root/net/socket/socks_client_socket.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. net_log_
  2. Connect
  3. Disconnect
  4. IsConnected
  5. IsConnectedAndIdle
  6. SetSubresourceSpeculation
  7. SetOmniboxSpeculation
  8. WasEverUsed
  9. UsingTCPFastOpen
  10. WasNpnNegotiated
  11. GetNegotiatedProtocol
  12. GetSSLInfo
  13. Read
  14. Write
  15. SetReceiveBufferSize
  16. SetSendBufferSize
  17. DoCallback
  18. OnIOComplete
  19. OnReadWriteComplete
  20. DoLoop
  21. DoResolveHost
  22. DoResolveHostComplete
  23. BuildHandshakeWriteBuffer
  24. DoHandshakeWrite
  25. DoHandshakeWriteComplete
  26. DoHandshakeRead
  27. DoHandshakeReadComplete
  28. GetPeerAddress
  29. GetLocalAddress

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "net/socket/socks_client_socket.h"

#include "base/basictypes.h"
#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/compiler_specific.h"
#include "base/sys_byteorder.h"
#include "net/base/io_buffer.h"
#include "net/base/net_log.h"
#include "net/base/net_util.h"
#include "net/socket/client_socket_handle.h"

namespace net {

// Every SOCKS server requests a user-id from the client. It is optional
// and we send an empty string.
static const char kEmptyUserId[] = "";

// For SOCKS4, the client sends 8 bytes  plus the size of the user-id.
static const unsigned int kWriteHeaderSize = 8;

// For SOCKS4 the server sends 8 bytes for acknowledgement.
static const unsigned int kReadHeaderSize = 8;

// Server Response codes for SOCKS.
static const uint8 kServerResponseOk  = 0x5A;
static const uint8 kServerResponseRejected = 0x5B;
static const uint8 kServerResponseNotReachable = 0x5C;
static const uint8 kServerResponseMismatchedUserId = 0x5D;

static const uint8 kSOCKSVersion4 = 0x04;
static const uint8 kSOCKSStreamRequest = 0x01;

// A struct holding the essential details of the SOCKS4 Server Request.
// The port in the header is stored in network byte order.
struct SOCKS4ServerRequest {
  uint8 version;
  uint8 command;
  uint16 nw_port;
  uint8 ip[4];
};
COMPILE_ASSERT(sizeof(SOCKS4ServerRequest) == kWriteHeaderSize,
               socks4_server_request_struct_wrong_size);

// A struct holding details of the SOCKS4 Server Response.
struct SOCKS4ServerResponse {
  uint8 reserved_null;
  uint8 code;
  uint16 port;
  uint8 ip[4];
};
COMPILE_ASSERT(sizeof(SOCKS4ServerResponse) == kReadHeaderSize,
               socks4_server_response_struct_wrong_size);

SOCKSClientSocket::SOCKSClientSocket(
    scoped_ptr<ClientSocketHandle> transport_socket,
    const HostResolver::RequestInfo& req_info,
    RequestPriority priority,
    HostResolver* host_resolver)
    : transport_(transport_socket.Pass()),
      next_state_(STATE_NONE),
      completed_handshake_(false),
      bytes_sent_(0),
      bytes_received_(0),
      was_ever_used_(false),
      host_resolver_(host_resolver),
      host_request_info_(req_info),
      priority_(priority),
      net_log_(transport_->socket()->NetLog()) {}

SOCKSClientSocket::~SOCKSClientSocket() {
  Disconnect();
}

int SOCKSClientSocket::Connect(const CompletionCallback& callback) {
  DCHECK(transport_.get());
  DCHECK(transport_->socket());
  DCHECK_EQ(STATE_NONE, next_state_);
  DCHECK(user_callback_.is_null());

  // If already connected, then just return OK.
  if (completed_handshake_)
    return OK;

  next_state_ = STATE_RESOLVE_HOST;

  net_log_.BeginEvent(NetLog::TYPE_SOCKS_CONNECT);

  int rv = DoLoop(OK);
  if (rv == ERR_IO_PENDING) {
    user_callback_ = callback;
  } else {
    net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SOCKS_CONNECT, rv);
  }
  return rv;
}

void SOCKSClientSocket::Disconnect() {
  completed_handshake_ = false;
  host_resolver_.Cancel();
  transport_->socket()->Disconnect();

