root/third_party/re2/re2/compile.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. Mk
  2. Deref
  3. Append
  4. NullFrag
  5. AllocInst
  6. Trim
  7. NoMatch
  8. IsNoMatch
  9. Cat
  10. Alt
  11. Star
  12. Plus
  13. Quest
  14. ByteRange
  15. Nop
  16. Match
  17. EmptyWidth
  18. Capture
  19. MaxRune
  20. BeginRange
  21. UncachedRuneByteSuffix
  22. RuneByteSuffix
  23. AddSuffix
  24. EndRange
  25. AddRuneRange
  26. AddRuneRangeLatin1
  27. Add_80_10ffff
  28. AddRuneRangeUTF8
  29. Copy
  30. ShortVisit
  31. PreVisit
  32. Literal
  33. PostVisit
  34. IsAnchorStart
  35. IsAnchorEnd
  36. Setup
  37. Finish
  38. CompileToProg
  39. CompileToReverseProg
  40. DotStar
  41. CompileSet
  42. CompileSet

// Copyright 2007 The RE2 Authors.  All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Compile regular expression to Prog.
//
// Prog and Inst are defined in prog.h.
// This file's external interface is just Regexp::CompileToProg.
// The Compiler class defined in this file is private.

#include "re2/prog.h"
#include "re2/re2.h"
#include "re2/regexp.h"
#include "re2/walker-inl.h"

namespace re2 {

// List of pointers to Inst* that need to be filled in (patched).
// Because the Inst* haven't been filled in yet,
// we can use the Inst* word to hold the list's "next" pointer.
// It's kind of sleazy, but it works well in practice.
// See http://swtch.com/~rsc/regexp/regexp1.html for inspiration.
//
// Because the out and out1 fields in Inst are no longer pointers,
// we can't use pointers directly here either.  Instead, p refers
// to inst_[p>>1].out (p&1 == 0) or inst_[p>>1].out1 (p&1 == 1).
// p == 0 represents the NULL list.  This is okay because instruction #0
// is always the fail instruction, which never appears on a list.

struct PatchList {
  uint32 p;

  // Returns patch list containing just p.
  static PatchList Mk(uint32 p);

  // Patches all the entries on l to have value v.
  // Caller must not ever use patch list again.
  static void Patch(Prog::Inst *inst0, PatchList l, uint32 v);

  // Deref returns the next pointer pointed at by p.
  static PatchList Deref(Prog::Inst *inst0, PatchList l);

  // Appends two patch lists and returns result.
  static PatchList Append(Prog::Inst *inst0, PatchList l1, PatchList l2);
};

static PatchList nullPatchList = { 0 };

// Returns patch list containing just p.
PatchList PatchList::Mk(uint32 p) {
  PatchList l;
  l.p = p;
  return l;
}

// Returns the next pointer pointed at by l.
PatchList PatchList::Deref(Prog::Inst* inst0, PatchList l) {
  Prog::Inst* ip = &inst0[l.p>>1];
  if (l.p&1)
    l.p = ip->out1();
  else
    l.p = ip->out();
  return l;
}

// Patches all the entries on l to have value v.
void PatchList::Patch(Prog::Inst *inst0, PatchList l, uint32 val) {
  while (l.p != 0) {
    Prog::Inst* ip = &inst0[l.p>>1];
    if (l.p&1) {
      l.p = ip->out1();
      ip->out1_ = val;
    } else {
      l.p = ip->out();
      ip->set_out(val);
    }
  }
}

// Appends two patch lists and returns result.
PatchList PatchList::Append(Prog::Inst* inst0, PatchList l1, PatchList l2) {
  if (l1.p == 0)
    return l2;
  if (l2.p == 0)
    return l1;

  PatchList l = l1;
  for (;;) {
    PatchList next = PatchList::Deref(inst0, l);
    if (next.p == 0)
      break;
    l = next;
  }

  Prog::Inst* ip = &inst0[l.p>>1];
  if (l.p&1)
    ip->out1_ = l2.p;
  else
    ip->set_out(l2.p);

  return l1;
}

// Compiled program fragment.
struct Frag {
  uint32 begin;
  PatchList end;

  Frag() : begin(0) { end.p = 0; }  // needed so Frag can go in vector
  Frag(uint32 begin, PatchList end) : begin(begin), end(end) {}
};

static Frag NullFrag() {
  return Frag();
}

// Input encodings.
enum Encoding {
  kEncodingUTF8 = 1,  // UTF-8 (0-10FFFF)
  kEncodingLatin1,    // Latin1 (0-FF)
};

class Compiler : public Regexp::Walker<Frag> {
 public:
  explicit Compiler();
  ~Compiler();

  // Compiles Regexp to a new Prog.
  // Caller is responsible for deleting Prog when finished with it.
  // If reversed is true, compiles for walking over the input
  // string backward (reverses all concatenations).
  static Prog *Compile(Regexp* re, bool reversed, int64 max_mem);

