root/third_party/libwebp/utils/huffman.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. TreeNodeInit
  2. NodeIsEmpty
  3. IsFull
  4. AssignChildren
  5. TreeInit
  6. HuffmanTreeRelease
  7. HuffmanCodeLengthsToCodes
  8. ReverseBitsShort
  9. ReverseBitsShort
  10. TreeAddSymbol
  11. HuffmanTreeBuildImplicit
  12. HuffmanTreeBuildExplicit

// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Utilities for building and looking up Huffman trees.
//
// Author: Urvang Joshi (urvang@google.com)

#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "./huffman.h"
#include "../utils/utils.h"
#include "../webp/format_constants.h"

// Uncomment the following to use look-up table for ReverseBits()
// (might be faster on some platform)
// #define USE_LUT_REVERSE_BITS

#define NON_EXISTENT_SYMBOL (-1)

static void TreeNodeInit(HuffmanTreeNode* const node) {
  node->children_ = -1;   // means: 'unassigned so far'
}

static int NodeIsEmpty(const HuffmanTreeNode* const node) {
  return (node->children_ < 0);
}

static int IsFull(const HuffmanTree* const tree) {
  return (tree->num_nodes_ == tree->max_nodes_);
}

static void AssignChildren(HuffmanTree* const tree,
                           HuffmanTreeNode* const node) {
  HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_;
  node->children_ = (int)(children - node);
  assert(children - node == (int)(children - node));
  tree->num_nodes_ += 2;
  TreeNodeInit(children + 0);
  TreeNodeInit(children + 1);
}

static int TreeInit(HuffmanTree* const tree, int num_leaves) {
  assert(tree != NULL);
  if (num_leaves == 0) return 0;
  // We allocate maximum possible nodes in the tree at once.
  // Note that a Huffman tree is a full binary tree; and in a full binary tree
  // with L leaves, the total number of nodes N = 2 * L - 1.
  tree->max_nodes_ = 2 * num_leaves - 1;
  assert(tree->max_nodes_ < (1 << 16));   // limit for the lut_jump_ table
  tree->root_ = (HuffmanTreeNode*)WebPSafeMalloc((uint64_t)tree->max_nodes_,
                                                 sizeof(*tree->root_));
  if (tree->root_ == NULL) return 0;
  TreeNodeInit(tree->root_);  // Initialize root.
  tree->num_nodes_ = 1;
  memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_));
  memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_));
  return 1;
}

void HuffmanTreeRelease(HuffmanTree* const tree) {
  if (tree != NULL) {
    free(tree->root_);
    tree->root_ = NULL;
    tree->max_nodes_ = 0;
    tree->num_nodes_ = 0;
  }
}

int HuffmanCodeLengthsToCodes(const int* const code_lengths,
                              int code_lengths_size, int* const huff_codes) {
  int symbol;
  int code_len;
  int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
  int curr_code;
  int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
  int max_code_length = 0;

  assert(code_lengths != NULL);
  assert(code_lengths_size > 0);
  assert(huff_codes != NULL);

  // Calculate max code length.
  for (symbol = 0; symbol < code_lengths_size; ++symbol) {
    if (code_lengths[symbol] > max_code_length) {
      max_code_length = code_lengths[symbol];
    }
  }
  if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0;

  // Calculate code length histogram.
  for (symbol = 0; symbol < code_lengths_size; ++symbol) {
    ++code_length_hist[code_lengths[symbol]];
  }
  code_length_hist[0] = 0;

  // Calculate the initial values of 'next_codes' for each code length.
  // next_codes[code_len] denotes the code to be assigned to the next symbol
  // of code length 'code_len'.
  curr_code = 0;
  next_codes[0] = -1;  // Unused, as code length = 0 implies code doesn't exist.
  for (code_len = 1; code_len <= max_code_length; ++code_len) {
    curr_code = (curr_code + code_length_hist[code_len - 1]) << 1;
    next_codes[code_len] = curr_code;
  }

  // Get symbols.
  for (symbol = 0; symbol < code_lengths_size; ++symbol) {
    if (code_lengths[symbol] > 0) {
      huff_codes[symbol] = next_codes[code_lengths[symbol]]++;
    } else {
      huff_codes[symbol] = NON_EXISTENT_SYMBOL;
    }
  }
  return 1;
}

#ifndef USE_LUT_REVERSE_BITS

static int ReverseBitsShort(int bits, int num_bits) {
  int retval = 0;
  int i;
  assert(num_bits <= 8);   // Not a hard requirement, just for coherency.
  for (i = 0; i < num_bits; ++i) {
    retval <<= 1;
    retval |= bits & 1;
    bits >>= 1;
  }
  return retval;
}

