// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // The cache is stored on disk as a collection of block-files, plus an index // plus a collection of external files. // // Any data blob bigger than kMaxBlockSize (disk_cache/addr.h) will be stored in // a separate file named f_xxx where x is a hexadecimal number. Shorter data // will be stored as a series of blocks on a block-file. In any case, CacheAddr // represents the address of the data inside the cache. // // The index is actually a collection of four files that store a hash table with // allocation bitmaps and backup data. Hash collisions are handled directly by // the table, which from some point of view behaves like a 4-way associative // cache with overflow buckets (so not really open addressing). // // Basically the hash table is a collection of buckets. The first part of the // table has a fixed number of buckets and it is directly addressed by the hash, // while the second part of the table (stored on a second file) has a variable // number of buckets. Each bucket stores up to four cells (each cell represents // a possibl entry). The index bitmap tracks the state of individual cells. // // The last element of the cache is the block-file. A block file is a file // designed to store blocks of data of a given size. For more details see // disk_cache/disk_format_base.h // // A new cache is initialized with a set of block files (named data_0 through // data_6), each one dedicated to store blocks of a given size or function. The // number at the end of the file name is the block file number (in decimal). // // There are three "special" types of blocks: normal entries, evicted entries // and control data for external files. // // The files that store internal information for the cache (blocks and index) // are memory mapped. They have a location that is signaled every time the // internal structures are modified, so it is possible to detect (most of the // time) when the process dies in the middle of an update. There are dedicated // backup files for cache bitmaps, used to detect entries out of date. // // Although cache files are to be consumed on the same machine that creates // them, if files are to be moved accross machines, little endian storage is // assumed. #ifndef NET_DISK_CACHE_BLOCKFILE_DISK_FORMAT_V3_H_ #define NET_DISK_CACHE_BLOCKFILE_DISK_FORMAT_V3_H_ #include "base/basictypes.h" #include "net/disk_cache/blockfile/disk_format_base.h" namespace disk_cache { const int kBaseTableLen = 0x400; const uint32 kIndexMagicV3 = 0xC103CAC3; const uint32 kVersion3 = 0x30000; // Version 3.0. // Flags for a given cache. enum CacheFlags { SMALL_CACHE = 1 << 0, // See IndexCell. CACHE_EVICTION_2 = 1 << 1, // Keep multiple lists for eviction. CACHE_EVICTED = 1 << 2 // Already evicted at least one entry. }; // Header for the master index file. struct IndexHeaderV3 { uint32 magic; uint32 version; int32 num_entries; // Number of entries currently stored. int32 num_bytes; // Total size of the stored data. int32 last_file; // Last external file created. int32 reserved1; CacheAddr stats; // Storage for usage data. int32 table_len; // Actual size of the table. int32 crash; // Signals a previous crash. int32 experiment; // Id of an ongoing test. int32 max_bytes; // Total maximum size of the stored data. uint32 flags; int32 used_cells; int32 max_bucket; uint64 create_time; // Creation time for this set of files. uint64 base_time; // Current base for timestamps. uint64 old_time; // Previous time used for timestamps. int32 max_block_file; int32 num_no_use_entries; int32 num_low_use_entries; int32 num_high_use_entries; int32 reserved; int32 num_evicted_entries; int32 pad[6]; }; const int kBaseBitmapBytes = 3968; // The IndexBitmap is directly saved to a file named index. The file grows in // page increments (4096 bytes), but all bits don't have to be in use at any // given time. The required file size can be computed from header.table_len. struct IndexBitmap { IndexHeaderV3 header; uint32 bitmap[kBaseBitmapBytes / 4]; // First page of the bitmap. }; COMPILE_ASSERT(sizeof(IndexBitmap) == 4096, bad_IndexHeader); // Possible states for a given entry. enum EntryState { ENTRY_FREE = 0, // Available slot. ENTRY_NEW, // The entry is being created. ENTRY_OPEN, // The entry is being accessed. ENTRY_MODIFIED, // The entry is being