root/third_party/libwebp/dec/vp8.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. WebPGetDecoderVersion
  2. SetOk
  3. VP8InitIoInternal
  4. VP8New
  5. VP8StatusMessage
  6. VP8Delete
  7. VP8SetError
  8. VP8CheckSignature
  9. VP8GetInfo
  10. ResetSegmentHeader
  11. ParseSegmentHeader
  12. ParsePartitions
  13. ParseFilterHeader
  14. VP8GetHeaders
  15. GetLargeValue
  16. GetCoeffs
  17. NzCodeBits
  18. ParseResiduals
  19. VP8DecodeMB
  20. VP8InitScanline
  21. ParseFrame
  22. VP8Decode
  23. VP8Clear

// Copyright 2010 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// main entry for the decoder
//
// Author: Skal (pascal.massimino@gmail.com)

#include <stdlib.h>

#include "./alphai.h"
#include "./vp8i.h"
#include "./vp8li.h"
#include "./webpi.h"
#include "../utils/bit_reader.h"

//------------------------------------------------------------------------------

int WebPGetDecoderVersion(void) {
  return (DEC_MAJ_VERSION << 16) | (DEC_MIN_VERSION << 8) | DEC_REV_VERSION;
}

//------------------------------------------------------------------------------
// VP8Decoder

static void SetOk(VP8Decoder* const dec) {
  dec->status_ = VP8_STATUS_OK;
  dec->error_msg_ = "OK";
}

int VP8InitIoInternal(VP8Io* const io, int version) {
  if (WEBP_ABI_IS_INCOMPATIBLE(version, WEBP_DECODER_ABI_VERSION)) {
    return 0;  // mismatch error
  }
  if (io != NULL) {
    memset(io, 0, sizeof(*io));
  }
  return 1;
}

VP8Decoder* VP8New(void) {
  VP8Decoder* const dec = (VP8Decoder*)calloc(1, sizeof(*dec));
  if (dec != NULL) {
    SetOk(dec);
    WebPWorkerInit(&dec->worker_);
    dec->ready_ = 0;
    dec->num_parts_ = 1;
  }
  return dec;
}

VP8StatusCode VP8Status(VP8Decoder* const dec) {
  if (!dec) return VP8_STATUS_INVALID_PARAM;
  return dec->status_;
}

const char* VP8StatusMessage(VP8Decoder* const dec) {
  if (dec == NULL) return "no object";
  if (!dec->error_msg_) return "OK";
  return dec->error_msg_;
}

void VP8Delete(VP8Decoder* const dec) {
  if (dec != NULL) {
    VP8Clear(dec);
    free(dec);
  }
}

int VP8SetError(VP8Decoder* const dec,
                VP8StatusCode error, const char* const msg) {
  // TODO This check would be unnecessary if alpha decompression was separated
  // from VP8ProcessRow/FinishRow. This avoids setting 'dec->status_' to
  // something other than VP8_STATUS_BITSTREAM_ERROR on alpha decompression
  // failure.
  if (dec->status_ == VP8_STATUS_OK) {
    dec->status_ = error;
    dec->error_msg_ = msg;
    dec->ready_ = 0;
  }
  return 0;
}

//------------------------------------------------------------------------------

int VP8CheckSignature(const uint8_t* const data, size_t data_size) {
  return (data_size >= 3 &&
          data[0] == 0x9d && data[1] == 0x01 && data[2] == 0x2a);
}

int VP8GetInfo(const uint8_t* data, size_t data_size, size_t chunk_size,
               int* const width, int* const height) {
  if (data == NULL || data_size < VP8_FRAME_HEADER_SIZE) {
    return 0;         // not enough data
  }
  // check signature
  if (!VP8CheckSignature(data + 3, data_size - 3)) {
    return 0;         // Wrong signature.
  } else {
    const uint32_t bits = data[0] | (data[1] << 8) | (data[2] << 16);
    const int key_frame = !(bits & 1);
    const int w = ((data[7] << 8) | data[6]) & 0x3fff;
    const int h = ((data[9] << 8) | data[8]) & 0x3fff;

    if (!key_frame) {   // Not a keyframe.
      return 0;
    }

    if (((bits >> 1) & 7) > 3) {
      return 0;         // unknown profile
    }
    if (!((bits >> 4) & 1)) {
      return 0;         // first frame is invisible!
    }
    if (((bits >> 5)) >= chunk_size) {  // partition_length
      return 0;         // inconsistent size information.
    }
    if (w == 0 || h == 0) {
      return 0;         // We don't support both width and height to be zero.
    }

    if (width) {
      *width = w;
    }
    if (height) {
      *height = h;
    }

    return 1;
  }
}

//------------------------------------------------------------------------------
// Header parsing

static void ResetSegmentHeader(VP8SegmentHeader* const hdr) {
  assert(hdr != NULL);
  hdr->use_segment_ = 0;
  hdr->update_map_ = 0;
  hdr->absolute_delta_ = 1;
  memset(hdr->quantizer_, 0, sizeof(hdr->quantizer_));
  memset(hdr->filter_strength_, 0, sizeof(hdr->filter_strength_));
}