  // Compiles alternation of all the re to a new Prog.
  // Each re has a match with an id equal to its index in the vector.
  static Prog* CompileSet(const RE2::Options& options, RE2::Anchor anchor,
                          Regexp* re);

  // Interface for Regexp::Walker, which helps traverse the Regexp.
  // The walk is purely post-recursive: given the machines for the
  // children, PostVisit combines them to create the machine for
  // the current node.  The child_args are Frags.
  // The Compiler traverses the Regexp parse tree, visiting
  // each node in depth-first order.  It invokes PreVisit before
  // visiting the node's children and PostVisit after visiting
  // the children.
  Frag PreVisit(Regexp* re, Frag parent_arg, bool* stop);
  Frag PostVisit(Regexp* re, Frag parent_arg, Frag pre_arg, Frag* child_args,
                 int nchild_args);
  Frag ShortVisit(Regexp* re, Frag parent_arg);
  Frag Copy(Frag arg);

  // Given fragment a, returns a+ or a+?; a* or a*?; a? or a??
  Frag Plus(Frag a, bool nongreedy);
  Frag Star(Frag a, bool nongreedy);
  Frag Quest(Frag a, bool nongreedy);

  // Given fragment a, returns (a) capturing as \n.
  Frag Capture(Frag a, int n);

  // Given fragments a and b, returns ab; a|b
  Frag Cat(Frag a, Frag b);
  Frag Alt(Frag a, Frag b);

  // Returns a fragment that can't match anything.
  Frag NoMatch();

  // Returns a fragment that matches the empty string.
  Frag Match(int32 id);

  // Returns a no-op fragment.
  Frag Nop();

  // Returns a fragment matching the byte range lo-hi.
  Frag ByteRange(int lo, int hi, bool foldcase);

  // Returns a fragment matching an empty-width special op.
  Frag EmptyWidth(EmptyOp op);

  // Adds n instructions to the program.
  // Returns the index of the first one.
  // Returns -1 if no more instructions are available.
  int AllocInst(int n);

  // Deletes unused instructions.
  void Trim();

  // Rune range compiler.

  // Begins a new alternation.
  void BeginRange();

  // Adds a fragment matching the rune range lo-hi.
  void AddRuneRange(Rune lo, Rune hi, bool foldcase);
  void AddRuneRangeLatin1(Rune lo, Rune hi, bool foldcase);
  void AddRuneRangeUTF8(Rune lo, Rune hi, bool foldcase);
  void Add_80_10ffff();

  // New suffix that matches the byte range lo-hi, then goes to next.
  int RuneByteSuffix(uint8 lo, uint8 hi, bool foldcase, int next);
  int UncachedRuneByteSuffix(uint8 lo, uint8 hi, bool foldcase, int next);

  // Adds a suffix to alternation.
  void AddSuffix(int id);

  // Returns the alternation of all the added suffixes.
  Frag EndRange();

  // Single rune.
  Frag Literal(Rune r, bool foldcase);

  void Setup(Regexp::ParseFlags, int64, RE2::Anchor);
  Prog* Finish();

  // Returns .* where dot = any byte
  Frag DotStar();

 private:
  Prog* prog_;         // Program being built.
  bool failed_;        // Did we give up compiling?
  Encoding encoding_;  // Input encoding
  bool reversed_;      // Should program run backward over text?

  int max_inst_;       // Maximum number of instructions.

  Prog::Inst* inst_;   // Pointer to first instruction.
  int inst_len_;       // Number of instructions used.
  int inst_cap_;       // Number of instructions allocated.

  int64 max_mem_;      // Total memory budget.

  map<uint64, int> rune_cache_;
  Frag rune_range_;

  RE2::Anchor anchor_;  // anchor mode for RE2::Set

  DISALLOW_EVIL_CONSTRUCTORS(Compiler);
};

Compiler::Compiler() {
  prog_ = new Prog();
  failed_ = false;
  encoding_ = kEncodingUTF8;
  reversed_ = false;
  inst_ = NULL;
  inst_len_ = 0;
  inst_cap_ = 0;
  max_inst_ = 1;  // make AllocInst for fail instruction okay
  max_mem_ = 0;
  int fail = AllocInst(1);
  inst_[fail].InitFail();
  max_inst_ = 0;  // Caller must change
}

Compiler::~Compiler() {
  delete prog_;
  delete[] inst_;
}

int Compiler::AllocInst(int n) {
  if (failed_ || inst_len_ + n > max_inst_) {
    failed_ = true;
    return -1;
  }

  if (inst_len_ + n > inst_cap_) {
    if (inst_cap_ == 0)
      inst_cap_ = 8;
    while (inst_len_ + n > inst_cap_)
      inst_cap_ *= 2;
    Prog::Inst* ip = new Prog::Inst[inst_cap_];
    memmove(ip, inst_, inst_len_ * sizeof ip[0]);
    memset(ip + inst_len_, 0, (inst_cap_ - inst_len_) * sizeof ip[0]);
    delete[] inst_;
    inst_ = ip;
  }
  int id = inst_len_;
  inst_len_ += n;
  return id;
}

void Compiler::Trim() {
  if (inst_len_ < inst_cap_) {
    Prog::Inst* ip = new Prog::Inst[inst_len_];
    memmove(ip, inst_, inst_len_ * sizeof ip[0]);
    delete[] inst_;
    inst_ = ip;
    inst_cap_ = inst_len_;
  }
}

// These routines are somewhat hard to visualize in text --
// see http://swtch.com/~rsc/regexp/regexp1.html for
// pictures explaining what is going on here.