  // Reset other states to make sure they aren't mistakenly used later.
  // These are the states initialized by Connect().
  next_state_ = STATE_NONE;
  user_callback_.Reset();
}

bool SOCKSClientSocket::IsConnected() const {
  return completed_handshake_ && transport_->socket()->IsConnected();
}

bool SOCKSClientSocket::IsConnectedAndIdle() const {
  return completed_handshake_ && transport_->socket()->IsConnectedAndIdle();
}

const BoundNetLog& SOCKSClientSocket::NetLog() const {
  return net_log_;
}

void SOCKSClientSocket::SetSubresourceSpeculation() {
  if (transport_.get() && transport_->socket()) {
    transport_->socket()->SetSubresourceSpeculation();
  } else {
    NOTREACHED();
  }
}

void SOCKSClientSocket::SetOmniboxSpeculation() {
  if (transport_.get() && transport_->socket()) {
    transport_->socket()->SetOmniboxSpeculation();
  } else {
    NOTREACHED();
  }
}

bool SOCKSClientSocket::WasEverUsed() const {
  return was_ever_used_;
}

bool SOCKSClientSocket::UsingTCPFastOpen() const {
  if (transport_.get() && transport_->socket()) {
    return transport_->socket()->UsingTCPFastOpen();
  }
  NOTREACHED();
  return false;
}

bool SOCKSClientSocket::WasNpnNegotiated() const {
  if (transport_.get() && transport_->socket()) {
    return transport_->socket()->WasNpnNegotiated();
  }
  NOTREACHED();
  return false;
}

NextProto SOCKSClientSocket::GetNegotiatedProtocol() const {
  if (transport_.get() && transport_->socket()) {
    return transport_->socket()->GetNegotiatedProtocol();
  }
  NOTREACHED();
  return kProtoUnknown;
}

bool SOCKSClientSocket::GetSSLInfo(SSLInfo* ssl_info) {
  if (transport_.get() && transport_->socket()) {
    return transport_->socket()->GetSSLInfo(ssl_info);
  }
  NOTREACHED();
  return false;

}

// Read is called by the transport layer above to read. This can only be done
// if the SOCKS handshake is complete.
int SOCKSClientSocket::Read(IOBuffer* buf, int buf_len,
                            const CompletionCallback& callback) {
  DCHECK(completed_handshake_);
  DCHECK_EQ(STATE_NONE, next_state_);
  DCHECK(user_callback_.is_null());
  DCHECK(!callback.is_null());

  int rv = transport_->socket()->Read(
      buf, buf_len,
      base::Bind(&SOCKSClientSocket::OnReadWriteComplete,
                 base::Unretained(this), callback));
  if (rv > 0)
    was_ever_used_ = true;
  return rv;
}

// Write is called by the transport layer. This can only be done if the
// SOCKS handshake is complete.
int SOCKSClientSocket::Write(IOBuffer* buf, int buf_len,
                             const CompletionCallback& callback) {
  DCHECK(completed_handshake_);
  DCHECK_EQ(STATE_NONE, next_state_);
  DCHECK(user_callback_.is_null());
  DCHECK(!callback.is_null());

  int rv = transport_->socket()->Write(
      buf, buf_len,
      base::Bind(&SOCKSClientSocket::OnReadWriteComplete,
                 base::Unretained(this), callback));
  if (rv > 0)
    was_ever_used_ = true;
  return rv;
}

int SOCKSClientSocket::SetReceiveBufferSize(int32 size) {
  return transport_->socket()->SetReceiveBufferSize(size);
}

int SOCKSClientSocket::SetSendBufferSize(int32 size) {
  return transport_->socket()->SetSendBufferSize(size);
}

void SOCKSClientSocket::DoCallback(int result) {
  DCHECK_NE(ERR_IO_PENDING, result);
  DCHECK(!user_callback_.is_null());