// Paragraph 9.3
static int ParseSegmentHeader(VP8BitReader* br,
                              VP8SegmentHeader* hdr, VP8Proba* proba) {
  assert(br != NULL);
  assert(hdr != NULL);
  hdr->use_segment_ = VP8Get(br);
  if (hdr->use_segment_) {
    hdr->update_map_ = VP8Get(br);
    if (VP8Get(br)) {   // update data
      int s;
      hdr->absolute_delta_ = VP8Get(br);
      for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
        hdr->quantizer_[s] = VP8Get(br) ? VP8GetSignedValue(br, 7) : 0;
      }
      for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
        hdr->filter_strength_[s] = VP8Get(br) ? VP8GetSignedValue(br, 6) : 0;
      }
    }
    if (hdr->update_map_) {
      int s;
      for (s = 0; s < MB_FEATURE_TREE_PROBS; ++s) {
        proba->segments_[s] = VP8Get(br) ? VP8GetValue(br, 8) : 255u;
      }
    }
  } else {
    hdr->update_map_ = 0;
  }
  return !br->eof_;
}

// Paragraph 9.5
// This function returns VP8_STATUS_SUSPENDED if we don't have all the
// necessary data in 'buf'.
// This case is not necessarily an error (for incremental decoding).
// Still, no bitreader is ever initialized to make it possible to read
// unavailable memory.
// If we don't even have the partitions' sizes, than VP8_STATUS_NOT_ENOUGH_DATA
// is returned, and this is an unrecoverable error.
// If the partitions were positioned ok, VP8_STATUS_OK is returned.
static VP8StatusCode ParsePartitions(VP8Decoder* const dec,
                                     const uint8_t* buf, size_t size) {
  VP8BitReader* const br = &dec->br_;
  const uint8_t* sz = buf;
  const uint8_t* buf_end = buf + size;
  const uint8_t* part_start;
  int last_part;
  int p;

  dec->num_parts_ = 1 << VP8GetValue(br, 2);
  last_part = dec->num_parts_ - 1;
  part_start = buf + last_part * 3;
  if (buf_end < part_start) {
    // we can't even read the sizes with sz[]! That's a failure.
    return VP8_STATUS_NOT_ENOUGH_DATA;
  }
  for (p = 0; p < last_part; ++p) {
    const uint32_t psize = sz[0] | (sz[1] << 8) | (sz[2] << 16);
    const uint8_t* part_end = part_start + psize;
    if (part_end > buf_end) part_end = buf_end;
    VP8InitBitReader(dec->parts_ + p, part_start, part_end);
    part_start = part_end;
    sz += 3;
  }
  VP8InitBitReader(dec->parts_ + last_part, part_start, buf_end);
  return (part_start < buf_end) ? VP8_STATUS_OK :
           VP8_STATUS_SUSPENDED;   // Init is ok, but there's not enough data
}

// Paragraph 9.4
static int ParseFilterHeader(VP8BitReader* br, VP8Decoder* const dec) {
  VP8FilterHeader* const hdr = &dec->filter_hdr_;
  hdr->simple_    = VP8Get(br);
  hdr->level_     = VP8GetValue(br, 6);
  hdr->sharpness_ = VP8GetValue(br, 3);
  hdr->use_lf_delta_ = VP8Get(br);
  if (hdr->use_lf_delta_) {
    if (VP8Get(br)) {   // update lf-delta?
      int i;
      for (i = 0; i < NUM_REF_LF_DELTAS; ++i) {
        if (VP8Get(br)) {
          hdr->ref_lf_delta_[i] = VP8GetSignedValue(br, 6);
        }
      }
      for (i = 0; i < NUM_MODE_LF_DELTAS; ++i) {
        if (VP8Get(br)) {
          hdr->mode_lf_delta_[i] = VP8GetSignedValue(br, 6);
        }
      }
    }
  }
  dec->filter_type_ = (hdr->level_ == 0) ? 0 : hdr->simple_ ? 1 : 2;
  return !br->eof_;
}

