google/protobuf/ByteString.java

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. byteAt
  2. iterator
  3. nextByte
  4. size
  5. isEmpty
  6. substring
  7. substring
  8. startsWith
  9. copyFrom
  10. copyFrom
  11. copyFrom
  12. copyFrom
  13. copyFrom
  14. copyFromUtf8
  15. readFrom
  16. readFrom
  17. readFrom
  18. readChunk
  19. concat
  20. copyFrom
  21. balancedConcat
  22. copyTo
  23. copyTo
  24. copyToInternal
  25. copyTo
  26. toByteArray
  27. writeTo
  28. asReadOnlyByteBuffer
  29. asReadOnlyByteBufferList
  30. toString
  31. toStringUtf8
  32. isValidUtf8
  33. partialIsValidUtf8
  34. equals
  35. hashCode
  36. newInput
  37. newCodedInput
  38. newOutput
  39. newOutput
  40. write
  41. write
  42. toByteString
  43. copyArray
  44. writeTo
  45. size
  46. reset
  47. toString
  48. flushFullBuffer
  49. flushLastBuffer
  50. newCodedBuilder
  51. build
  52. getCodedOutput
  53. getTreeDepth
  54. isBalanced
  55. peekCachedHashCode
  56. partialHash
  57. toString

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package com.google.protobuf;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.UnsupportedEncodingException;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;

/**
 * Immutable sequence of bytes.  Substring is supported by sharing the reference
 * to the immutable underlying bytes, as with {@link String}.  Concatenation is
 * likewise supported without copying (long strings) by building a tree of
 * pieces in {@link RopeByteString}.
 * <p>
 * Like {@link String}, the contents of a {@link ByteString} can never be
 * observed to change, not even in the presence of a data race or incorrect
 * API usage in the client code.
 *
 * @author crazybob@google.com Bob Lee
 * @author kenton@google.com Kenton Varda
 * @author carlanton@google.com Carl Haverl
 * @author martinrb@google.com Martin Buchholz
 */
public abstract class ByteString implements Iterable<Byte> {

  /**
   * When two strings to be concatenated have a combined length shorter than
   * this, we just copy their bytes on {@link #concat(ByteString)}.
   * The trade-off is copy size versus the overhead of creating tree nodes
   * in {@link RopeByteString}.
   */
  static final int CONCATENATE_BY_COPY_SIZE = 128;

  /**
   * When copying an InputStream into a ByteString with .readFrom(),
   * the chunks in the underlying rope start at 256 bytes, but double
   * each iteration up to 8192 bytes.
   */
  static final int MIN_READ_FROM_CHUNK_SIZE = 0x100;  // 256b
  static final int MAX_READ_FROM_CHUNK_SIZE = 0x2000;  // 8k

  /**
   * Empty {@code ByteString}.
   */
  public static final ByteString EMPTY = new LiteralByteString(new byte[0]);

  // This constructor is here to prevent subclassing outside of this package,
  ByteString() {}

  /**
   * Gets the byte at the given index. This method should be used only for
   * random access to individual bytes. To access bytes sequentially, use the
   * {@link ByteIterator} returned by {@link #iterator()}, and call {@link
   * #substring(int, int)} first if necessary.
   *
   * @param index index of byte
   * @return the value
   * @throws ArrayIndexOutOfBoundsException {@code index} is < 0 or >= size
   */
  public abstract byte byteAt(int index);

  /**
   * Return a {@link ByteString.ByteIterator} over the bytes in the ByteString.
   * To avoid auto-boxing, you may get the iterator manually and call
   * {@link ByteIterator#nextByte()}.
   *
   * @return the iterator
   */
  public abstract ByteIterator iterator();

  /**
   * This interface extends {@code Iterator<Byte>}, so that we can return an
   * unboxed {@code byte}.
   */
  public interface ByteIterator extends Iterator<Byte> {
    /**
     * An alternative to {@link Iterator#next()} that returns an
     * unboxed primitive {@code byte}.
     *
     * @return the next {@code byte} in the iteration
     * @throws NoSuchElementException if the iteration has no more elements
     */
    byte nextByte();
  }