  // Since Run() may result in Read being called,
  // clear user_callback_ up front.
  DVLOG(1) << "Finished setting up SOCKS handshake";
  base::ResetAndReturn(&user_callback_).Run(result);
}

void SOCKSClientSocket::OnIOComplete(int result) {
  DCHECK_NE(STATE_NONE, next_state_);
  int rv = DoLoop(result);
  if (rv != ERR_IO_PENDING) {
    net_log_.EndEventWithNetErrorCode(NetLog::TYPE_SOCKS_CONNECT, rv);
    DoCallback(rv);
  }
}

void SOCKSClientSocket::OnReadWriteComplete(const CompletionCallback& callback,
                                            int result) {
  DCHECK_NE(ERR_IO_PENDING, result);
  DCHECK(!callback.is_null());

  if (result > 0)
    was_ever_used_ = true;
  callback.Run(result);
}

int SOCKSClientSocket::DoLoop(int last_io_result) {
  DCHECK_NE(next_state_, STATE_NONE);
  int rv = last_io_result;
  do {
    State state = next_state_;
    next_state_ = STATE_NONE;
    switch (state) {
      case STATE_RESOLVE_HOST:
        DCHECK_EQ(OK, rv);
        rv = DoResolveHost();
        break;
      case STATE_RESOLVE_HOST_COMPLETE:
        rv = DoResolveHostComplete(rv);
        break;
      case STATE_HANDSHAKE_WRITE:
        DCHECK_EQ(OK, rv);
        rv = DoHandshakeWrite();
        break;
      case STATE_HANDSHAKE_WRITE_COMPLETE:
        rv = DoHandshakeWriteComplete(rv);
        break;
      case STATE_HANDSHAKE_READ:
        DCHECK_EQ(OK, rv);
        rv = DoHandshakeRead();
        break;
      case STATE_HANDSHAKE_READ_COMPLETE:
        rv = DoHandshakeReadComplete(rv);
        break;
      default:
        NOTREACHED() << "bad state";
        rv = ERR_UNEXPECTED;
        break;
    }
  } while (rv != ERR_IO_PENDING && next_state_ != STATE_NONE);
  return rv;
}

int SOCKSClientSocket::DoResolveHost() {
  next_state_ = STATE_RESOLVE_HOST_COMPLETE;
  // SOCKS4 only supports IPv4 addresses, so only try getting the IPv4
  // addresses for the target host.
  host_request_info_.set_address_family(ADDRESS_FAMILY_IPV4);
  return host_resolver_.Resolve(
      host_request_info_,
      priority_,
      &addresses_,
      base::Bind(&SOCKSClientSocket::OnIOComplete, base::Unretained(this)),
      net_log_);
}

int SOCKSClientSocket::DoResolveHostComplete(int result) {
  if (result != OK) {
    // Resolving the hostname failed; fail the request rather than automatically
    // falling back to SOCKS4a (since it can be confusing to see invalid IP
    // addresses being sent to the SOCKS4 server when it doesn't support 4A.)
    return result;
  }

  next_state_ = STATE_HANDSHAKE_WRITE;
  return OK;
}

// Builds the buffer that is to be sent to the server.
const std::string SOCKSClientSocket::BuildHandshakeWriteBuffer() const {
  SOCKS4ServerRequest request;
  request.version = kSOCKSVersion4;
  request.command = kSOCKSStreamRequest;
  request.nw_port = base::HostToNet16(host_request_info_.port());

  DCHECK(!addresses_.empty());
  const IPEndPoint& endpoint = addresses_.front();

  // We disabled IPv6 results when resolving the hostname, so none of the
  // results in the list will be IPv6.
  // TODO(eroman): we only ever use the first address in the list. It would be
  //               more robust to try all the IP addresses we have before
  //               failing the connect attempt.
  CHECK_EQ(ADDRESS_FAMILY_IPV4, endpoint.GetFamily());
  CHECK_LE(endpoint.address().size(), sizeof(request.ip));
  memcpy(&request.ip, &endpoint.address()[0], endpoint.address().size());