// Topmost call
int VP8GetHeaders(VP8Decoder* const dec, VP8Io* const io) {
  const uint8_t* buf;
  size_t buf_size;
  VP8FrameHeader* frm_hdr;
  VP8PictureHeader* pic_hdr;
  VP8BitReader* br;
  VP8StatusCode status;

  if (dec == NULL) {
    return 0;
  }
  SetOk(dec);
  if (io == NULL) {
    return VP8SetError(dec, VP8_STATUS_INVALID_PARAM,
                       "null VP8Io passed to VP8GetHeaders()");
  }
  buf = io->data;
  buf_size = io->data_size;
  if (buf_size < 4) {
    return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA,
                       "Truncated header.");
  }

  // Paragraph 9.1
  {
    const uint32_t bits = buf[0] | (buf[1] << 8) | (buf[2] << 16);
    frm_hdr = &dec->frm_hdr_;
    frm_hdr->key_frame_ = !(bits & 1);
    frm_hdr->profile_ = (bits >> 1) & 7;
    frm_hdr->show_ = (bits >> 4) & 1;
    frm_hdr->partition_length_ = (bits >> 5);
    if (frm_hdr->profile_ > 3)
      return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
                         "Incorrect keyframe parameters.");
    if (!frm_hdr->show_)
      return VP8SetError(dec, VP8_STATUS_UNSUPPORTED_FEATURE,
                         "Frame not displayable.");
    buf += 3;
    buf_size -= 3;
  }

  pic_hdr = &dec->pic_hdr_;
  if (frm_hdr->key_frame_) {
    // Paragraph 9.2
    if (buf_size < 7) {
      return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA,
                         "cannot parse picture header");
    }
    if (!VP8CheckSignature(buf, buf_size)) {
      return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
                         "Bad code word");
    }
    pic_hdr->width_ = ((buf[4] << 8) | buf[3]) & 0x3fff;
    pic_hdr->xscale_ = buf[4] >> 6;   // ratio: 1, 5/4 5/3 or 2
    pic_hdr->height_ = ((buf[6] << 8) | buf[5]) & 0x3fff;
    pic_hdr->yscale_ = buf[6] >> 6;
    buf += 7;
    buf_size -= 7;

    dec->mb_w_ = (pic_hdr->width_ + 15) >> 4;
    dec->mb_h_ = (pic_hdr->height_ + 15) >> 4;
    // Setup default output area (can be later modified during io->setup())
    io->width = pic_hdr->width_;
    io->height = pic_hdr->height_;
    io->use_scaling  = 0;
    io->use_cropping = 0;
    io->crop_top  = 0;
    io->crop_left = 0;
    io->crop_right  = io->width;
    io->crop_bottom = io->height;
    io->mb_w = io->width;   // sanity check
    io->mb_h = io->height;  // ditto

    VP8ResetProba(&dec->proba_);
    ResetSegmentHeader(&dec->segment_hdr_);
    dec->segment_ = 0;    // default for intra
  }

  // Check if we have all the partition #0 available, and initialize dec->br_
  // to read this partition (and this partition only).
  if (frm_hdr->partition_length_ > buf_size) {
    return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA,
                       "bad partition length");
  }

  br = &dec->br_;
  VP8InitBitReader(br, buf, buf + frm_hdr->partition_length_);
  buf += frm_hdr->partition_length_;
  buf_size -= frm_hdr->partition_length_;

  if (frm_hdr->key_frame_) {
    pic_hdr->colorspace_ = VP8Get(br);
    pic_hdr->clamp_type_ = VP8Get(br);
  }
  if (!ParseSegmentHeader(br, &dec->segment_hdr_, &dec->proba_)) {
    return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
                       "cannot parse segment header");
  }
  // Filter specs
  if (!ParseFilterHeader(br, dec)) {
    return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
                       "cannot parse filter header");
  }
  status = ParsePartitions(dec, buf, buf_size);
  if (status != VP8_STATUS_OK) {
    return VP8SetError(dec, status, "cannot parse partitions");
  }

  // quantizer change
  VP8ParseQuant(dec);

  // Frame buffer marking
  if (!frm_hdr->key_frame_) {
    return VP8SetError(dec, VP8_STATUS_UNSUPPORTED_FEATURE,
                       "Not a key frame.");
  }

  VP8Get(br);   // ignore the value of update_proba_

  VP8ParseProba(br, dec);