// Returns an unmatchable fragment.
Frag Compiler::NoMatch() {
  return Frag(0, nullPatchList);
}

// Is a an unmatchable fragment?
static bool IsNoMatch(Frag a) {
  return a.begin == 0;
}

// Given fragments a and b, returns fragment for ab.
Frag Compiler::Cat(Frag a, Frag b) {
  if (IsNoMatch(a) || IsNoMatch(b))
    return NoMatch();

  // Elide no-op.
  Prog::Inst* begin = &inst_[a.begin];
  if (begin->opcode() == kInstNop &&
      a.end.p == (a.begin << 1) &&
      begin->out() == 0) {
    PatchList::Patch(inst_, a.end, b.begin);  // in case refs to a somewhere
    return b;
  }

  // To run backward over string, reverse all concatenations.
  if (reversed_) {
    PatchList::Patch(inst_, b.end, a.begin);
    return Frag(b.begin, a.end);
  }

  PatchList::Patch(inst_, a.end, b.begin);
  return Frag(a.begin, b.end);
}

// Given fragments for a and b, returns fragment for a|b.
Frag Compiler::Alt(Frag a, Frag b) {
  // Special case for convenience in loops.
  if (IsNoMatch(a))
    return b;
  if (IsNoMatch(b))
    return a;

  int id = AllocInst(1);
  if (id < 0)
    return NoMatch();

  inst_[id].InitAlt(a.begin, b.begin);
  return Frag(id, PatchList::Append(inst_, a.end, b.end));
}

// When capturing submatches in like-Perl mode, a kOpAlt Inst
// treats out_ as the first choice, out1_ as the second.
//
// For *, +, and ?, if out_ causes another repetition,
// then the operator is greedy.  If out1_ is the repetition
// (and out_ moves forward), then the operator is non-greedy.

// Given a fragment a, returns a fragment for a* or a*? (if nongreedy)
Frag Compiler::Star(Frag a, bool nongreedy) {
  int id = AllocInst(1);
  if (id < 0)
    return NoMatch();
  inst_[id].InitAlt(0, 0);
  PatchList::Patch(inst_, a.end, id);
  if (nongreedy) {
    inst_[id].out1_ = a.begin;
    return Frag(id, PatchList::Mk(id << 1));
  } else {
    inst_[id].set_out(a.begin);
    return Frag(id, PatchList::Mk((id << 1) | 1));
  }
}

// Given a fragment for a, returns a fragment for a+ or a+? (if nongreedy)
Frag Compiler::Plus(Frag a, bool nongreedy) {
  // a+ is just a* with a different entry point.
  Frag f = Star(a, nongreedy);
  return Frag(a.begin, f.end);
}

// Given a fragment for a, returns a fragment for a? or a?? (if nongreedy)
Frag Compiler::Quest(Frag a, bool nongreedy) {
  int id = AllocInst(1);
  if (id < 0)
    return NoMatch();
  PatchList pl;
  if (nongreedy) {
    inst_[id].InitAlt(0, a.begin);
    pl = PatchList::Mk(id << 1);
  } else {
    inst_[id].InitAlt(a.begin, 0);
    pl = PatchList::Mk((id << 1) | 1);
  }
  return Frag(id, PatchList::Append(inst_, pl, a.end));
}

// Returns a fragment for the byte range lo-hi.
Frag Compiler::ByteRange(int lo, int hi, bool foldcase) {
  int id = AllocInst(1);
  if (id < 0)
    return NoMatch();
  inst_[id].InitByteRange(lo, hi, foldcase, 0);
  prog_->byte_inst_count_++;
  prog_->MarkByteRange(lo, hi);
  if (foldcase && lo <= 'z' && hi >= 'a') {
    if (lo < 'a')
      lo = 'a';
    if (hi > 'z')
      hi = 'z';
    if (lo <= hi)
      prog_->MarkByteRange(lo + 'A' - 'a', hi + 'A' - 'a');
  }
  return Frag(id, PatchList::Mk(id << 1));
}

// Returns a no-op fragment.  Sometimes unavoidable.
Frag Compiler::Nop() {
  int id = AllocInst(1);
  if (id < 0)
    return NoMatch();
  inst_[id].InitNop(0);
  return Frag(id, PatchList::Mk(id << 1));
}

// Returns a fragment that signals a match.
Frag Compiler::Match(int32 match_id) {
  int id = AllocInst(1);
  if (id < 0)
    return NoMatch();
  inst_[id].InitMatch(match_id);
  return Frag(id, nullPatchList);
}