  /**
   * Gets the number of bytes.
   *
   * @return size in bytes
   */
  public abstract int size();

  /**
   * Returns {@code true} if the size is {@code 0}, {@code false} otherwise.
   *
   * @return true if this is zero bytes long
   */
  public boolean isEmpty() {
    return size() == 0;
  }

  // =================================================================
  // ByteString -> substring

  /**
   * Return the substring from {@code beginIndex}, inclusive, to the end of the
   * string.
   *
   * @param beginIndex start at this index
   * @return substring sharing underlying data
   * @throws IndexOutOfBoundsException if {@code beginIndex < 0} or
   *     {@code beginIndex > size()}.
   */
  public ByteString substring(int beginIndex) {
    return substring(beginIndex, size());
  }

  /**
   * Return the substring from {@code beginIndex}, inclusive, to {@code
   * endIndex}, exclusive.
   *
   * @param beginIndex start at this index
   * @param endIndex   the last character is the one before this index
   * @return substring sharing underlying data
   * @throws IndexOutOfBoundsException if {@code beginIndex < 0},
   *     {@code endIndex > size()}, or {@code beginIndex > endIndex}.
   */
  public abstract ByteString substring(int beginIndex, int endIndex);

  /**
   * Tests if this bytestring starts with the specified prefix.
   * Similar to {@link String#startsWith(String)}
   *
   * @param prefix the prefix.
   * @return <code>true</code> if the byte sequence represented by the
   *         argument is a prefix of the byte sequence represented by
   *         this string; <code>false</code> otherwise.
   */
  public boolean startsWith(ByteString prefix) {
    return size() >= prefix.size() &&
           substring(0, prefix.size()).equals(prefix);
  }

  // =================================================================
  // byte[] -> ByteString

  /**
   * Copies the given bytes into a {@code ByteString}.
   *
   * @param bytes source array
   * @param offset offset in source array
   * @param size number of bytes to copy
   * @return new {@code ByteString}
   */
  public static ByteString copyFrom(byte[] bytes, int offset, int size) {
    byte[] copy = new byte[size];
    System.arraycopy(bytes, offset, copy, 0, size);
    return new LiteralByteString(copy);
  }

  /**
   * Copies the given bytes into a {@code ByteString}.
   *
   * @param bytes to copy
   * @return new {@code ByteString}
   */
  public static ByteString copyFrom(byte[] bytes) {
    return copyFrom(bytes, 0, bytes.length);
  }

  /**
   * Copies the next {@code size} bytes from a {@code java.nio.ByteBuffer} into
   * a {@code ByteString}.
   *
   * @param bytes source buffer
   * @param size number of bytes to copy
   * @return new {@code ByteString}
   */
  public static ByteString copyFrom(ByteBuffer bytes, int size) {
    byte[] copy = new byte[size];
    bytes.get(copy);
    return new LiteralByteString(copy);
  }

  /**
   * Copies the remaining bytes from a {@code java.nio.ByteBuffer} into
   * a {@code ByteString}.
   *
   * @param bytes sourceBuffer
   * @return new {@code ByteString}
   */
  public static ByteString copyFrom(ByteBuffer bytes) {
    return copyFrom(bytes, bytes.remaining());
  }

  /**
   * Encodes {@code text} into a sequence of bytes using the named charset
   * and returns the result as a {@code ByteString}.
   *
   * @param text source string
   * @param charsetName encoding to use
   * @return new {@code ByteString}
   * @throws UnsupportedEncodingException if the encoding isn't found
   */
  public static ByteString copyFrom(String text, String charsetName)
      throws UnsupportedEncodingException {
    return new LiteralByteString(text.getBytes(charsetName));
  }

  /**
   * Encodes {@code text} into a sequence of UTF-8 bytes and returns the
   * result as a {@code ByteString}.
   *
   * @param text source string
   * @return new {@code ByteString}
   */
  public static ByteString copyFromUtf8(String text) {
    try {
      return new LiteralByteString(text.getBytes("UTF-8"));
    } catch (UnsupportedEncodingException e) {
      throw new RuntimeException("UTF-8 not supported?", e);
    }
  }

