This source file includes following definitions.
- METHODDEF
- METHODDEF
- METHODDEF
- GLOBAL
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"
typedef struct {
struct jpeg_forward_dct pub;
forward_DCT_method_ptr do_dct;
DCTELEM * divisors[NUM_QUANT_TBLS];
#ifdef DCT_FLOAT_SUPPORTED
float_DCT_method_ptr do_float_dct;
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
#endif
} my_fdct_controller;
typedef my_fdct_controller * my_fdct_ptr;
METHODDEF(void)
start_pass_fdctmgr (j_compress_ptr cinfo)
{
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
int ci, qtblno, i;
jpeg_component_info *compptr;
JQUANT_TBL * qtbl;
DCTELEM * dtbl;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
qtblno = compptr->quant_tbl_no;
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
qtbl = cinfo->quant_tbl_ptrs[qtblno];
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
}
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
{
#define CONST_BITS 14
static const INT16 aanscales[DCTSIZE2] = {
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
if (fdct->divisors[qtblno] == NULL) {
fdct->divisors[qtblno] = (DCTELEM *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(DCTELEM));
}
dtbl = fdct->divisors[qtblno];
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = (DCTELEM)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-3);
}
}
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
FAST_FLOAT * fdtbl;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
if (fdct->float_divisors[qtblno] == NULL) {
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(FAST_FLOAT));
}
fdtbl = fdct->float_divisors[qtblno];
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fdtbl[i] = (FAST_FLOAT)
(1.0 / (((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
i++;
}
}
}
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
}
}
METHODDEF(void)
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
{
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
forward_DCT_method_ptr do_dct = fdct->do_dct;
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
DCTELEM workspace[DCTSIZE2];
JDIMENSION bi;
sample_data += start_row;
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
{ register DCTELEM *workspaceptr;
register JSAMPROW elemptr;
register int elemr;
workspaceptr = workspace;
for (elemr = 0; elemr < DCTSIZE; elemr++) {
elemptr = sample_data[elemr] + start_col;
#if DCTSIZE == 8
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
#else
{ register int elemc;
for (elemc = DCTSIZE; elemc > 0; elemc--) {
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
}
}
#endif
}
}
(*do_dct) (workspace);
{ register DCTELEM temp, qval;
register int i;
register JCOEFPTR output_ptr = coef_blocks[bi];
for (i = 0; i < DCTSIZE2; i++) {
qval = divisors[i];
temp = workspace[i];
#ifdef FAST_DIVIDE
#define DIVIDE_BY(a,b) a /= b
#else
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
#endif
if (temp < 0) {
temp = -temp;
temp += qval>>1;
DIVIDE_BY(temp, qval);
temp = -temp;
} else {
temp += qval>>1;
DIVIDE_BY(temp, qval);
}
output_ptr[i] = (JCOEF) temp;
}
}
}
}
#ifdef DCT_FLOAT_SUPPORTED
METHODDEF(void)
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks)
{
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
float_DCT_method_ptr do_dct = fdct->do_float_dct;
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
FAST_FLOAT workspace[DCTSIZE2];
JDIMENSION bi;
sample_data += start_row;
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
{ register FAST_FLOAT *workspaceptr;
register JSAMPROW elemptr;
register int elemr;
workspaceptr = workspace;
for (elemr = 0; elemr < DCTSIZE; elemr++) {
elemptr = sample_data[elemr] + start_col;
#if DCTSIZE == 8
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
#else
{ register int elemc;
for (elemc = DCTSIZE; elemc > 0; elemc--) {
*workspaceptr++ = (FAST_FLOAT)
(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
}
}
#endif
}
}
(*do_dct) (workspace);
{ register FAST_FLOAT temp;
register int i;
register JCOEFPTR output_ptr = coef_blocks[bi];
for (i = 0; i < DCTSIZE2; i++) {
temp = workspace[i] * divisors[i];
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
}
}
}
}
#endif
GLOBAL(void)
jinit_forward_dct (j_compress_ptr cinfo)
{
my_fdct_ptr fdct;
int i;
fdct = (my_fdct_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_fdct_controller));
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
fdct->pub.start_pass = start_pass_fdctmgr;
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
fdct->pub.forward_DCT = forward_DCT;
fdct->do_dct = jpeg_fdct_islow;
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
fdct->pub.forward_DCT = forward_DCT;
fdct->do_dct = jpeg_fdct_ifast;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
fdct->pub.forward_DCT = forward_DCT_float;
fdct->do_float_dct = jpeg_fdct_float;
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
for (i = 0; i < NUM_QUANT_TBLS; i++) {
fdct->divisors[i] = NULL;
#ifdef DCT_FLOAT_SUPPORTED
fdct->float_divisors[i] = NULL;
#endif
}
}