#ifdef WEBP_EXPERIMENTAL_FEATURES
  // Extensions
  if (dec->pic_hdr_.colorspace_) {
    const size_t kTrailerSize = 8;
    const uint8_t kTrailerMarker = 0x01;
    const uint8_t* ext_buf = buf - kTrailerSize;
    size_t size;

    if (frm_hdr->partition_length_ < kTrailerSize ||
        ext_buf[kTrailerSize - 1] != kTrailerMarker) {
      return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
                         "RIFF: Inconsistent extra information.");
    }

    // Layer
    size = (ext_buf[0] << 0) | (ext_buf[1] << 8) | (ext_buf[2] << 16);
    dec->layer_data_size_ = size;
    dec->layer_data_ = NULL;  // will be set later
    dec->layer_colorspace_ = ext_buf[3];
  }
#endif

  // sanitized state
  dec->ready_ = 1;
  return 1;
}

//------------------------------------------------------------------------------
// Residual decoding (Paragraph 13.2 / 13.3)

static const int kBands[16 + 1] = {
  0, 1, 2, 3, 6, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7,
  0  // extra entry as sentinel
};

static const uint8_t kCat3[] = { 173, 148, 140, 0 };
static const uint8_t kCat4[] = { 176, 155, 140, 135, 0 };
static const uint8_t kCat5[] = { 180, 157, 141, 134, 130, 0 };
static const uint8_t kCat6[] =
  { 254, 254, 243, 230, 196, 177, 153, 140, 133, 130, 129, 0 };
static const uint8_t* const kCat3456[] = { kCat3, kCat4, kCat5, kCat6 };
static const uint8_t kZigzag[16] = {
  0, 1, 4, 8,  5, 2, 3, 6,  9, 12, 13, 10,  7, 11, 14, 15
};

// See section 13-2: http://tools.ietf.org/html/rfc6386#section-13.2
static int GetLargeValue(VP8BitReader* const br, const uint8_t* const p) {
  int v;
  if (!VP8GetBit(br, p[3])) {
    if (!VP8GetBit(br, p[4])) {
      v = 2;
    } else {
      v = 3 + VP8GetBit(br, p[5]);
    }
  } else {
    if (!VP8GetBit(br, p[6])) {
      if (!VP8GetBit(br, p[7])) {
        v = 5 + VP8GetBit(br, 159);
      } else {
        v = 7 + 2 * VP8GetBit(br, 165);
        v += VP8GetBit(br, 145);
      }
    } else {
      const uint8_t* tab;
      const int bit1 = VP8GetBit(br, p[8]);
      const int bit0 = VP8GetBit(br, p[9 + bit1]);
      const int cat = 2 * bit1 + bit0;
      v = 0;
      for (tab = kCat3456[cat]; *tab; ++tab) {
        v += v + VP8GetBit(br, *tab);
      }
      v += 3 + (8 << cat);
    }
  }
  return v;
}

// Returns the position of the last non-zero coeff plus one
static int GetCoeffs(VP8BitReader* const br, const VP8BandProbas* const prob,
                     int ctx, const quant_t dq, int n, int16_t* out) {
  // n is either 0 or 1 here. kBands[n] is not necessary for extracting '*p'.
  const uint8_t* p = prob[n].probas_[ctx];
  for (; n < 16; ++n) {
    if (!VP8GetBit(br, p[0])) {
      return n;  // previous coeff was last non-zero coeff
    }
    while (!VP8GetBit(br, p[1])) {       // sequence of zero coeffs
      p = prob[kBands[++n]].probas_[0];
      if (n == 16) return 16;
    }
    {        // non zero coeff
      const VP8ProbaArray* const p_ctx = &prob[kBands[n + 1]].probas_[0];
      int v;
      if (!VP8GetBit(br, p[2])) {
        v = 1;
        p = p_ctx[1];
      } else {
        v = GetLargeValue(br, p);
        p = p_ctx[2];
      }
      out[kZigzag[n]] = VP8GetSigned(br, v) * dq[n > 0];
    }
  }
  return 16;
}

static WEBP_INLINE uint32_t NzCodeBits(uint32_t nz_coeffs, int nz, int dc_nz) {
  nz_coeffs <<= 2;
  nz_coeffs |= (nz > 3) ? 3 : (nz > 1) ? 2 : dc_nz;
  return nz_coeffs;
}