  // =================================================================
  // InputStream -> ByteString

  /**
   * Completely reads the given stream's bytes into a
   * {@code ByteString}, blocking if necessary until all bytes are
   * read through to the end of the stream.
   *
   * <b>Performance notes:</b> The returned {@code ByteString} is an
   * immutable tree of byte arrays ("chunks") of the stream data.  The
   * first chunk is small, with subsequent chunks each being double
   * the size, up to 8K.  If the caller knows the precise length of
   * the stream and wishes to avoid all unnecessary copies and
   * allocations, consider using the two-argument version of this
   * method, below.
   *
   * @param streamToDrain The source stream, which is read completely
   *     but not closed.
   * @return A new {@code ByteString} which is made up of chunks of
   *     various sizes, depending on the behavior of the underlying
   *     stream.
   * @throws IOException IOException is thrown if there is a problem
   *     reading the underlying stream.
   */
  public static ByteString readFrom(InputStream streamToDrain)
      throws IOException {
    return readFrom(
        streamToDrain, MIN_READ_FROM_CHUNK_SIZE, MAX_READ_FROM_CHUNK_SIZE);
  }

  /**
   * Completely reads the given stream's bytes into a
   * {@code ByteString}, blocking if necessary until all bytes are
   * read through to the end of the stream.
   *
   * <b>Performance notes:</b> The returned {@code ByteString} is an
   * immutable tree of byte arrays ("chunks") of the stream data.  The
   * chunkSize parameter sets the size of these byte arrays. In
   * particular, if the chunkSize is precisely the same as the length
   * of the stream, unnecessary allocations and copies will be
   * avoided. Otherwise, the chunks will be of the given size, except
   * for the last chunk, which will be resized (via a reallocation and
   * copy) to contain the remainder of the stream.
   *
   * @param streamToDrain The source stream, which is read completely
   *     but not closed.
   * @param chunkSize The size of the chunks in which to read the
   *     stream.
   * @return A new {@code ByteString} which is made up of chunks of
   *     the given size.
   * @throws IOException IOException is thrown if there is a problem
   *     reading the underlying stream.
   */
  public static ByteString readFrom(InputStream streamToDrain, int chunkSize)
      throws IOException {
    return readFrom(streamToDrain, chunkSize, chunkSize);
  }

  // Helper method that takes the chunk size range as a parameter.
  public static ByteString readFrom(InputStream streamToDrain, int minChunkSize,
      int maxChunkSize) throws IOException {
    Collection<ByteString> results = new ArrayList<ByteString>();

    // copy the inbound bytes into a list of chunks; the chunk size
    // grows exponentially to support both short and long streams.
    int chunkSize = minChunkSize;
    while (true) {
      ByteString chunk = readChunk(streamToDrain, chunkSize);
      if (chunk == null) {
        break;
      }
      results.add(chunk);
      chunkSize = Math.min(chunkSize * 2, maxChunkSize);
    }

    return ByteString.copyFrom(results);
  }

  /**
   * Blocks until a chunk of the given size can be made from the
   * stream, or EOF is reached.  Calls read() repeatedly in case the
   * given stream implementation doesn't completely fill the given
   * buffer in one read() call.
   *
   * @return A chunk of the desired size, or else a chunk as large as
   * was available when end of stream was reached. Returns null if the
   * given stream had no more data in it.
   */
  private static ByteString readChunk(InputStream in, final int chunkSize)
      throws IOException {
      final byte[] buf = new byte[chunkSize];
      int bytesRead = 0;
      while (bytesRead < chunkSize) {
        final int count = in.read(buf, bytesRead, chunkSize - bytesRead);
        if (count == -1) {
          break;
        }
        bytesRead += count;
      }

      if (bytesRead == 0) {
        return null;
      } else {
        return ByteString.copyFrom(buf, 0, bytesRead);
      }
  }

