root/net/base/mime_sniffer.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. UMASnifferHistogramGet
  2. MagicCmp
  3. MagicMaskCmp
  4. MatchMagicNumber
  5. CheckForMagicNumbers
  6. TruncateSize
  7. SniffForHTML
  8. SniffForMagicNumbers
  9. SniffForOfficeDocs
  10. IsOfficeType
  11. SniffForInvalidOfficeDocs
  12. SniffXML
  13. SniffBinary
  14. IsUnknownMimeType
  15. SniffCRX
  16. ShouldSniffMimeType
  17. SniffMimeType
  18. SniffMimeTypeFromLocalData

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Detecting mime types is a tricky business because we need to balance
// compatibility concerns with security issues.  Here is a survey of how other
// browsers behave and then a description of how we intend to behave.
//
// HTML payload, no Content-Type header:
// * IE 7: Render as HTML
// * Firefox 2: Render as HTML
// * Safari 3: Render as HTML
// * Opera 9: Render as HTML
//
// Here the choice seems clear:
// => Chrome: Render as HTML
//
// HTML payload, Content-Type: "text/plain":
// * IE 7: Render as HTML
// * Firefox 2: Render as text
// * Safari 3: Render as text (Note: Safari will Render as HTML if the URL
//                                   has an HTML extension)
// * Opera 9: Render as text
//
// Here we choose to follow the majority (and break some compatibility with IE).
// Many folks dislike IE's behavior here.
// => Chrome: Render as text
// We generalize this as follows.  If the Content-Type header is text/plain
// we won't detect dangerous mime types (those that can execute script).
//
// HTML payload, Content-Type: "application/octet-stream":
// * IE 7: Render as HTML
// * Firefox 2: Download as application/octet-stream
// * Safari 3: Render as HTML
// * Opera 9: Render as HTML
//
// We follow Firefox.
// => Chrome: Download as application/octet-stream
// One factor in this decision is that IIS 4 and 5 will send
// application/octet-stream for .xhtml files (because they don't recognize
// the extension).  We did some experiments and it looks like this doesn't occur
// very often on the web.  We choose the more secure option.
//
// GIF payload, no Content-Type header:
// * IE 7: Render as GIF
// * Firefox 2: Render as GIF
// * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
//                                        URL has an GIF extension)
// * Opera 9: Render as GIF
//
// The choice is clear.
// => Chrome: Render as GIF
// Once we decide to render HTML without a Content-Type header, there isn't much
// reason not to render GIFs.
//
// GIF payload, Content-Type: "text/plain":
// * IE 7: Render as GIF
// * Firefox 2: Download as application/octet-stream (Note: Firefox will
//                              Download as GIF if the URL has an GIF extension)
// * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
//                                        URL has an GIF extension)
// * Opera 9: Render as GIF
//
// Displaying as text/plain makes little sense as the content will look like
// gibberish.  Here, we could change our minds and download.
// => Chrome: Render as GIF
//
// GIF payload, Content-Type: "application/octet-stream":
// * IE 7: Render as GIF
// * Firefox 2: Download as application/octet-stream (Note: Firefox will
//                              Download as GIF if the URL has an GIF extension)
// * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
//                                        URL has an GIF extension)
// * Opera 9: Render as GIF
//
// We used to render as GIF here, but the problem is that some sites want to
// trigger downloads by sending application/octet-stream (even though they
// should be sending Content-Disposition: attachment).  Although it is safe
// to render as GIF from a security perspective, we actually get better
// compatibility if we don't sniff from application/octet stream at all.
// => Chrome: Download as application/octet-stream
//
// XHTML payload, Content-Type: "text/xml":
// * IE 7: Render as XML
// * Firefox 2: Render as HTML
// * Safari 3: Render as HTML
// * Opera 9: Render as HTML
// The layout tests rely on us rendering this as HTML.
// But we're conservative in XHTML detection, as this runs afoul of the
// "don't detect dangerous mime types" rule.
//
// Note that our definition of HTML payload is much stricter than IE's
// definition and roughly the same as Firefox's definition.

#include <string>

#include "net/base/mime_sniffer.h"

#include "base/basictypes.h"
#include "base/logging.h"
#include "base/metrics/histogram.h"
#include "base/strings/string_util.h"
#include "net/base/mime_util.h"
#include "url/gurl.h"

namespace net {

// The number of content bytes we need to use all our magic numbers.  Feel free
// to increase this number if you add a longer magic number.
static const size_t kBytesRequiredForMagic = 42;

struct MagicNumber {
  const char* mime_type;
  const char* magic;
  size_t magic_len;
  bool is_string;
  const char* mask;  // if set, must have same length as |magic|
};

#define MAGIC_NUMBER(mime_type, magic) \
  { (mime_type), (magic), sizeof(magic)-1, false, NULL },

template <int MagicSize, int MaskSize>
class VerifySizes {
  COMPILE_ASSERT(MagicSize == MaskSize, sizes_must_be_equal);
 public:
  enum { SIZES = MagicSize };
};