static int ParseResiduals(VP8Decoder* const dec,
                          VP8MB* const mb, VP8BitReader* const token_br) {
  VP8BandProbas (* const bands)[NUM_BANDS] = dec->proba_.bands_;
  const VP8BandProbas* ac_proba;
  const VP8QuantMatrix* const q = &dec->dqm_[dec->segment_];
  VP8MBData* const block = dec->mb_data_ + dec->mb_x_;
  int16_t* dst = block->coeffs_;
  VP8MB* const left_mb = dec->mb_info_ - 1;
  uint8_t tnz, lnz;
  uint32_t non_zero_y = 0;
  uint32_t non_zero_uv = 0;
  int x, y, ch;
  uint32_t out_t_nz, out_l_nz;
  int first;

  memset(dst, 0, 384 * sizeof(*dst));
  if (!block->is_i4x4_) {    // parse DC
    int16_t dc[16] = { 0 };
    const int ctx = mb->nz_dc_ + left_mb->nz_dc_;
    const int nz = GetCoeffs(token_br, bands[1], ctx, q->y2_mat_, 0, dc);
    mb->nz_dc_ = left_mb->nz_dc_ = (nz > 0);
    if (nz > 1) {   // more than just the DC -> perform the full transform
      VP8TransformWHT(dc, dst);
    } else {        // only DC is non-zero -> inlined simplified transform
      int i;
      const int dc0 = (dc[0] + 3) >> 3;
      for (i = 0; i < 16 * 16; i += 16) dst[i] = dc0;
    }
    first = 1;
    ac_proba = bands[0];
  } else {
    first = 0;
    ac_proba = bands[3];
  }

  tnz = mb->nz_ & 0x0f;
  lnz = left_mb->nz_ & 0x0f;
  for (y = 0; y < 4; ++y) {
    int l = lnz & 1;
    uint32_t nz_coeffs = 0;
    for (x = 0; x < 4; ++x) {
      const int ctx = l + (tnz & 1);
      const int nz = GetCoeffs(token_br, ac_proba, ctx, q->y1_mat_, first, dst);
      l = (nz > first);
      tnz = (tnz >> 1) | (l << 7);
      nz_coeffs = NzCodeBits(nz_coeffs, nz, dst[0] != 0);
      dst += 16;
    }
    tnz >>= 4;
    lnz = (lnz >> 1) | (l << 7);
    non_zero_y = (non_zero_y << 8) | nz_coeffs;
  }
  out_t_nz = tnz;
  out_l_nz = lnz >> 4;

  for (ch = 0; ch < 4; ch += 2) {
    uint32_t nz_coeffs = 0;
    tnz = mb->nz_ >> (4 + ch);
    lnz = left_mb->nz_ >> (4 + ch);
    for (y = 0; y < 2; ++y) {
      int l = lnz & 1;
      for (x = 0; x < 2; ++x) {
        const int ctx = l + (tnz & 1);
        const int nz = GetCoeffs(token_br, bands[2], ctx, q->uv_mat_, 0, dst);
        l = (nz > 0);
        tnz = (tnz >> 1) | (l << 3);
        nz_coeffs = NzCodeBits(nz_coeffs, nz, dst[0] != 0);
        dst += 16;
      }
      tnz >>= 2;
      lnz = (lnz >> 1) | (l << 5);
    }
    // Note: we don't really need the per-4x4 details for U/V blocks.
    non_zero_uv |= nz_coeffs << (4 * ch);
    out_t_nz |= (tnz << 4) << ch;
    out_l_nz |= (lnz & 0xf0) << ch;
  }
  mb->nz_ = out_t_nz;
  left_mb->nz_ = out_l_nz;

  block->non_zero_y_ = non_zero_y;
  block->non_zero_uv_ = non_zero_uv;

  // We look at the mode-code of each block and check if some blocks have less
  // than three non-zero coeffs (code < 2). This is to avoid dithering flat and
  // empty blocks.
  block->dither_ = (non_zero_uv & 0xaaaa) ? 0 : q->dither_;

  return !(non_zero_y | non_zero_uv);  // will be used for further optimization
}

//------------------------------------------------------------------------------
// Main loop

int VP8DecodeMB(VP8Decoder* const dec, VP8BitReader* const token_br) {
  VP8BitReader* const br = &dec->br_;
  VP8MB* const left = dec->mb_info_ - 1;
  VP8MB* const mb = dec->mb_info_ + dec->mb_x_;
  VP8MBData* const block = dec->mb_data_ + dec->mb_x_;
  int skip;