  // =================================================================
  // Multiple ByteStrings -> One ByteString

  /**
   * Concatenate the given {@code ByteString} to this one. Short concatenations,
   * of total size smaller than {@link ByteString#CONCATENATE_BY_COPY_SIZE}, are
   * produced by copying the underlying bytes (as per Rope.java, <a
   * href="http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol25/issue12/spe986.pdf">
   * BAP95 </a>. In general, the concatenate involves no copying.
   *
   * @param other string to concatenate
   * @return a new {@code ByteString} instance
   */
  public ByteString concat(ByteString other) {
    int thisSize = size();
    int otherSize = other.size();
    if ((long) thisSize + otherSize >= Integer.MAX_VALUE) {
      throw new IllegalArgumentException("ByteString would be too long: " +
                                         thisSize + "+" + otherSize);
    }

    return RopeByteString.concatenate(this, other);
  }

  /**
   * Concatenates all byte strings in the iterable and returns the result.
   * This is designed to run in O(list size), not O(total bytes).
   *
   * <p>The returned {@code ByteString} is not necessarily a unique object.
   * If the list is empty, the returned object is the singleton empty
   * {@code ByteString}.  If the list has only one element, that
   * {@code ByteString} will be returned without copying.
   *
   * @param byteStrings strings to be concatenated
   * @return new {@code ByteString}
   */
  public static ByteString copyFrom(Iterable<ByteString> byteStrings) {
    Collection<ByteString> collection;
    if (!(byteStrings instanceof Collection)) {
      collection = new ArrayList<ByteString>();
      for (ByteString byteString : byteStrings) {
        collection.add(byteString);
      }
    } else {
      collection = (Collection<ByteString>) byteStrings;
    }
    ByteString result;
    if (collection.isEmpty()) {
      result = EMPTY;
    } else {
      result = balancedConcat(collection.iterator(), collection.size());
    }
    return result;
  }

  // Internal function used by copyFrom(Iterable<ByteString>).
  // Create a balanced concatenation of the next "length" elements from the
  // iterable.
  private static ByteString balancedConcat(Iterator<ByteString> iterator,
      int length) {
    assert length >= 1;
    ByteString result;
    if (length == 1) {
      result = iterator.next();
    } else {
      int halfLength = length >>> 1;
      ByteString left = balancedConcat(iterator, halfLength);
      ByteString right = balancedConcat(iterator, length - halfLength);
      result = left.concat(right);
    }
    return result;
  }

  // =================================================================
  // ByteString -> byte[]

  /**
   * Copies bytes into a buffer at the given offset.
   *
   * @param target buffer to copy into
   * @param offset in the target buffer
   * @throws IndexOutOfBoundsException if the offset is negative or too large
   */
  public void copyTo(byte[] target, int offset) {
    copyTo(target, 0, offset, size());
  }

  /**
   * Copies bytes into a buffer.
   *
   * @param target       buffer to copy into
   * @param sourceOffset offset within these bytes
   * @param targetOffset offset within the target buffer
   * @param numberToCopy number of bytes to copy
   * @throws IndexOutOfBoundsException if an offset or size is negative or too
   *     large
   */
  public void copyTo(byte[] target, int sourceOffset, int targetOffset,
      int numberToCopy) {
    if (sourceOffset < 0) {
      throw new IndexOutOfBoundsException("Source offset < 0: " + sourceOffset);
    }
    if (targetOffset < 0) {
      throw new IndexOutOfBoundsException("Target offset < 0: " + targetOffset);
    }
    if (numberToCopy < 0) {
      throw new IndexOutOfBoundsException("Length < 0: " + numberToCopy);
    }
    if (sourceOffset + numberToCopy > size()) {
      throw new IndexOutOfBoundsException(
          "Source end offset < 0: " + (sourceOffset + numberToCopy));
    }
    if (targetOffset + numberToCopy > target.length) {
      throw new IndexOutOfBoundsException(
          "Target end offset < 0: " + (targetOffset + numberToCopy));
    }
    if (numberToCopy > 0) {
      copyToInternal(target, sourceOffset, targetOffset, numberToCopy);
    }
  }