#define verified_sizeof(magic, mask) \
VerifySizes<sizeof(magic), sizeof(mask)>::SIZES

#define MAGIC_MASK(mime_type, magic, mask) \
  { (mime_type), (magic), verified_sizeof(magic, mask)-1, false, (mask) },

// Magic strings are case insensitive and must not include '\0' characters
#define MAGIC_STRING(mime_type, magic) \
  { (mime_type), (magic), sizeof(magic)-1, true, NULL },

static const MagicNumber kMagicNumbers[] = {
  // Source: HTML 5 specification
  MAGIC_NUMBER("application/pdf", "%PDF-")
  MAGIC_NUMBER("application/postscript", "%!PS-Adobe-")
  MAGIC_NUMBER("image/gif", "GIF87a")
  MAGIC_NUMBER("image/gif", "GIF89a")
  MAGIC_NUMBER("image/png", "\x89" "PNG\x0D\x0A\x1A\x0A")
  MAGIC_NUMBER("image/jpeg", "\xFF\xD8\xFF")
  MAGIC_NUMBER("image/bmp", "BM")
  // Source: Mozilla
  MAGIC_NUMBER("text/plain", "#!")  // Script
  MAGIC_NUMBER("text/plain", "%!")  // Script, similar to PS
  MAGIC_NUMBER("text/plain", "From")
  MAGIC_NUMBER("text/plain", ">From")
  // Chrome specific
  MAGIC_NUMBER("application/x-gzip", "\x1F\x8B\x08")
  MAGIC_NUMBER("audio/x-pn-realaudio", "\x2E\x52\x4D\x46")
  MAGIC_NUMBER("video/x-ms-asf",
      "\x30\x26\xB2\x75\x8E\x66\xCF\x11\xA6\xD9\x00\xAA\x00\x62\xCE\x6C")
  MAGIC_NUMBER("image/tiff", "I I")
  MAGIC_NUMBER("image/tiff", "II*")
  MAGIC_NUMBER("image/tiff", "MM\x00*")
  MAGIC_NUMBER("audio/mpeg", "ID3")
  MAGIC_NUMBER("image/webp", "RIFF....WEBPVP8 ")
  MAGIC_NUMBER("video/webm", "\x1A\x45\xDF\xA3")
  // TODO(abarth): we don't handle partial byte matches yet
  // MAGIC_NUMBER("video/mpeg", "\x00\x00\x01\xB")
  // MAGIC_NUMBER("audio/mpeg", "\xFF\xE")
  // MAGIC_NUMBER("audio/mpeg", "\xFF\xF")
  MAGIC_NUMBER("application/zip", "PK\x03\x04")
  MAGIC_NUMBER("application/x-rar-compressed", "Rar!\x1A\x07\x00")
  MAGIC_NUMBER("application/x-msmetafile", "\xD7\xCD\xC6\x9A")
  MAGIC_NUMBER("application/octet-stream", "MZ")  // EXE
  // Sniffing for Flash:
  //
  //   MAGIC_NUMBER("application/x-shockwave-flash", "CWS")
  //   MAGIC_NUMBER("application/x-shockwave-flash", "FLV")
  //   MAGIC_NUMBER("application/x-shockwave-flash", "FWS")
  //
  // Including these magic number for Flash is a trade off.
  //
  // Pros:
  //   * Flash is an important and popular file format
  //
  // Cons:
  //   * These patterns are fairly weak
  //   * If we mistakenly decide something is Flash, we will execute it
  //     in the origin of an unsuspecting site.  This could be a security
  //     vulnerability if the site allows users to upload content.
  //
  // On balance, we do not include these patterns.
};

// The number of content bytes we need to use all our Microsoft Office magic
// numbers.
static const size_t kBytesRequiredForOfficeMagic = 8;

static const MagicNumber kOfficeMagicNumbers[] = {
  MAGIC_NUMBER("CFB", "\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1")
  MAGIC_NUMBER("OOXML", "PK\x03\x04")
};

enum OfficeDocType {
  DOC_TYPE_WORD,
  DOC_TYPE_EXCEL,
  DOC_TYPE_POWERPOINT,
  DOC_TYPE_NONE
};

struct OfficeExtensionType {
  OfficeDocType doc_type;
  const char* extension;
  size_t extension_len;
};