// Returns a fragment matching a particular empty-width op (like ^ or $)
Frag Compiler::EmptyWidth(EmptyOp empty) {
  int id = AllocInst(1);
  if (id < 0)
    return NoMatch();
  inst_[id].InitEmptyWidth(empty, 0);
  if (empty & (kEmptyBeginLine|kEmptyEndLine))
    prog_->MarkByteRange('\n', '\n');
  if (empty & (kEmptyWordBoundary|kEmptyNonWordBoundary)) {
    int j;
    for (int i = 0; i < 256; i = j) {
      for (j = i+1; j < 256 && Prog::IsWordChar(i) == Prog::IsWordChar(j); j++)
        ;
      prog_->MarkByteRange(i, j-1);
    }
  }
  return Frag(id, PatchList::Mk(id << 1));
}

// Given a fragment a, returns a fragment with capturing parens around a.
Frag Compiler::Capture(Frag a, int n) {
  int id = AllocInst(2);
  if (id < 0)
    return NoMatch();
  inst_[id].InitCapture(2*n, a.begin);
  inst_[id+1].InitCapture(2*n+1, 0);
  PatchList::Patch(inst_, a.end, id+1);

  return Frag(id, PatchList::Mk((id+1) << 1));
}

// A Rune is a name for a Unicode code point.
// Returns maximum rune encoded by UTF-8 sequence of length len.
static int MaxRune(int len) {
  int b;  // number of Rune bits in len-byte UTF-8 sequence (len < UTFmax)
  if (len == 1)
    b = 7;
  else
    b = 8-(len+1) + 6*(len-1);
  return (1<<b) - 1;   // maximum Rune for b bits.
}

// The rune range compiler caches common suffix fragments,
// which are very common in UTF-8 (e.g., [80-bf]).
// The fragment suffixes are identified by their start
// instructions.  NULL denotes the eventual end match.
// The Frag accumulates in rune_range_.  Caching common
// suffixes reduces the UTF-8 "." from 32 to 24 instructions,
// and it reduces the corresponding one-pass NFA from 16 nodes to 8.

void Compiler::BeginRange() {
  rune_cache_.clear();
  rune_range_.begin = 0;
  rune_range_.end = nullPatchList;
}

int Compiler::UncachedRuneByteSuffix(uint8 lo, uint8 hi, bool foldcase,
                                     int next) {
  Frag f = ByteRange(lo, hi, foldcase);
  if (next != 0) {
    PatchList::Patch(inst_, f.end, next);
  } else {
    rune_range_.end = PatchList::Append(inst_, rune_range_.end, f.end);
  }
  return f.begin;
}

int Compiler::RuneByteSuffix(uint8 lo, uint8 hi, bool foldcase, int next) {
  // In Latin1 mode, there's no point in caching.
  // In forward UTF-8 mode, only need to cache continuation bytes.
  if (encoding_ == kEncodingLatin1 ||
      (encoding_ == kEncodingUTF8 &&
       !reversed_ &&
       !(0x80 <= lo && hi <= 0xbf))) {
    return UncachedRuneByteSuffix(lo, hi, foldcase, next);
  }

  uint64 key = ((uint64)next << 17) | (lo<<9) | (hi<<1) | (foldcase ? 1ULL : 0ULL);
  map<uint64, int>::iterator it = rune_cache_.find(key);
  if (it != rune_cache_.end())
    return it->second;
  int id = UncachedRuneByteSuffix(lo, hi, foldcase, next);
  rune_cache_[key] = id;
  return id;
}

void Compiler::AddSuffix(int id) {
  if (rune_range_.begin == 0) {
    rune_range_.begin = id;
    return;
  }

  int alt = AllocInst(1);
  if (alt < 0) {
    rune_range_.begin = 0;
    return;
  }
  inst_[alt].InitAlt(rune_range_.begin, id);
  rune_range_.begin = alt;
}

Frag Compiler::EndRange() {
  return rune_range_;
}

// Converts rune range lo-hi into a fragment that recognizes
// the bytes that would make up those runes in the current
// encoding (Latin 1 or UTF-8).
// This lets the machine work byte-by-byte even when
// using multibyte encodings.

void Compiler::AddRuneRange(Rune lo, Rune hi, bool foldcase) {
  switch (encoding_) {
    default:
    case kEncodingUTF8:
      AddRuneRangeUTF8(lo, hi, foldcase);
      break;
    case kEncodingLatin1:
      AddRuneRangeLatin1(lo, hi, foldcase);
      break;
  }
}

void Compiler::AddRuneRangeLatin1(Rune lo, Rune hi, bool foldcase) {
  // Latin1 is easy: runes *are* bytes.
  if (lo > hi || lo > 0xFF)
    return;
  if (hi > 0xFF)
    hi = 0xFF;
  AddSuffix(RuneByteSuffix(lo, hi, foldcase, 0));
}