  /**
   * Internal (package private) implementation of
   * @link{#copyTo(byte[],int,int,int}.
   * It assumes that all error checking has already been performed and that 
   * @code{numberToCopy > 0}.
   */
  protected abstract void copyToInternal(byte[] target, int sourceOffset,
      int targetOffset, int numberToCopy);

  /**
   * Copies bytes into a ByteBuffer.
   *
   * @param target ByteBuffer to copy into.
   * @throws java.nio.ReadOnlyBufferException if the {@code target} is read-only
   * @throws java.nio.BufferOverflowException if the {@code target}'s
   *     remaining() space is not large enough to hold the data.
   */
  public abstract void copyTo(ByteBuffer target);

  /**
   * Copies bytes to a {@code byte[]}.
   *
   * @return copied bytes
   */
  public byte[] toByteArray() {
    int size = size();
    byte[] result = new byte[size];
    copyToInternal(result, 0, 0, size);
    return result;
  }

  /**
   * Writes the complete contents of this byte string to
   * the specified output stream argument.
   *
   * @param  out  the output stream to which to write the data.
   * @throws IOException  if an I/O error occurs.
   */
  public abstract void writeTo(OutputStream out) throws IOException;

  /**
   * Constructs a read-only {@code java.nio.ByteBuffer} whose content
   * is equal to the contents of this byte string.
   * The result uses the same backing array as the byte string, if possible.
   *
   * @return wrapped bytes
   */
  public abstract ByteBuffer asReadOnlyByteBuffer();

  /**
   * Constructs a list of read-only {@code java.nio.ByteBuffer} objects
   * such that the concatenation of their contents is equal to the contents
   * of this byte string.  The result uses the same backing arrays as the
   * byte string.
   * <p>
   * By returning a list, implementations of this method may be able to avoid
   * copying even when there are multiple backing arrays.
   * 
   * @return a list of wrapped bytes
   */
  public abstract List<ByteBuffer> asReadOnlyByteBufferList();

  /**
   * Constructs a new {@code String} by decoding the bytes using the
   * specified charset.
   *
   * @param charsetName encode using this charset
   * @return new string
   * @throws UnsupportedEncodingException if charset isn't recognized
   */
  public abstract String toString(String charsetName)
      throws UnsupportedEncodingException;

  // =================================================================
  // UTF-8 decoding

  /**
   * Constructs a new {@code String} by decoding the bytes as UTF-8.
   *
   * @return new string using UTF-8 encoding
   */
  public String toStringUtf8() {
    try {
      return toString("UTF-8");
    } catch (UnsupportedEncodingException e) {
      throw new RuntimeException("UTF-8 not supported?", e);
    }
  }

  /**
   * Tells whether this {@code ByteString} represents a well-formed UTF-8
   * byte sequence, such that the original bytes can be converted to a
   * String object and then round tripped back to bytes without loss.
   *
   * <p>More precisely, returns {@code true} whenever: <pre> {@code
   * Arrays.equals(byteString.toByteArray(),
   *     new String(byteString.toByteArray(), "UTF-8").getBytes("UTF-8"))
   * }</pre>
   *
   * <p>This method returns {@code false} for "overlong" byte sequences,
   * as well as for 3-byte sequences that would map to a surrogate
   * character, in accordance with the restricted definition of UTF-8
   * introduced in Unicode 3.1.  Note that the UTF-8 decoder included in
   * Oracle's JDK has been modified to also reject "overlong" byte
   * sequences, but (as of 2011) still accepts 3-byte surrogate
   * character byte sequences.
   *
   * <p>See the Unicode Standard,</br>
   * Table 3-6. <em>UTF-8 Bit Distribution</em>,</br>
   * Table 3-7. <em>Well Formed UTF-8 Byte Sequences</em>.
   *
   * @return whether the bytes in this {@code ByteString} are a
   * well-formed UTF-8 byte sequence
   */
  public abstract boolean isValidUtf8();