#define OFFICE_EXTENSION(type, extension) \
  { (type), (extension), sizeof(extension) - 1 },

static const OfficeExtensionType kOfficeExtensionTypes[] = {
  OFFICE_EXTENSION(DOC_TYPE_WORD, ".doc")
  OFFICE_EXTENSION(DOC_TYPE_EXCEL, ".xls")
  OFFICE_EXTENSION(DOC_TYPE_POWERPOINT, ".ppt")
  OFFICE_EXTENSION(DOC_TYPE_WORD, ".docx")
  OFFICE_EXTENSION(DOC_TYPE_EXCEL, ".xlsx")
  OFFICE_EXTENSION(DOC_TYPE_POWERPOINT, ".pptx")
};

static const MagicNumber kExtraMagicNumbers[] = {
  MAGIC_NUMBER("image/x-xbitmap", "#define")
  MAGIC_NUMBER("image/x-icon", "\x00\x00\x01\x00")
  MAGIC_NUMBER("image/svg+xml", "<?xml_version=")
  MAGIC_NUMBER("audio/wav", "RIFF....WAVEfmt ")
  MAGIC_NUMBER("video/avi", "RIFF....AVI LIST")
  MAGIC_NUMBER("audio/ogg", "OggS")
  MAGIC_MASK("video/mpeg", "\x00\x00\x01\xB0", "\xFF\xFF\xFF\xF0")
  MAGIC_MASK("audio/mpeg", "\xFF\xE0", "\xFF\xE0")
  MAGIC_NUMBER("video/3gpp", "....ftyp3g")
  MAGIC_NUMBER("video/3gpp", "....ftypavcl")
  MAGIC_NUMBER("video/mp4", "....ftyp")
  MAGIC_NUMBER("video/quicktime", "....moov")
  MAGIC_NUMBER("application/x-shockwave-flash", "CWS")
  MAGIC_NUMBER("application/x-shockwave-flash", "FWS")
  MAGIC_NUMBER("video/x-flv", "FLV")
  MAGIC_NUMBER("audio/x-flac", "fLaC")

  // RAW image types.
  MAGIC_NUMBER("image/x-canon-cr2", "II\x2a\x00\x10\x00\x00\x00CR")
  MAGIC_NUMBER("image/x-canon-crw", "II\x1a\x00\x00\x00HEAPCCDR")
  MAGIC_NUMBER("image/x-minolta-mrw", "\x00MRM")
  MAGIC_NUMBER("image/x-olympus-orf", "MMOR")  // big-endian
  MAGIC_NUMBER("image/x-olympus-orf", "IIRO")  // little-endian
  MAGIC_NUMBER("image/x-olympus-orf", "IIRS")  // little-endian
  MAGIC_NUMBER("image/x-fuji-raf", "FUJIFILMCCD-RAW ")
  MAGIC_NUMBER("image/x-panasonic-raw",
               "IIU\x00\x08\x00\x00\x00")  // Panasonic .raw
  MAGIC_NUMBER("image/x-panasonic-raw",
               "IIU\x00\x18\x00\x00\x00")  // Panasonic .rw2
  MAGIC_NUMBER("image/x-phaseone-raw", "MMMMRaw")
  MAGIC_NUMBER("image/x-x3f", "FOVb")
};

// Our HTML sniffer differs slightly from Mozilla.  For example, Mozilla will
// decide that a document that begins "<!DOCTYPE SOAP-ENV:Envelope PUBLIC " is
// HTML, but we will not.

#define MAGIC_HTML_TAG(tag) \
  MAGIC_STRING("text/html", "<" tag)

static const MagicNumber kSniffableTags[] = {
  // XML processing directive.  Although this is not an HTML mime type, we sniff
  // for this in the HTML phase because text/xml is just as powerful as HTML and
  // we want to leverage our white space skipping technology.
  MAGIC_NUMBER("text/xml", "<?xml")  // Mozilla
  // DOCTYPEs
  MAGIC_HTML_TAG("!DOCTYPE html")  // HTML5 spec
  // Sniffable tags, ordered by how often they occur in sniffable documents.
  MAGIC_HTML_TAG("script")  // HTML5 spec, Mozilla
  MAGIC_HTML_TAG("html")  // HTML5 spec, Mozilla
  MAGIC_HTML_TAG("!--")
  MAGIC_HTML_TAG("head")  // HTML5 spec, Mozilla
  MAGIC_HTML_TAG("iframe")  // Mozilla
  MAGIC_HTML_TAG("h1")  // Mozilla
  MAGIC_HTML_TAG("div")  // Mozilla
  MAGIC_HTML_TAG("font")  // Mozilla
  MAGIC_HTML_TAG("table")  // Mozilla
  MAGIC_HTML_TAG("a")  // Mozilla
  MAGIC_HTML_TAG("style")  // Mozilla
  MAGIC_HTML_TAG("title")  // Mozilla
  MAGIC_HTML_TAG("b")  // Mozilla
  MAGIC_HTML_TAG("body")  // Mozilla
  MAGIC_HTML_TAG("br")
  MAGIC_HTML_TAG("p")  // Mozilla
};

static base::HistogramBase* UMASnifferHistogramGet(const char* name,
                                                   int array_size) {
  base::HistogramBase* counter =
      base::LinearHistogram::FactoryGet(name, 1, array_size - 1, array_size,
          base::HistogramBase::kUmaTargetedHistogramFlag);
  return counter;
}