#else

static const uint8_t kReversedBits[16] = {  // Pre-reversed 4-bit values.
  0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
  0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
};

static int ReverseBitsShort(int bits, int num_bits) {
  const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4];
  assert(num_bits <= 8);
  return v >> (8 - num_bits);
}

#endif

static int TreeAddSymbol(HuffmanTree* const tree,
                         int symbol, int code, int code_length) {
  int step = HUFF_LUT_BITS;
  int base_code;
  HuffmanTreeNode* node = tree->root_;
  const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_;
  assert(symbol == (int16_t)symbol);
  if (code_length <= HUFF_LUT_BITS) {
    int i;
    base_code = ReverseBitsShort(code, code_length);
    for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) {
      const int idx = base_code | (i << code_length);
      tree->lut_symbol_[idx] = (int16_t)symbol;
      tree->lut_bits_[idx] = code_length;
    }
  } else {
    base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)),
                                 HUFF_LUT_BITS);
  }
  while (code_length-- > 0) {
    if (node >= max_node) {
      return 0;
    }
    if (NodeIsEmpty(node)) {
      if (IsFull(tree)) return 0;    // error: too many symbols.
      AssignChildren(tree, node);
    } else if (!HuffmanTreeNodeIsNotLeaf(node)) {
      return 0;  // leaf is already occupied.
    }
    node += node->children_ + ((code >> code_length) & 1);
    if (--step == 0) {
      tree->lut_jump_[base_code] = (int16_t)(node - tree->root_);
    }
  }
  if (NodeIsEmpty(node)) {
    node->children_ = 0;      // turn newly created node into a leaf.
  } else if (HuffmanTreeNodeIsNotLeaf(node)) {
    return 0;   // trying to assign a symbol to already used code.
  }
  node->symbol_ = symbol;  // Add symbol in this node.
  return 1;
}

int HuffmanTreeBuildImplicit(HuffmanTree* const tree,
                             const int* const code_lengths,
                             int code_lengths_size) {
  int symbol;
  int num_symbols = 0;
  int root_symbol = 0;

  assert(tree != NULL);
  assert(code_lengths != NULL);

  // Find out number of symbols and the root symbol.
  for (symbol = 0; symbol < code_lengths_size; ++symbol) {
    if (code_lengths[symbol] > 0) {
      // Note: code length = 0 indicates non-existent symbol.
      ++num_symbols;
      root_symbol = symbol;
    }
  }

  // Initialize the tree. Will fail for num_symbols = 0
  if (!TreeInit(tree, num_symbols)) return 0;

  // Build tree.
  if (num_symbols == 1) {  // Trivial case.
    const int max_symbol = code_lengths_size;
    if (root_symbol < 0 || root_symbol >= max_symbol) {
      HuffmanTreeRelease(tree);
      return 0;
    }
    return TreeAddSymbol(tree, root_symbol, 0, 0);
  } else {  // Normal case.
    int ok = 0;

    // Get Huffman codes from the code lengths.
    int* const codes =
        (int*)WebPSafeMalloc((uint64_t)code_lengths_size, sizeof(*codes));
    if (codes == NULL) goto End;

    if (!HuffmanCodeLengthsToCodes(code_lengths, code_lengths_size, codes)) {
      goto End;
    }

    // Add symbols one-by-one.
    for (symbol = 0; symbol < code_lengths_size; ++symbol) {
      if (code_lengths[symbol] > 0) {
        if (!TreeAddSymbol(tree, symbol, codes[symbol], code_lengths[symbol])) {
          goto End;
        }
      }
    }
    ok = 1;
 End:
    free(codes);
    ok = ok && IsFull(tree);
    if (!ok) HuffmanTreeRelease(tree);
    return ok;
  }
}

int HuffmanTreeBuildExplicit(HuffmanTree* const tree,
                             const int* const code_lengths,
                             const int* const codes,
                             const int* const symbols, int max_symbol,
                             int num_symbols) {
  int ok = 0;
  int i;

  assert(tree != NULL);
  assert(code_lengths != NULL);
  assert(codes != NULL);
  assert(symbols != NULL);

  // Initialize the tree. Will fail if num_symbols = 0.
  if (!TreeInit(tree, num_symbols)) return 0;

  // Add symbols one-by-one.
  for (i = 0; i < num_symbols; ++i) {
    if (codes[i] != NON_EXISTENT_SYMBOL) {
      if (symbols[i] < 0 || symbols[i] >= max_symbol) {
        goto End;
      }
      if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) {
        goto End;
      }
    }
  }
  ok = 1;
 End:
  ok = ok && IsFull(tree);
  if (!ok) HuffmanTreeRelease(tree);
  return ok;
}


/* [<][>][^][v][top][bottom][index][help] */