modified. ENTRY_DELETED, // The entry is being deleted. ENTRY_FIXING, // Inconsistent state. The entry is being verified. ENTRY_USED // The slot is in use (entry is present). }; COMPILE_ASSERT(ENTRY_USED <= 7, state_uses_3_bits); enum EntryGroup { ENTRY_NO_USE = 0, // The entry has not been reused. ENTRY_LOW_USE, // The entry has low reuse. ENTRY_HIGH_USE, // The entry has high reuse. ENTRY_RESERVED, // Reserved for future use. ENTRY_EVICTED // The entry was deleted. }; COMPILE_ASSERT(ENTRY_USED <= 7, group_uses_3_bits); #pragma pack(push, 1) struct IndexCell { void Clear() { memset(this, 0, sizeof(*this)); } // A cell is a 9 byte bit-field that stores 7 values: // location : 22 bits // id : 18 bits // timestamp : 20 bits // reuse : 4 bits // state : 3 bits // group : 3 bits // sum : 2 bits // The id is derived from the full hash of the entry. // // The actual layout is as follows: // // first_part (low order 32 bits): // 0000 0000 0011 1111 1111 1111 1111 1111 : location // 1111 1111 1100 0000 0000 0000 0000 0000 : id // // first_part (high order 32 bits): // 0000 0000 0000 0000 0000 0000 1111 1111 : id // 0000 1111 1111 1111 1111 1111 0000 0000 : timestamp // 1111 0000 0000 0000 0000 0000 0000 0000 : reuse // // last_part: // 0000 0111 : state // 0011 1000 : group // 1100 0000 : sum // // The small-cache version of the format moves some bits from the location to // the id fileds, like so: // location : 16 bits // id : 24 bits // // first_part (low order 32 bits): // 0000 0000 0000 0000 1111 1111 1111 1111 : location // 1111 1111 1111 1111 0000 0000 0000 0000 : id // // The actual bit distribution between location and id is determined by the // table size (IndexHeaderV3.table_len). Tables smaller than 65536 entries // use the small-cache version; after that size, caches should have the // SMALL_CACHE flag cleared. // // To locate a given entry after recovering the location from the cell, the // file type and file number are appended (see disk_cache/addr.h). For a large // table only the file type is implied; for a small table, the file number // is also implied, and it should be the first file for that type of entry, // as determined by the EntryGroup (two files in total, one for active entries // and another one for evicted entries). // // For example, a small table may store something like 0x1234 as the location // field. That means it stores the entry number 0x1234. If that record belongs // to a deleted entry, the regular cache address may look something like // BLOCK_EVICTED + 1 block + file number 6 + entry number 0x1234 // so Addr = 0xf0061234 // // If that same Addr is stored on a large table, the location field would be // 0x61234 uint64 first_part; uint8 last_part; }; COMPILE_ASSERT(sizeof(IndexCell) == 9, bad_IndexCell); const int kCellsPerBucket = 4; struct IndexBucket { IndexCell cells[kCellsPerBucket]; int32 next; uint32 hash; // The high order byte is reserved (should be zero). }; COMPILE_ASSERT(sizeof(IndexBucket) == 44, bad_IndexBucket); const int kBytesPerCell = 44 / kCellsPerBucket; // The main cache index. Backed by a file named index_tb1. // The extra table (index_tb2) has a similar format, but different size. struct Index { // Default size. Actual size controlled by header.table_len. IndexBucket table[kBaseTableLen / kCellsPerBucket]; }; #pragma pack(pop) // Flags that can be applied to an entry. enum EntryFlags { PARENT_ENTRY = 1, // This entry has children (sparse) entries. CHILD_ENTRY = 1 << 1 // Child entry that stores sparse data. }; struct EntryRecord { uint32 hash; uint32 pad1; uint8 reuse_count; uint8 refetch_count; int8 state; // Current EntryState. uint8 flags; // Any combination of EntryFlags. int32 key_len; int32 data_size[4]; // We can store up to 4 data streams for each CacheAddr data_addr[4]; // entry. uint32 data_hash[4]; uint64 creation_time; uint64 last_modified_time; uint64 last_access_time; int32 pad[3]; uint32 self_hash; }; COMPILE_ASSERT(sizeof(EntryRecord) == 104, bad_EntryRecord); struct ShortEntryRecord { uint32 hash; uint32 pad1; uint8 reuse_count; uint8 refetch_count; int8 state; // Current EntryState. uint8 flags; int32 key_len; uint64 last_access_time; uint32 long_hash[5]; uint32 self_hash; }; COMPILE_ASSERT(sizeof(ShortEntryRecord) == 48, bad_ShortEntryRecord); } // namespace disk_cache #endif // NET_DISK_CACHE_BLOCKFILE_DISK_FORMAT_V3_H_