// Compare content header to a magic number where magic_entry can contain '.'
// for single character of anything, allowing some bytes to be skipped.
static bool MagicCmp(const char* magic_entry, const char* content, size_t len) {
  while (len) {
    if ((*magic_entry != '.') && (*magic_entry != *content))
      return false;
    ++magic_entry;
    ++content;
    --len;
  }
  return true;
}

// Like MagicCmp() except that it ANDs each byte with a mask before
// the comparison, because there are some bits we don't care about.
static bool MagicMaskCmp(const char* magic_entry,
                         const char* content,
                         size_t len,
                         const char* mask) {
  while (len) {
    if ((*magic_entry != '.') && (*magic_entry != (*mask & *content)))
      return false;
    ++magic_entry;
    ++content;
    ++mask;
    --len;
  }
  return true;
}

static bool MatchMagicNumber(const char* content,
                             size_t size,
                             const MagicNumber& magic_entry,
                             std::string* result) {
  const size_t len = magic_entry.magic_len;

  // Keep kBytesRequiredForMagic honest.
  DCHECK_LE(len, kBytesRequiredForMagic);

  // To compare with magic strings, we need to compute strlen(content), but
  // content might not actually have a null terminator.  In that case, we
  // pretend the length is content_size.
  const char* end = static_cast<const char*>(memchr(content, '\0', size));
  const size_t content_strlen =
      (end != NULL) ? static_cast<size_t>(end - content) : size;

  bool match = false;
  if (magic_entry.is_string) {
    if (content_strlen >= len) {
      // String comparisons are case-insensitive
      match = (base::strncasecmp(magic_entry.magic, content, len) == 0);
    }
  } else {
    if (size >= len) {
      if (!magic_entry.mask) {
        match = MagicCmp(magic_entry.magic, content, len);
      } else {
        match = MagicMaskCmp(magic_entry.magic, content, len, magic_entry.mask);
      }
    }
  }

  if (match) {
    result->assign(magic_entry.mime_type);
    return true;
  }
  return false;
}

static bool CheckForMagicNumbers(const char* content, size_t size,
                                 const MagicNumber* magic, size_t magic_len,
                                 base::HistogramBase* counter,
                                 std::string* result) {
  for (size_t i = 0; i < magic_len; ++i) {
    if (MatchMagicNumber(content, size, magic[i], result)) {
      if (counter) counter->Add(static_cast<int>(i));
      return true;
    }
  }
  return false;
}

// Truncates |size| to |max_size| and returns true if |size| is at least
// |max_size|.
static bool TruncateSize(const size_t max_size, size_t* size) {
  // Keep kMaxBytesToSniff honest.
  DCHECK_LE(static_cast<int>(max_size), kMaxBytesToSniff);

  if (*size >= max_size) {
    *size = max_size;
    return true;
  }
  return false;
}

// Returns true and sets result if the content appears to be HTML.
// Clears have_enough_content if more data could possibly change the result.
static bool SniffForHTML(const char* content,
                         size_t size,
                         bool* have_enough_content,
                         std::string* result) {
  // For HTML, we are willing to consider up to 512 bytes. This may be overly
  // conservative as IE only considers 256.
  *have_enough_content &= TruncateSize(512, &size);

  // We adopt a strategy similar to that used by Mozilla to sniff HTML tags,
  // but with some modifications to better match the HTML5 spec.
  const char* const end = content + size;
  const char* pos;
  for (pos = content; pos < end; ++pos) {
    if (!IsAsciiWhitespace(*pos))
      break;
  }
  static base::HistogramBase* counter(NULL);
  if (!counter) {
    counter = UMASnifferHistogramGet("mime_sniffer.kSniffableTags2",
                                     arraysize(kSniffableTags));
  }
  // |pos| now points to first non-whitespace character (or at end).
  return CheckForMagicNumbers(pos, end - pos,
                              kSniffableTags, arraysize(kSniffableTags),
                              counter, result);
}

// Returns true and sets result if the content matches any of kMagicNumbers.
// Clears have_enough_content if more data could possibly change the result.
static bool SniffForMagicNumbers(const char* content,
                                 size_t size,
                                 bool* have_enough_content,
                                 std::string* result) {
  *have_enough_content &= TruncateSize(kBytesRequiredForMagic, &size);

  // Check our big table of Magic Numbers
  static base::HistogramBase* counter(NULL);
  if (!counter) {
    counter = UMASnifferHistogramGet("mime_sniffer.kMagicNumbers2",
                                     arraysize(kMagicNumbers));
  }
  return CheckForMagicNumbers(content, size,
                              kMagicNumbers, arraysize(kMagicNumbers),
                              counter, result);
}

