// Copyright 2006 The RE2 Authors. All Rights Reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // DESCRIPTION // // SparseSet<T>(m) is a set of integers in [0, m). // It requires sizeof(int)*m memory, but it provides // fast iteration through the elements in the set and fast clearing // of the set. // // Insertion and deletion are constant time operations. // // Allocating the set is a constant time operation // when memory allocation is a constant time operation. // // Clearing the set is a constant time operation (unusual!). // // Iterating through the set is an O(n) operation, where n // is the number of items in the set (not O(m)). // // The set iterator visits entries in the order they were first // inserted into the array. It is safe to add items to the set while // using an iterator: the iterator will visit indices added to the set // during the iteration, but will not re-visit indices whose values // change after visiting. Thus SparseSet can be a convenient // implementation of a work queue. // // The SparseSet implementation is NOT thread-safe. It is up to the // caller to make sure only one thread is accessing the set. (Typically // these sets are temporary values and used in situations where speed is // important.) // // The SparseSet interface does not present all the usual STL bells and // whistles. // // Implemented with reference to Briggs & Torczon, An Efficient // Representation for Sparse Sets, ACM Letters on Programming Languages // and Systems, Volume 2, Issue 1-4 (March-Dec. 1993), pp. 59-69. // // For a generalization to sparse array, see sparse_array.h. // IMPLEMENTATION // // See sparse_array.h for implementation details #ifndef RE2_UTIL_SPARSE_SET_H__ #define RE2_UTIL_SPARSE_SET_H__ #include "util/util.h" namespace re2 { class SparseSet { public: SparseSet() : size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(NULL), valgrind_(RunningOnValgrindOrMemorySanitizer()) {} SparseSet(int max_size) { max_size_ = max_size; sparse_to_dense_ = new int[max_size]; dense_ = new int[max_size]; valgrind_ = RunningOnValgrindOrMemorySanitizer(); // Don't need to zero the memory, but do so anyway // to appease Valgrind. if (valgrind_) { for (int i = 0; i < max_size; i++) { dense_[i] = 0xababababU; sparse_to_dense_[i] = 0xababababU; } } size_ = 0; } ~SparseSet() { delete[] sparse_to_dense_; delete[] dense_; } typedef int* iterator; typedef const int* const_iterator; int size() const { return size_; } iterator begin() { return dense_; } iterator end() { return dense_ + size_; } const_iterator begin() const { return dense_; } const_iterator end() const { return dense_ + size_; } // Change the maximum size of the array. // Invalidates all iterators. void resize(int new_max_size) { if (size_ > new_max_size) size_ = new_max_size; if (new_max_size > max_size_) { int* a = new int[new_max_size]; if (sparse_to_dense_) { memmove(a, sparse_to_dense_, max_size_*sizeof a[0]); if (valgrind_) { for (int i = max_size_; i < new_max_size; i++) a[i] = 0xababababU; } delete[] sparse_to_dense_; } sparse_to_dense_ = a; a = new int[new_max_size]; if (dense_) { memmove(a, dense_, size_*sizeof a[0]); if (valgrind_) { for (int i = size_; i < new_max_size; i++) a[i] = 0xababababU; } delete[] dense_; } dense_ = a; } max_size_ = new_max_size; } // Return the maximum size of the array. // Indices can be in the range [0, max_size). int max_size() const { return max_size_; } // Clear the array. void clear() { size_ = 0; } // Check whether i is in the array. bool contains(int i) const { DCHECK_GE(i, 0); DCHECK_LT(i, max_size_); if (static_cast<uint>(i) >= max_size_) { return false; } // Unsigned comparison avoids checking sparse_to_dense_[i] < 0. return (uint)sparse_to_dense_[i] < (uint)size_ && dense_[sparse_to_dense_[i]] == i; } // Adds i to the set. void insert(int i) { if (!contains(i)) insert_new(i); } // Set the value at the new index i to v. // Fast but unsafe: only use if contains(i) is false. void insert_new(int i) { if (static_cast<uint>(i) >= max_size_) { // Semantically, end() would be better here, but we already know // the user did something stupid, so begin() insulates them from // dereferencing an invalid pointer. return; } DCHECK(!contains(i)); DCHECK_LT(size_, max_size_); sparse_to_dense_[i] = size_; dense_[size_] = i; size_++; } // Comparison function for sorting. // Can sort the sparse array so that future iterations // will visit indices in increasing order using // sort(arr.begin(), arr.end(), arr.less); static bool less(int a, int b) { return a < b; } private: int size_; int max_size_; int* sparse_to_dense_; int* dense_; bool valgrind_; DISALLOW_EVIL_CONSTRUCTORS(SparseSet); }; } // namespace re2 #endif // RE2_UTIL_SPARSE_SET_H__