// Table describing how to make a UTF-8 matching machine
// for the rune range 80-10FFFF (Runeself-Runemax).
// This range happens frequently enough (for example /./ and /[^a-z]/)
// and the rune_cache_ map is slow enough that this is worth
// special handling.  Makes compilation of a small expression
// with a dot in it about 10% faster.
// The * in the comments below mark whole sequences.
static struct ByteRangeProg {
  int next;
  int lo;
  int hi;
} prog_80_10ffff[] = {
  // Two-byte
  { -1, 0x80, 0xBF, },  // 0:  80-BF
  {  0, 0xC2, 0xDF, },  // 1:  C2-DF 80-BF*

  // Three-byte
  {  0, 0xA0, 0xBF, },  // 2:  A0-BF 80-BF
  {  2, 0xE0, 0xE0, },  // 3:  E0 A0-BF 80-BF*
  {  0, 0x80, 0xBF, },  // 4:  80-BF 80-BF
  {  4, 0xE1, 0xEF, },  // 5:  E1-EF 80-BF 80-BF*

  // Four-byte
  {  4, 0x90, 0xBF, },  // 6:  90-BF 80-BF 80-BF
  {  6, 0xF0, 0xF0, },  // 7:  F0 90-BF 80-BF 80-BF*
  {  4, 0x80, 0xBF, },  // 8:  80-BF 80-BF 80-BF
  {  8, 0xF1, 0xF3, },  // 9: F1-F3 80-BF 80-BF 80-BF*
  {  4, 0x80, 0x8F, },  // 10: 80-8F 80-BF 80-BF
  { 10, 0xF4, 0xF4, },  // 11: F4 80-8F 80-BF 80-BF*
};

void Compiler::Add_80_10ffff() {
  int inst[arraysize(prog_80_10ffff)] = { 0 }; // does not need to be initialized; silences gcc warning
  for (int i = 0; i < arraysize(prog_80_10ffff); i++) {
    const ByteRangeProg& p = prog_80_10ffff[i];
    int next = 0;
    if (p.next >= 0)
      next = inst[p.next];
    inst[i] = UncachedRuneByteSuffix(p.lo, p.hi, false, next);
    if ((p.lo & 0xC0) != 0x80)
      AddSuffix(inst[i]);
  }
}

void Compiler::AddRuneRangeUTF8(Rune lo, Rune hi, bool foldcase) {
  if (lo > hi)
    return;

  // Pick off 80-10FFFF as a common special case
  // that can bypass the slow rune_cache_.
  if (lo == 0x80 && hi == 0x10ffff && !reversed_) {
    Add_80_10ffff();
    return;
  }

  // Split range into same-length sized ranges.
  for (int i = 1; i < UTFmax; i++) {
    Rune max = MaxRune(i);
    if (lo <= max && max < hi) {
      AddRuneRangeUTF8(lo, max, foldcase);
      AddRuneRangeUTF8(max+1, hi, foldcase);
      return;
    }
  }

  // ASCII range is always a special case.
  if (hi < Runeself) {
    AddSuffix(RuneByteSuffix(lo, hi, foldcase, 0));
    return;
  }

  // Split range into sections that agree on leading bytes.
  for (int i = 1; i < UTFmax; i++) {
    uint m = (1<<(6*i)) - 1;  // last i bytes of a UTF-8 sequence
    if ((lo & ~m) != (hi & ~m)) {
      if ((lo & m) != 0) {
        AddRuneRangeUTF8(lo, lo|m, foldcase);
        AddRuneRangeUTF8((lo|m)+1, hi, foldcase);
        return;
      }
      if ((hi & m) != m) {
        AddRuneRangeUTF8(lo, (hi&~m)-1, foldcase);
        AddRuneRangeUTF8(hi&~m, hi, foldcase);
        return;
      }
    }
  }

  // Finally.  Generate byte matching equivalent for lo-hi.
  uint8 ulo[UTFmax], uhi[UTFmax];
  int n = runetochar(reinterpret_cast<char*>(ulo), &lo);
  int m = runetochar(reinterpret_cast<char*>(uhi), &hi);
  (void)m;  // USED(m)
  DCHECK_EQ(n, m);

  int id = 0;
  if (reversed_) {
    for (int i = 0; i < n; i++)
      id = RuneByteSuffix(ulo[i], uhi[i], false, id);
  } else {
    for (int i = n-1; i >= 0; i--)
      id = RuneByteSuffix(ulo[i], uhi[i], false, id);
  }
  AddSuffix(id);
}

// Should not be called.
Frag Compiler::Copy(Frag arg) {
  // We're using WalkExponential; there should be no copying.
  LOG(DFATAL) << "Compiler::Copy called!";
  failed_ = true;
  return NoMatch();
}

// Visits a node quickly; called once WalkExponential has
// decided to cut this walk short.
Frag Compiler::ShortVisit(Regexp* re, Frag) {
  failed_ = true;
  return NoMatch();
}