// Returns true and sets result if the content matches any of
// kOfficeMagicNumbers, and the URL has the proper extension.
// Clears |have_enough_content| if more data could possibly change the result.
static bool SniffForOfficeDocs(const char* content,
                               size_t size,
                               const GURL& url,
                               bool* have_enough_content,
                               std::string* result) {
  *have_enough_content &= TruncateSize(kBytesRequiredForOfficeMagic, &size);

  // Check our table of magic numbers for Office file types.
  std::string office_version;
  if (!CheckForMagicNumbers(content, size,
                            kOfficeMagicNumbers, arraysize(kOfficeMagicNumbers),
                            NULL, &office_version))
    return false;

  OfficeDocType type = DOC_TYPE_NONE;
  for (size_t i = 0; i < arraysize(kOfficeExtensionTypes); ++i) {
    std::string url_path = url.path();

    if (url_path.length() < kOfficeExtensionTypes[i].extension_len)
      continue;

    const char* extension =
        &url_path[url_path.length() - kOfficeExtensionTypes[i].extension_len];

    if (0 == base::strncasecmp(extension, kOfficeExtensionTypes[i].extension,
                               kOfficeExtensionTypes[i].extension_len)) {
      type = kOfficeExtensionTypes[i].doc_type;
      break;
    }
  }

  if (type == DOC_TYPE_NONE)
    return false;

  if (office_version == "CFB") {
    switch (type) {
      case DOC_TYPE_WORD:
        *result = "application/msword";
        return true;
      case DOC_TYPE_EXCEL:
        *result = "application/vnd.ms-excel";
        return true;
      case DOC_TYPE_POWERPOINT:
        *result = "application/vnd.ms-powerpoint";
        return true;
      case DOC_TYPE_NONE:
        NOTREACHED();
        return false;
    }
  } else if (office_version == "OOXML") {
    switch (type) {
      case DOC_TYPE_WORD:
        *result = "application/vnd.openxmlformats-officedocument."
                  "wordprocessingml.document";
        return true;
      case DOC_TYPE_EXCEL:
        *result = "application/vnd.openxmlformats-officedocument."
                  "spreadsheetml.sheet";
        return true;
      case DOC_TYPE_POWERPOINT:
        *result = "application/vnd.openxmlformats-officedocument."
                  "presentationml.presentation";
        return true;
      case DOC_TYPE_NONE:
        NOTREACHED();
        return false;
    }
  }

  NOTREACHED();
  return false;
}

static bool IsOfficeType(const std::string& type_hint) {
  return (type_hint == "application/msword" ||
          type_hint == "application/vnd.ms-excel" ||
          type_hint == "application/vnd.ms-powerpoint" ||
          type_hint == "application/vnd.openxmlformats-officedocument."
                       "wordprocessingml.document" ||
          type_hint == "application/vnd.openxmlformats-officedocument."
                       "spreadsheetml.sheet" ||
          type_hint == "application/vnd.openxmlformats-officedocument."
                       "presentationml.presentation" ||
          type_hint == "application/vnd.ms-excel.sheet.macroenabled.12" ||
          type_hint == "application/vnd.ms-word.document.macroenabled.12" ||
          type_hint == "application/vnd.ms-powerpoint.presentation."
                       "macroenabled.12" ||
          type_hint == "application/mspowerpoint" ||
          type_hint == "application/msexcel" ||
          type_hint == "application/vnd.ms-word" ||
          type_hint == "application/vnd.ms-word.document.12" ||
          type_hint == "application/vnd.msword");
}

// This function checks for files that have a Microsoft Office MIME type
// set, but are not actually Office files.
//
// If this is not actually an Office file, |*result| is set to
// "application/octet-stream", otherwise it is not modified.
//
// Returns false if additional data is required to determine the file type, or
// true if there is enough data to make a decision.
static bool SniffForInvalidOfficeDocs(const char* content,
                                      size_t size,
                                      const GURL& url,
                                      std::string* result) {
  if (!TruncateSize(kBytesRequiredForOfficeMagic, &size))
    return false;

  // Check our table of magic numbers for Office file types.  If it does not
  // match one, the MIME type was invalid.  Set it instead to a safe value.
  std::string office_version;
  if (!CheckForMagicNumbers(content, size,
                            kOfficeMagicNumbers, arraysize(kOfficeMagicNumbers),
                            NULL, &office_version)) {
    *result = "application/octet-stream";
  }

  // We have enough information to determine if this was a Microsoft Office
  // document or not, so sniffing is completed.
  return true;
}

// Byte order marks
static const MagicNumber kMagicXML[] = {
  // We want to be very conservative in interpreting text/xml content as
  // XHTML -- we just want to sniff enough to make unit tests pass.
  // So we match explicitly on this, and don't match other ways of writing
  // it in semantically-equivalent ways.
  MAGIC_STRING("application/xhtml+xml",
               "<html xmlns=\"http://www.w3.org/1999/xhtml\"")
  MAGIC_STRING("application/atom+xml", "<feed")
  MAGIC_STRING("application/rss+xml", "<rss")  // UTF-8
};