  /**
   * Tells whether the given byte sequence is a well-formed, malformed, or
   * incomplete UTF-8 byte sequence.  This method accepts and returns a partial
   * state result, allowing the bytes for a complete UTF-8 byte sequence to be
   * composed from multiple {@code ByteString} segments.
   *
   * @param state either {@code 0} (if this is the initial decoding operation)
   *     or the value returned from a call to a partial decoding method for the
   *     previous bytes
   * @param offset offset of the first byte to check
   * @param length number of bytes to check
   *
   * @return {@code -1} if the partial byte sequence is definitely malformed,
   * {@code 0} if it is well-formed (no additional input needed), or, if the
   * byte sequence is "incomplete", i.e. apparently terminated in the middle of
   * a character, an opaque integer "state" value containing enough information
   * to decode the character when passed to a subsequent invocation of a
   * partial decoding method.
   */
  protected abstract int partialIsValidUtf8(int state, int offset, int length);

  // =================================================================
  // equals() and hashCode()

  @Override
  public abstract boolean equals(Object o);

  /**
   * Return a non-zero hashCode depending only on the sequence of bytes
   * in this ByteString.
   *
   * @return hashCode value for this object
   */
  @Override
  public abstract int hashCode();

  // =================================================================
  // Input stream

  /**
   * Creates an {@code InputStream} which can be used to read the bytes.
   * <p>
   * The {@link InputStream} returned by this method is guaranteed to be
   * completely non-blocking.  The method {@link InputStream#available()}
   * returns the number of bytes remaining in the stream. The methods
   * {@link InputStream#read(byte[]), {@link InputStream#read(byte[],int,int)}
   * and {@link InputStream#skip(long)} will read/skip as many bytes as are
   * available.
   * <p>
   * The methods in the returned {@link InputStream} might <b>not</b> be
   * thread safe.
   *
   * @return an input stream that returns the bytes of this byte string.
   */
  public abstract InputStream newInput();

  /**
   * Creates a {@link CodedInputStream} which can be used to read the bytes.
   * Using this is often more efficient than creating a {@link CodedInputStream}
   * that wraps the result of {@link #newInput()}.
   *
   * @return stream based on wrapped data
   */
  public abstract CodedInputStream newCodedInput();

  // =================================================================
  // Output stream

  /**
   * Creates a new {@link Output} with the given initial capacity. Call {@link
   * Output#toByteString()} to create the {@code ByteString} instance.
   * <p>
   * A {@link ByteString.Output} offers the same functionality as a
   * {@link ByteArrayOutputStream}, except that it returns a {@link ByteString}
   * rather than a {@code byte} array.
   *
   * @param initialCapacity estimate of number of bytes to be written
   * @return {@code OutputStream} for building a {@code ByteString}
   */
  public static Output newOutput(int initialCapacity) {
    return new Output(initialCapacity);
  }

  /**
   * Creates a new {@link Output}. Call {@link Output#toByteString()} to create
   * the {@code ByteString} instance.
   * <p>
   * A {@link ByteString.Output} offers the same functionality as a
   * {@link ByteArrayOutputStream}, except that it returns a {@link ByteString}
   * rather than a {@code byte array}.
   *
   * @return {@code OutputStream} for building a {@code ByteString}
   */
  public static Output newOutput() {
    return new Output(CONCATENATE_BY_COPY_SIZE);
  }

  /**
   * Outputs to a {@code ByteString} instance. Call {@link #toByteString()} to
   * create the {@code ByteString} instance.
   */
  public static final class Output extends OutputStream {
    // Implementation note.
    // The public methods of this class must be synchronized.  ByteStrings
    // are guaranteed to be immutable.  Without some sort of locking, it could
    // be possible for one thread to call toByteSring(), while another thread
    // is still modifying the underlying byte array.

    private static final byte[] EMPTY_BYTE_ARRAY = new byte[0];
    // argument passed by user, indicating initial capacity.
    private final int initialCapacity;
    // ByteStrings to be concatenated to create the result
    private final ArrayList<ByteString> flushedBuffers;
    // Total number of bytes in the ByteStrings of flushedBuffers
    private int flushedBuffersTotalBytes;
    // Current buffer to which we are writing
    private byte[] buffer;
    // Location in buffer[] to which we write the next byte.
    private int bufferPos;