// Called before traversing a node's children during the walk.
Frag Compiler::PreVisit(Regexp* re, Frag, bool* stop) {
  // Cut off walk if we've already failed.
  if (failed_)
    *stop = true;

  return NullFrag();  // not used by caller
}

Frag Compiler::Literal(Rune r, bool foldcase) {
  switch (encoding_) {
    default:
      return NullFrag();

    case kEncodingLatin1:
      return ByteRange(r, r, foldcase);

    case kEncodingUTF8: {
      if (r < Runeself)  // Make common case fast.
        return ByteRange(r, r, foldcase);
      uint8 buf[UTFmax];
      int n = runetochar(reinterpret_cast<char*>(buf), &r);
      Frag f = ByteRange((uint8)buf[0], buf[0], false);
      for (int i = 1; i < n; i++)
        f = Cat(f, ByteRange((uint8)buf[i], buf[i], false));
      return f;
    }
  }
}

// Called after traversing the node's children during the walk.
// Given their frags, build and return the frag for this re.
Frag Compiler::PostVisit(Regexp* re, Frag, Frag, Frag* child_frags,
                         int nchild_frags) {
  // If a child failed, don't bother going forward, especially
  // since the child_frags might contain Frags with NULLs in them.
  if (failed_)
    return NoMatch();

  // Given the child fragments, return the fragment for this node.
  switch (re->op()) {
    case kRegexpRepeat:
      // Should not see; code at bottom of function will print error
      break;

    case kRegexpNoMatch:
      return NoMatch();

    case kRegexpEmptyMatch:
      return Nop();

    case kRegexpHaveMatch: {
      Frag f = Match(re->match_id());
      // Remember unanchored match to end of string.
      if (anchor_ != RE2::ANCHOR_BOTH)
        f = Cat(DotStar(), Cat(EmptyWidth(kEmptyEndText), f));
      return f;
    }

    case kRegexpConcat: {
      Frag f = child_frags[0];
      for (int i = 1; i < nchild_frags; i++)
        f = Cat(f, child_frags[i]);
      return f;
    }

    case kRegexpAlternate: {
      Frag f = child_frags[0];
      for (int i = 1; i < nchild_frags; i++)
        f = Alt(f, child_frags[i]);
      return f;
    }

    case kRegexpStar:
      return Star(child_frags[0], re->parse_flags()&Regexp::NonGreedy);

    case kRegexpPlus:
      return Plus(child_frags[0], re->parse_flags()&Regexp::NonGreedy);

    case kRegexpQuest:
      return Quest(child_frags[0], re->parse_flags()&Regexp::NonGreedy);

    case kRegexpLiteral:
      return Literal(re->rune(), re->parse_flags()&Regexp::FoldCase);

    case kRegexpLiteralString: {
      // Concatenation of literals.
      if (re->nrunes() == 0)
        return Nop();
      Frag f;
      for (int i = 0; i < re->nrunes(); i++) {
        Frag f1 = Literal(re->runes()[i], re->parse_flags()&Regexp::FoldCase);
        if (i == 0)
          f = f1;
        else
          f = Cat(f, f1);
      }
      return f;
    }

    case kRegexpAnyChar:
      BeginRange();
      AddRuneRange(0, Runemax, false);
      return EndRange();

    case kRegexpAnyByte:
      return ByteRange(0x00, 0xFF, false);

    case kRegexpCharClass: {
      CharClass* cc = re->cc();
      if (cc->empty()) {
        // This can't happen.
        LOG(DFATAL) << "No ranges in char class";
        failed_ = true;
        return NoMatch();
      }

      // ASCII case-folding optimization: if the char class
      // behaves the same on A-Z as it does on a-z,
      // discard any ranges wholly contained in A-Z
      // and mark the other ranges as foldascii.
      // This reduces the size of a program for
      // (?i)abc from 3 insts per letter to 1 per letter.
      bool foldascii = cc->FoldsASCII();

      // Character class is just a big OR of the different
      // character ranges in the class.
      BeginRange();
      for (CharClass::iterator i = cc->begin(); i != cc->end(); ++i) {
        // ASCII case-folding optimization (see above).
        if (foldascii && 'A' <= i->lo && i->hi <= 'Z')
          continue;

        // If this range contains all of A-Za-z or none of it,
        // the fold flag is unnecessary; don't bother.
        bool fold = foldascii;
        if ((i->lo <= 'A' && 'z' <= i->hi) || i->hi < 'A' || 'z' < i->lo)
          fold = false;

        AddRuneRange(i->lo, i->hi, fold);
      }
      return EndRange();
    }

    case kRegexpCapture:
      // If this is a non-capturing parenthesis -- (?:foo) --
      // just use the inner expression.
      if (re->cap() < 0)
        return child_frags[0];
      return Capture(child_frags[0], re->cap());

    case kRegexpBeginLine:
      return EmptyWidth(reversed_ ? kEmptyEndLine : kEmptyBeginLine);

    case kRegexpEndLine:
      return EmptyWidth(reversed_ ? kEmptyBeginLine : kEmptyEndLine);

    case kRegexpBeginText:
      return EmptyWidth(reversed_ ? kEmptyEndText : kEmptyBeginText);

    case kRegexpEndText:
      return EmptyWidth(reversed_ ? kEmptyBeginText : kEmptyEndText);

    case kRegexpWordBoundary:
      return EmptyWidth(kEmptyWordBoundary);

    case kRegexpNoWordBoundary:
      return EmptyWidth(kEmptyNonWordBoundary);
  }
  LOG(DFATAL) << "Missing case in Compiler: " << re->op();
  failed_ = true;
  return NoMatch();
}