// Returns true and sets result if the content appears to contain XHTML or a
// feed.
// Clears have_enough_content if more data could possibly change the result.
//
// TODO(evanm): this is similar but more conservative than what Safari does,
// while HTML5 has a different recommendation -- what should we do?
// TODO(evanm): this is incorrect for documents whose encoding isn't a superset
// of ASCII -- do we care?
static bool SniffXML(const char* content,
                     size_t size,
                     bool* have_enough_content,
                     std::string* result) {
  // We allow at most 300 bytes of content before we expect the opening tag.
  *have_enough_content &= TruncateSize(300, &size);
  const char* pos = content;
  const char* const end = content + size;

  // This loop iterates through tag-looking offsets in the file.
  // We want to skip XML processing instructions (of the form "<?xml ...")
  // and stop at the first "plain" tag, then make a decision on the mime-type
  // based on the name (or possibly attributes) of that tag.
  static base::HistogramBase* counter(NULL);
  if (!counter) {
    counter = UMASnifferHistogramGet("mime_sniffer.kMagicXML2",
                                     arraysize(kMagicXML));
  }
  const int kMaxTagIterations = 5;
  for (int i = 0; i < kMaxTagIterations && pos < end; ++i) {
    pos = reinterpret_cast<const char*>(memchr(pos, '<', end - pos));
    if (!pos)
      return false;

    if (base::strncasecmp(pos, "<?xml", sizeof("<?xml") - 1) == 0) {
      // Skip XML declarations.
      ++pos;
      continue;
    } else if (base::strncasecmp(pos, "<!DOCTYPE",
                                 sizeof("<!DOCTYPE") - 1) == 0) {
      // Skip DOCTYPE declarations.
      ++pos;
      continue;
    }

    if (CheckForMagicNumbers(pos, end - pos,
                             kMagicXML, arraysize(kMagicXML),
                             counter, result))
      return true;

    // TODO(evanm): handle RSS 1.0, which is an RDF format and more difficult
    // to identify.

    // If we get here, we've hit an initial tag that hasn't matched one of the
    // above tests.  Abort.
    return true;
  }

  // We iterated too far without finding a start tag.
  // If we have more content to look at, we aren't going to change our mind by
  // seeing more bytes from the network.
  return pos < end;
}

// Byte order marks
static const MagicNumber kByteOrderMark[] = {
  MAGIC_NUMBER("text/plain", "\xFE\xFF")  // UTF-16BE
  MAGIC_NUMBER("text/plain", "\xFF\xFE")  // UTF-16LE
  MAGIC_NUMBER("text/plain", "\xEF\xBB\xBF")  // UTF-8
};

// Whether a given byte looks like it might be part of binary content.
// Source: HTML5 spec
static char kByteLooksBinary[] = {
  1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1,  // 0x00 - 0x0F
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,  // 0x10 - 0x1F
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0x20 - 0x2F
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0x30 - 0x3F
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0x40 - 0x4F
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0x50 - 0x5F
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0x60 - 0x6F
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0x70 - 0x7F
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0x80 - 0x8F
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0x90 - 0x9F
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0xA0 - 0xAF
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0xB0 - 0xBF
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0xC0 - 0xCF
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0xD0 - 0xDF
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0xE0 - 0xEF
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0xF0 - 0xFF
};

// Returns true and sets result to "application/octet-stream" if the content
// appears to be binary data. Otherwise, returns false and sets "text/plain".
// Clears have_enough_content if more data could possibly change the result.
static bool SniffBinary(const char* content,
                        size_t size,
                        bool* have_enough_content,
                        std::string* result) {
  // There is no concensus about exactly how to sniff for binary content.
  // * IE 7: Don't sniff for binary looking bytes, but trust the file extension.
  // * Firefox 3.5: Sniff first 4096 bytes for a binary looking byte.
  // Here, we side with FF, but with a smaller buffer. This size was chosen
  // because it is small enough to comfortably fit into a single packet (after
  // allowing for headers) and yet large enough to account for binary formats
  // that have a significant amount of ASCII at the beginning (crbug.com/15314).
  const bool is_truncated = TruncateSize(kMaxBytesToSniff, &size);

  // First, we look for a BOM.
  static base::HistogramBase* counter(NULL);
  if (!counter) {
    counter = UMASnifferHistogramGet("mime_sniffer.kByteOrderMark2",
                                     arraysize(kByteOrderMark));
  }
  std::string unused;
  if (CheckForMagicNumbers(content, size,
                           kByteOrderMark, arraysize(kByteOrderMark),
                           counter, &unused)) {
    // If there is BOM, we think the buffer is not binary.
    result->assign("text/plain");
    return false;
  }

  // Next we look to see if any of the bytes "look binary."
  for (size_t i = 0; i < size; ++i) {
    // If we a see a binary-looking byte, we think the content is binary.
    if (kByteLooksBinary[static_cast<unsigned char>(content[i])]) {
      result->assign("application/octet-stream");
      return true;
    }
  }