  DVLOG(1) << "Resolved Host is : " << endpoint.ToStringWithoutPort();

  std::string handshake_data(reinterpret_cast<char*>(&request),
                             sizeof(request));
  handshake_data.append(kEmptyUserId, arraysize(kEmptyUserId));

  return handshake_data;
}

// Writes the SOCKS handshake data to the underlying socket connection.
int SOCKSClientSocket::DoHandshakeWrite() {
  next_state_ = STATE_HANDSHAKE_WRITE_COMPLETE;

  if (buffer_.empty()) {
    buffer_ = BuildHandshakeWriteBuffer();
    bytes_sent_ = 0;
  }

  int handshake_buf_len = buffer_.size() - bytes_sent_;
  DCHECK_GT(handshake_buf_len, 0);
  handshake_buf_ = new IOBuffer(handshake_buf_len);
  memcpy(handshake_buf_->data(), &buffer_[bytes_sent_],
         handshake_buf_len);
  return transport_->socket()->Write(
      handshake_buf_.get(),
      handshake_buf_len,
      base::Bind(&SOCKSClientSocket::OnIOComplete, base::Unretained(this)));
}

int SOCKSClientSocket::DoHandshakeWriteComplete(int result) {
  if (result < 0)
    return result;

  // We ignore the case when result is 0, since the underlying Write
  // may return spurious writes while waiting on the socket.

  bytes_sent_ += result;
  if (bytes_sent_ == buffer_.size()) {
    next_state_ = STATE_HANDSHAKE_READ;
    buffer_.clear();
  } else if (bytes_sent_ < buffer_.size()) {
    next_state_ = STATE_HANDSHAKE_WRITE;
  } else {
    return ERR_UNEXPECTED;
  }

  return OK;
}

int SOCKSClientSocket::DoHandshakeRead() {
  next_state_ = STATE_HANDSHAKE_READ_COMPLETE;

  if (buffer_.empty()) {
    bytes_received_ = 0;
  }

  int handshake_buf_len = kReadHeaderSize - bytes_received_;
  handshake_buf_ = new IOBuffer(handshake_buf_len);
  return transport_->socket()->Read(
      handshake_buf_.get(),
      handshake_buf_len,
      base::Bind(&SOCKSClientSocket::OnIOComplete, base::Unretained(this)));
}

int SOCKSClientSocket::DoHandshakeReadComplete(int result) {
  if (result < 0)
    return result;

  // The underlying socket closed unexpectedly.
  if (result == 0)
    return ERR_CONNECTION_CLOSED;

  if (bytes_received_ + result > kReadHeaderSize) {
    // TODO(eroman): Describe failure in NetLog.
    return ERR_SOCKS_CONNECTION_FAILED;
  }

  buffer_.append(handshake_buf_->data(), result);
  bytes_received_ += result;
  if (bytes_received_ < kReadHeaderSize) {
    next_state_ = STATE_HANDSHAKE_READ;
    return OK;
  }

  const SOCKS4ServerResponse* response =
      reinterpret_cast<const SOCKS4ServerResponse*>(buffer_.data());

  if (response->reserved_null != 0x00) {
    LOG(ERROR) << "Unknown response from SOCKS server.";
    return ERR_SOCKS_CONNECTION_FAILED;
  }

  switch (response->code) {
    case kServerResponseOk:
      completed_handshake_ = true;
      return OK;
    case kServerResponseRejected:
      LOG(ERROR) << "SOCKS request rejected or failed";
      return ERR_SOCKS_CONNECTION_FAILED;
    case kServerResponseNotReachable:
      LOG(ERROR) << "SOCKS request failed because client is not running "
                 << "identd (or not reachable from the server)";
      return ERR_SOCKS_CONNECTION_HOST_UNREACHABLE;
    case kServerResponseMismatchedUserId:
      LOG(ERROR) << "SOCKS request failed because client's identd could "
                 << "not confirm the user ID string in the request";
      return ERR_SOCKS_CONNECTION_FAILED;
    default:
      LOG(ERROR) << "SOCKS server sent unknown response";
      return ERR_SOCKS_CONNECTION_FAILED;
  }

  // Note: we ignore the last 6 bytes as specified by the SOCKS protocol
}

int SOCKSClientSocket::GetPeerAddress(IPEndPoint* address) const {
  return transport_->socket()->GetPeerAddress(address);
}

int SOCKSClientSocket::GetLocalAddress(IPEndPoint* address) const {
  return transport_->socket()->GetLocalAddress(address);
}

}  // namespace net

/* [<][>][^][v][top][bottom][index][help] */