    /**
     * Creates a new ByteString output stream with the specified
     * initial capacity.
     *
     * @param initialCapacity  the initial capacity of the output stream.
     */
    Output(int initialCapacity) {
      if (initialCapacity < 0) {
        throw new IllegalArgumentException("Buffer size < 0");
      }
      this.initialCapacity = initialCapacity;
      this.flushedBuffers = new ArrayList<ByteString>();
      this.buffer = new byte[initialCapacity];
    }

    @Override
    public synchronized void write(int b) {
      if (bufferPos == buffer.length) {
        flushFullBuffer(1);
      }
      buffer[bufferPos++] = (byte)b;
    }

    @Override
    public synchronized void write(byte[] b, int offset, int length)  {
      if (length <= buffer.length - bufferPos) {
        // The bytes can fit into the current buffer.
        System.arraycopy(b, offset, buffer, bufferPos, length);
        bufferPos += length;
      } else {
        // Use up the current buffer
        int copySize  = buffer.length - bufferPos;
        System.arraycopy(b, offset, buffer, bufferPos, copySize);
        offset += copySize;
        length -= copySize;
        // Flush the buffer, and get a new buffer at least big enough to cover
        // what we still need to output
        flushFullBuffer(length);
        System.arraycopy(b, offset, buffer, 0 /* count */, length);
        bufferPos = length;
      }
    }

    /**
     * Creates a byte string. Its size is the current size of this output
     * stream and its output has been copied to it.
     *
     * @return  the current contents of this output stream, as a byte string.
     */
    public synchronized ByteString toByteString() {
      flushLastBuffer();
      return ByteString.copyFrom(flushedBuffers);
    }
    
    /**
     * Implement java.util.Arrays.copyOf() for jdk 1.5.
     */
    private byte[] copyArray(byte[] buffer, int length) {
      byte[] result = new byte[length];
      System.arraycopy(buffer, 0, result, 0, Math.min(buffer.length, length));
      return result;
    }

    /**
     * Writes the complete contents of this byte array output stream to
     * the specified output stream argument.
     *
     * @param out the output stream to which to write the data.
     * @throws IOException  if an I/O error occurs.
     */
    public void writeTo(OutputStream out) throws IOException {
      ByteString[] cachedFlushBuffers;
      byte[] cachedBuffer;
      int cachedBufferPos;
      synchronized (this) {
        // Copy the information we need into local variables so as to hold
        // the lock for as short a time as possible.
        cachedFlushBuffers =
            flushedBuffers.toArray(new ByteString[flushedBuffers.size()]);
        cachedBuffer = buffer;
        cachedBufferPos = bufferPos;
      }
      for (ByteString byteString : cachedFlushBuffers) {
        byteString.writeTo(out);
      }

      out.write(copyArray(cachedBuffer, cachedBufferPos));
    }

    /**
     * Returns the current size of the output stream.
     *
     * @return  the current size of the output stream
     */
    public synchronized int size() {
      return flushedBuffersTotalBytes + bufferPos;
    }

    /**
     * Resets this stream, so that all currently accumulated output in the
     * output stream is discarded. The output stream can be used again,
     * reusing the already allocated buffer space.
     */
    public synchronized void reset() {
      flushedBuffers.clear();
      flushedBuffersTotalBytes = 0;
      bufferPos = 0;
    }

    @Override
    public String toString() {
      return String.format("<ByteString.Output@%s size=%d>",
          Integer.toHexString(System.identityHashCode(this)), size());
    }