  // No evidence either way. Default to non-binary and, if truncated, clear
  // have_enough_content because there could be a binary looking byte in the
  // truncated data.
  *have_enough_content &= is_truncated;
  result->assign("text/plain");
  return false;
}

static bool IsUnknownMimeType(const std::string& mime_type) {
  // TODO(tc): Maybe reuse some code in net/http/http_response_headers.* here.
  // If we do, please be careful not to alter the semantics at all.
  static const char* kUnknownMimeTypes[] = {
    // Empty mime types are as unknown as they get.
    "",
    // The unknown/unknown type is popular and uninformative
    "unknown/unknown",
    // The second most popular unknown mime type is application/unknown
    "application/unknown",
    // Firefox rejects a mime type if it is exactly */*
    "*/*",
  };
  static base::HistogramBase* counter(NULL);
  if (!counter) {
    counter = UMASnifferHistogramGet("mime_sniffer.kUnknownMimeTypes2",
                                     arraysize(kUnknownMimeTypes) + 1);
  }
  for (size_t i = 0; i < arraysize(kUnknownMimeTypes); ++i) {
    if (mime_type == kUnknownMimeTypes[i]) {
      counter->Add(i);
      return true;
    }
  }
  if (mime_type.find('/') == std::string::npos) {
    // Firefox rejects a mime type if it does not contain a slash
    counter->Add(arraysize(kUnknownMimeTypes));
    return true;
  }
  return false;
}

// Returns true and sets result if the content appears to be a crx (Chrome
// extension) file.
// Clears have_enough_content if more data could possibly change the result.
static bool SniffCRX(const char* content,
                     size_t size,
                     const GURL& url,
                     const std::string& type_hint,
                     bool* have_enough_content,
                     std::string* result) {
  static base::HistogramBase* counter(NULL);
  if (!counter)
    counter = UMASnifferHistogramGet("mime_sniffer.kSniffCRX", 3);

  // Technically, the crx magic number is just Cr24, but the bytes after that
  // are a version number which changes infrequently. Including it in the
  // sniffing gives us less room for error. If the version number ever changes,
  // we can just add an entry to this list.
  //
  // TODO(aa): If we ever have another magic number, we'll want to pass a
  // histogram into CheckForMagicNumbers(), below, to see which one matched.
  static const struct MagicNumber kCRXMagicNumbers[] = {
    MAGIC_NUMBER("application/x-chrome-extension", "Cr24\x02\x00\x00\x00")
  };

  // Only consider files that have the extension ".crx".
  static const char kCRXExtension[] = ".crx";
  // Ignore null by subtracting 1.
  static const int kExtensionLength = arraysize(kCRXExtension) - 1;
  if (url.path().rfind(kCRXExtension, std::string::npos, kExtensionLength) ==
      url.path().size() - kExtensionLength) {
    counter->Add(1);
  } else {
    return false;
  }

  *have_enough_content &= TruncateSize(kBytesRequiredForMagic, &size);
  if (CheckForMagicNumbers(content, size,
                           kCRXMagicNumbers, arraysize(kCRXMagicNumbers),
                           NULL, result)) {
    counter->Add(2);
  } else {
    return false;
  }

  return true;
}

bool ShouldSniffMimeType(const GURL& url, const std::string& mime_type) {
  static base::HistogramBase* should_sniff_counter(NULL);
  if (!should_sniff_counter) {
    should_sniff_counter =
        UMASnifferHistogramGet("mime_sniffer.ShouldSniffMimeType2", 3);
  }
  bool sniffable_scheme = url.is_empty() ||
                          url.SchemeIsHTTPOrHTTPS() ||
                          url.SchemeIs("ftp") ||
#if defined(OS_ANDROID)
                          url.SchemeIs("content") ||
#endif
                          url.SchemeIsFile() ||
                          url.SchemeIsFileSystem();
  if (!sniffable_scheme) {
    should_sniff_counter->Add(1);
    return false;
  }