// Is this regexp required to start at the beginning of the text?
// Only approximate; can return false for complicated regexps like (\Aa|\Ab),
// but handles (\A(a|b)).  Could use the Walker to write a more exact one.
static bool IsAnchorStart(Regexp** pre, int depth) {
  Regexp* re = *pre;
  Regexp* sub;
  // The depth limit makes sure that we don't overflow
  // the stack on a deeply nested regexp.  As the comment
  // above says, IsAnchorStart is conservative, so returning
  // a false negative is okay.  The exact limit is somewhat arbitrary.
  if (re == NULL || depth >= 4)
    return false;
  switch (re->op()) {
    default:
      break;
    case kRegexpConcat:
      if (re->nsub() > 0) {
        sub = re->sub()[0]->Incref();
        if (IsAnchorStart(&sub, depth+1)) {
          Regexp** subcopy = new Regexp*[re->nsub()];
          subcopy[0] = sub;  // already have reference
          for (int i = 1; i < re->nsub(); i++)
            subcopy[i] = re->sub()[i]->Incref();
          *pre = Regexp::Concat(subcopy, re->nsub(), re->parse_flags());
          delete[] subcopy;
          re->Decref();
          return true;
        }
        sub->Decref();
      }
      break;
    case kRegexpCapture:
      sub = re->sub()[0]->Incref();
      if (IsAnchorStart(&sub, depth+1)) {
        *pre = Regexp::Capture(sub, re->parse_flags(), re->cap());
        re->Decref();
        return true;
      }
      sub->Decref();
      break;
    case kRegexpBeginText:
      *pre = Regexp::LiteralString(NULL, 0, re->parse_flags());
      re->Decref();
      return true;
  }
  return false;
}

// Is this regexp required to start at the end of the text?
// Only approximate; can return false for complicated regexps like (a\z|b\z),
// but handles ((a|b)\z).  Could use the Walker to write a more exact one.
static bool IsAnchorEnd(Regexp** pre, int depth) {
  Regexp* re = *pre;
  Regexp* sub;
  // The depth limit makes sure that we don't overflow
  // the stack on a deeply nested regexp.  As the comment
  // above says, IsAnchorEnd is conservative, so returning
  // a false negative is okay.  The exact limit is somewhat arbitrary.
  if (re == NULL || depth >= 4)
    return false;
  switch (re->op()) {
    default:
      break;
    case kRegexpConcat:
      if (re->nsub() > 0) {
        sub = re->sub()[re->nsub() - 1]->Incref();
        if (IsAnchorEnd(&sub, depth+1)) {
          Regexp** subcopy = new Regexp*[re->nsub()];
          subcopy[re->nsub() - 1] = sub;  // already have reference
          for (int i = 0; i < re->nsub() - 1; i++)
            subcopy[i] = re->sub()[i]->Incref();
          *pre = Regexp::Concat(subcopy, re->nsub(), re->parse_flags());
          delete[] subcopy;
          re->Decref();
          return true;
        }
        sub->Decref();
      }
      break;
    case kRegexpCapture:
      sub = re->sub()[0]->Incref();
      if (IsAnchorEnd(&sub, depth+1)) {
        *pre = Regexp::Capture(sub, re->parse_flags(), re->cap());
        re->Decref();
        return true;
      }
      sub->Decref();
      break;
    case kRegexpEndText:
      *pre = Regexp::LiteralString(NULL, 0, re->parse_flags());
      re->Decref();
      return true;
  }
  return false;
}

void Compiler::Setup(Regexp::ParseFlags flags, int64 max_mem,
                     RE2::Anchor anchor) {
  prog_->set_flags(flags);

  if (flags & Regexp::Latin1)
    encoding_ = kEncodingLatin1;
  max_mem_ = max_mem;
  if (max_mem <= 0) {
    max_inst_ = 100000;  // more than enough
  } else if (max_mem <= sizeof(Prog)) {
    // No room for anything.
    max_inst_ = 0;
  } else {
    int64 m = (max_mem - sizeof(Prog)) / sizeof(Prog::Inst);
    // Limit instruction count so that inst->id() fits nicely in an int.
    // SparseArray also assumes that the indices (inst->id()) are ints.
    // The call to WalkExponential uses 2*max_inst_ below,
    // and other places in the code use 2 or 3 * prog->size().
    // Limiting to 2^24 should avoid overflow in those places.
    // (The point of allowing more than 32 bits of memory is to
    // have plenty of room for the DFA states, not to use it up
    // on the program.)
    if (m >= 1<<24)
      m = 1<<24;