    /**
     * Internal function used by writers.  The current buffer is full, and the
     * writer needs a new buffer whose size is at least the specified minimum
     * size.
     */
    private void flushFullBuffer(int minSize)  {
      flushedBuffers.add(new LiteralByteString(buffer));
      flushedBuffersTotalBytes += buffer.length;
      // We want to increase our total capacity by 50%, but as a minimum,
      // the new buffer should also at least be >= minSize and
      // >= initial Capacity.
      int newSize = Math.max(initialCapacity,
          Math.max(minSize, flushedBuffersTotalBytes >>> 1));
      buffer = new byte[newSize];
      bufferPos = 0;
    }

    /**
     * Internal function used by {@link #toByteString()}. The current buffer may
     * or may not be full, but it needs to be flushed.
     */
    private void flushLastBuffer()  {
      if (bufferPos < buffer.length) {
        if (bufferPos > 0) {
          byte[] bufferCopy = copyArray(buffer, bufferPos);
          flushedBuffers.add(new LiteralByteString(bufferCopy));
        }
        // We reuse this buffer for further writes.
      } else {
        // Buffer is completely full.  Huzzah.
        flushedBuffers.add(new LiteralByteString(buffer));
        // 99% of the time, we're not going to use this OutputStream again.
        // We set buffer to an empty byte stream so that we're handling this
        // case without wasting space.  In the rare case that more writes
        // *do* occur, this empty buffer will be flushed and an appropriately
        // sized new buffer will be created.
        buffer = EMPTY_BYTE_ARRAY;
      }
      flushedBuffersTotalBytes += bufferPos;
      bufferPos = 0;
    }
  }

  /**
   * Constructs a new {@code ByteString} builder, which allows you to
   * efficiently construct a {@code ByteString} by writing to a {@link
   * CodedOutputStream}. Using this is much more efficient than calling {@code
   * newOutput()} and wrapping that in a {@code CodedOutputStream}.
   *
   * <p>This is package-private because it's a somewhat confusing interface.
   * Users can call {@link Message#toByteString()} instead of calling this
   * directly.
   *
   * @param size The target byte size of the {@code ByteString}.  You must write
   *     exactly this many bytes before building the result.
   * @return the builder
   */
  static CodedBuilder newCodedBuilder(int size) {
    return new CodedBuilder(size);
  }

  /** See {@link ByteString#newCodedBuilder(int)}. */
  static final class CodedBuilder {
    private final CodedOutputStream output;
    private final byte[] buffer;

    private CodedBuilder(int size) {
      buffer = new byte[size];
      output = CodedOutputStream.newInstance(buffer);
    }

    public ByteString build() {
      output.checkNoSpaceLeft();

      // We can be confident that the CodedOutputStream will not modify the
      // underlying bytes anymore because it already wrote all of them.  So,
      // no need to make a copy.
      return new LiteralByteString(buffer);
    }

    public CodedOutputStream getCodedOutput() {
      return output;
    }
  }

  // =================================================================
  // Methods {@link RopeByteString} needs on instances, which aren't part of the
  // public API.

  /**
   * Return the depth of the tree representing this {@code ByteString}, if any,
   * whose root is this node. If this is a leaf node, return 0.
   *
   * @return tree depth or zero
   */
  protected abstract int getTreeDepth();

  /**
   * Return {@code true} if this ByteString is literal (a leaf node) or a
   * flat-enough tree in the sense of {@link RopeByteString}.
   *
   * @return true if the tree is flat enough
   */
  protected abstract boolean isBalanced();

  /**
   * Return the cached hash code if available.
   *
   * @return value of cached hash code or 0 if not computed yet
   */
  protected abstract int peekCachedHashCode();

  /**
   * Compute the hash across the value bytes starting with the given hash, and
   * return the result.  This is used to compute the hash across strings
   * represented as a set of pieces by allowing the hash computation to be
   * continued from piece to piece.
   *
   * @param h starting hash value
   * @param offset offset into this value to start looking at data values
   * @param length number of data values to include in the hash computation
   * @return ending hash value
   */
  protected abstract int partialHash(int h, int offset, int length);

  @Override
  public String toString() {
    return String.format("<ByteString@%s size=%d>",
        Integer.toHexString(System.identityHashCode(this)), size());
  }
}

/* [<][>][^][v][top][bottom][index][help] */