  static const char* kSniffableTypes[] = {
    // Many web servers are misconfigured to send text/plain for many
    // different types of content.
    "text/plain",
    // We want to sniff application/octet-stream for
    // application/x-chrome-extension, but nothing else.
    "application/octet-stream",
    // XHTML and Atom/RSS feeds are often served as plain xml instead of
    // their more specific mime types.
    "text/xml",
    "application/xml",
    // Check for false Microsoft Office MIME types.
    "application/msword",
    "application/vnd.ms-excel",
    "application/vnd.ms-powerpoint",
    "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
    "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
    "application/vnd.openxmlformats-officedocument.presentationml.presentation",
    "application/vnd.ms-excel.sheet.macroenabled.12",
    "application/vnd.ms-word.document.macroenabled.12",
    "application/vnd.ms-powerpoint.presentation.macroenabled.12",
    "application/mspowerpoint",
    "application/msexcel",
    "application/vnd.ms-word",
    "application/vnd.ms-word.document.12",
    "application/vnd.msword",
  };
  static base::HistogramBase* counter(NULL);
  if (!counter) {
    counter = UMASnifferHistogramGet("mime_sniffer.kSniffableTypes2",
                                     arraysize(kSniffableTypes) + 1);
  }
  for (size_t i = 0; i < arraysize(kSniffableTypes); ++i) {
    if (mime_type == kSniffableTypes[i]) {
      counter->Add(i);
      should_sniff_counter->Add(2);
      return true;
    }
  }
  if (IsUnknownMimeType(mime_type)) {
    // The web server didn't specify a content type or specified a mime
    // type that we ignore.
    counter->Add(arraysize(kSniffableTypes));
    should_sniff_counter->Add(2);
    return true;
  }
  should_sniff_counter->Add(1);
  return false;
}

bool SniffMimeType(const char* content,
                   size_t content_size,
                   const GURL& url,
                   const std::string& type_hint,
                   std::string* result) {
  DCHECK_LT(content_size, 1000000U);  // sanity check
  DCHECK(content);
  DCHECK(result);

  // By default, we assume we have enough content.
  // Each sniff routine may unset this if it wasn't provided enough content.
  bool have_enough_content = true;

  // By default, we'll return the type hint.
  // Each sniff routine may modify this if it has a better guess..
  result->assign(type_hint);

  // If the file has a Microsoft Office MIME type, we should only check that it
  // is a valid Office file.  Because this is the only reason we sniff files
  // with a Microsoft Office MIME type, we can return early.
  if (IsOfficeType(type_hint))
    return SniffForInvalidOfficeDocs(content, content_size, url, result);

  // Cache information about the type_hint
  const bool hint_is_unknown_mime_type = IsUnknownMimeType(type_hint);

  // First check for HTML
  if (hint_is_unknown_mime_type) {
    // We're only willing to sniff HTML if the server has not supplied a mime
    // type, or if the type it did supply indicates that it doesn't know what
    // the type should be.
    if (SniffForHTML(content, content_size, &have_enough_content, result))
      return true;  // We succeeded in sniffing HTML.  No more content needed.
  }

  // We're only willing to sniff for binary in 3 cases:
  // 1. The server has not supplied a mime type.
  // 2. The type it did supply indicates that it doesn't know what the type
  //    should be.
  // 3. The type is "text/plain" which is the default on some web servers and
  //    could be indicative of a mis-configuration that we shield the user from.
  const bool hint_is_text_plain = (type_hint == "text/plain");
  if (hint_is_unknown_mime_type || hint_is_text_plain) {
    if (!SniffBinary(content, content_size, &have_enough_content, result)) {
      // If the server said the content was text/plain and it doesn't appear
      // to be binary, then we trust it.
      if (hint_is_text_plain) {
        return have_enough_content;
      }
    }
  }

  // If we have plain XML, sniff XML subtypes.
  if (type_hint == "text/xml" || type_hint == "application/xml") {
    // We're not interested in sniffing these types for images and the like.
    // Instead, we're looking explicitly for a feed.  If we don't find one
    // we're done and return early.
    if (SniffXML(content, content_size, &have_enough_content, result))
      return true;
    return have_enough_content;
  }

  // CRX files (Chrome extensions) have a special sniffing algorithm. It is
  // tighter than the others because we don't have to match legacy behavior.
  if (SniffCRX(content, content_size, url, type_hint,
               &have_enough_content, result))
    return true;

  // Check the file extension and magic numbers to see if this is an Office
  // document.  This needs to be checked before the general magic numbers
  // because zip files and Office documents (OOXML) have the same magic number.
  if (SniffForOfficeDocs(content, content_size, url,
                         &have_enough_content, result))
    return true;  // We've matched a magic number.  No more content needed.

  // We're not interested in sniffing for magic numbers when the type_hint
  // is application/octet-stream.  Time to bail out.
  if (type_hint == "application/octet-stream")
    return have_enough_content;

  // Now we look in our large table of magic numbers to see if we can find
  // anything that matches the content.
  if (SniffForMagicNumbers(content, content_size,
                           &have_enough_content, result))
    return true;  // We've matched a magic number.  No more content needed.

  return have_enough_content;
}

bool SniffMimeTypeFromLocalData(const char* content,
                                size_t size,
                                std::string* result) {
  // First check the extra table.
  if (CheckForMagicNumbers(content, size, kExtraMagicNumbers,
                           arraysize(kExtraMagicNumbers), NULL, result))
    return true;
  // Finally check the original table.
  return CheckForMagicNumbers(content, size, kMagicNumbers,
                              arraysize(kMagicNumbers), NULL, result);
}

}  // namespace net

/* [<][>][^][v][top][bottom][index][help] */