  // Note: we don't save segment map (yet), as we don't expect
  // to decode more than 1 keyframe.
  if (dec->segment_hdr_.update_map_) {
    // Hardcoded tree parsing
    dec->segment_ = !VP8GetBit(br, dec->proba_.segments_[0]) ?
        VP8GetBit(br, dec->proba_.segments_[1]) :
        2 + VP8GetBit(br, dec->proba_.segments_[2]);
  }
  skip = dec->use_skip_proba_ ? VP8GetBit(br, dec->skip_p_) : 0;

  VP8ParseIntraMode(br, dec);
  if (br->eof_) {
    return 0;
  }

  if (!skip) {
    skip = ParseResiduals(dec, mb, token_br);
  } else {
    left->nz_ = mb->nz_ = 0;
    if (!block->is_i4x4_) {
      left->nz_dc_ = mb->nz_dc_ = 0;
    }
    block->non_zero_y_ = 0;
    block->non_zero_uv_ = 0;
  }

  if (dec->filter_type_ > 0) {  // store filter info
    VP8FInfo* const finfo = dec->f_info_ + dec->mb_x_;
    *finfo = dec->fstrengths_[dec->segment_][block->is_i4x4_];
    finfo->f_inner_ |= !skip;
  }

  return !token_br->eof_;
}

void VP8InitScanline(VP8Decoder* const dec) {
  VP8MB* const left = dec->mb_info_ - 1;
  left->nz_ = 0;
  left->nz_dc_ = 0;
  memset(dec->intra_l_, B_DC_PRED, sizeof(dec->intra_l_));
  dec->mb_x_ = 0;
}

static int ParseFrame(VP8Decoder* const dec, VP8Io* io) {
  for (dec->mb_y_ = 0; dec->mb_y_ < dec->br_mb_y_; ++dec->mb_y_) {
    // Parse bitstream for this row.
    VP8BitReader* const token_br =
        &dec->parts_[dec->mb_y_ & (dec->num_parts_ - 1)];
    for (; dec->mb_x_ < dec->mb_w_; ++dec->mb_x_) {
      if (!VP8DecodeMB(dec, token_br)) {
        return VP8SetError(dec, VP8_STATUS_NOT_ENOUGH_DATA,
                           "Premature end-of-file encountered.");
      }
    }
    VP8InitScanline(dec);   // Prepare for next scanline

    // Reconstruct, filter and emit the row.
    if (!VP8ProcessRow(dec, io)) {
      return VP8SetError(dec, VP8_STATUS_USER_ABORT, "Output aborted.");
    }
  }
  if (dec->mt_method_ > 0) {
    if (!WebPWorkerSync(&dec->worker_)) return 0;
  }

  // Finish
#ifdef WEBP_EXPERIMENTAL_FEATURES
  if (dec->layer_data_size_ > 0) {
    if (!VP8DecodeLayer(dec)) {
      return 0;
    }
  }
#endif

  return 1;
}

// Main entry point
int VP8Decode(VP8Decoder* const dec, VP8Io* const io) {
  int ok = 0;
  if (dec == NULL) {
    return 0;
  }
  if (io == NULL) {
    return VP8SetError(dec, VP8_STATUS_INVALID_PARAM,
                       "NULL VP8Io parameter in VP8Decode().");
  }

  if (!dec->ready_) {
    if (!VP8GetHeaders(dec, io)) {
      return 0;
    }
  }
  assert(dec->ready_);

  // Finish setting up the decoding parameter. Will call io->setup().
  ok = (VP8EnterCritical(dec, io) == VP8_STATUS_OK);
  if (ok) {   // good to go.
    // Will allocate memory and prepare everything.
    if (ok) ok = VP8InitFrame(dec, io);

    // Main decoding loop
    if (ok) ok = ParseFrame(dec, io);

    // Exit.
    ok &= VP8ExitCritical(dec, io);
  }

  if (!ok) {
    VP8Clear(dec);
    return 0;
  }

  dec->ready_ = 0;
  return ok;
}

void VP8Clear(VP8Decoder* const dec) {
  if (dec == NULL) {
    return;
  }
  if (dec->mt_method_ > 0) {
    WebPWorkerEnd(&dec->worker_);
  }
  ALPHDelete(dec->alph_dec_);
  dec->alph_dec_ = NULL;
  free(dec->mem_);
  dec->mem_ = NULL;
  dec->mem_size_ = 0;
  memset(&dec->br_, 0, sizeof(dec->br_));
  dec->ready_ = 0;
}

//------------------------------------------------------------------------------


/* [<][>][^][v][top][bottom][index][help] */