    // Inst imposes its own limit (currently bigger than 2^24 but be safe).
    if (m > Prog::Inst::kMaxInst)
      m = Prog::Inst::kMaxInst;

    max_inst_ = m;
  }

  anchor_ = anchor;
}

// Compiles re, returning program.
// Caller is responsible for deleting prog_.
// If reversed is true, compiles a program that expects
// to run over the input string backward (reverses all concatenations).
// The reversed flag is also recorded in the returned program.
Prog* Compiler::Compile(Regexp* re, bool reversed, int64 max_mem) {
  Compiler c;

  c.Setup(re->parse_flags(), max_mem, RE2::ANCHOR_BOTH /* unused */);
  c.reversed_ = reversed;

  // Simplify to remove things like counted repetitions
  // and character classes like \d.
  Regexp* sre = re->Simplify();
  if (sre == NULL)
    return NULL;

  // Record whether prog is anchored, removing the anchors.
  // (They get in the way of other optimizations.)
  bool is_anchor_start = IsAnchorStart(&sre, 0);
  bool is_anchor_end = IsAnchorEnd(&sre, 0);

  // Generate fragment for entire regexp.
  Frag f = c.WalkExponential(sre, NullFrag(), 2*c.max_inst_);
  sre->Decref();
  if (c.failed_)
    return NULL;

  // Success!  Finish by putting Match node at end, and record start.
  // Turn off c.reversed_ (if it is set) to force the remaining concatenations
  // to behave normally.
  c.reversed_ = false;
  Frag all = c.Cat(f, c.Match(0));
  c.prog_->set_start(all.begin);

  if (reversed) {
    c.prog_->set_anchor_start(is_anchor_end);
    c.prog_->set_anchor_end(is_anchor_start);
  } else {
    c.prog_->set_anchor_start(is_anchor_start);
    c.prog_->set_anchor_end(is_anchor_end);
  }

  // Also create unanchored version, which starts with a .*? loop.
  if (c.prog_->anchor_start()) {
    c.prog_->set_start_unanchored(c.prog_->start());
  } else {
    Frag unanchored = c.Cat(c.DotStar(), all);
    c.prog_->set_start_unanchored(unanchored.begin);
  }

  c.prog_->set_reversed(reversed);

  // Hand ownership of prog_ to caller.
  return c.Finish();
}

Prog* Compiler::Finish() {
  if (failed_)
    return NULL;

  if (prog_->start() == 0 && prog_->start_unanchored() == 0) {
    // No possible matches; keep Fail instruction only.
    inst_len_ = 1;
  }

  // Trim instruction to minimum array and transfer to Prog.
  Trim();
  prog_->inst_ = inst_;
  prog_->size_ = inst_len_;
  inst_ = NULL;

  // Compute byte map.
  prog_->ComputeByteMap();

  prog_->Optimize();

  // Record remaining memory for DFA.
  if (max_mem_ <= 0) {
    prog_->set_dfa_mem(1<<20);
  } else {
    int64 m = max_mem_ - sizeof(Prog) - inst_len_*sizeof(Prog::Inst);
    if (m < 0)
      m = 0;
    prog_->set_dfa_mem(m);
  }

  Prog* p = prog_;
  prog_ = NULL;
  return p;
}

// Converts Regexp to Prog.
Prog* Regexp::CompileToProg(int64 max_mem) {
  return Compiler::Compile(this, false, max_mem);
}

Prog* Regexp::CompileToReverseProg(int64 max_mem) {
  return Compiler::Compile(this, true, max_mem);
}

Frag Compiler::DotStar() {
  return Star(ByteRange(0x00, 0xff, false), true);
}

// Compiles RE set to Prog.
Prog* Compiler::CompileSet(const RE2::Options& options, RE2::Anchor anchor,
                           Regexp* re) {
  Compiler c;

  Regexp::ParseFlags pf = static_cast<Regexp::ParseFlags>(options.ParseFlags());
  c.Setup(pf, options.max_mem(), anchor);

  // Compile alternation of fragments.
  Frag all = c.WalkExponential(re, NullFrag(), 2*c.max_inst_);
  re->Decref();
  if (c.failed_)
    return NULL;

  if (anchor == RE2::UNANCHORED) {
    // The trailing .* was added while handling kRegexpHaveMatch.
    // We just have to add the leading one.
    all = c.Cat(c.DotStar(), all);
  }

  c.prog_->set_start(all.begin);
  c.prog_->set_start_unanchored(all.begin);
  c.prog_->set_anchor_start(true);
  c.prog_->set_anchor_end(true);

  Prog* prog = c.Finish();
  if (prog == NULL)
    return NULL;

  // Make sure DFA has enough memory to operate,
  // since we're not going to fall back to the NFA.
  bool failed;
  StringPiece sp = "hello, world";
  prog->SearchDFA(sp, sp, Prog::kAnchored, Prog::kManyMatch,
                  NULL, &failed, NULL);
  if (failed) {
    delete prog;
    return NULL;
  }

  return prog;
}

Prog* Prog::CompileSet(const RE2::Options& options, RE2::Anchor anchor,
                       Regexp* re) {
  return Compiler::CompileSet(options, anchor, re);
}

}  // namespace re2

/* [<][>][^][v][top][bottom][index][help] */