This source file includes following definitions.
- current_cable_number_
- ParseInternal
- ParseInterface
- ParseCSInterface
- ParseEndpoint
- ParseCSEndpoint
- Clear
#include "media/midi/usb_midi_descriptor_parser.h"
#include <algorithm>
#include "base/logging.h"
namespace media {
namespace {
enum DescriptorType {
TYPE_DEVICE = 1,
TYPE_CONFIGURATION = 2,
TYPE_STRING = 3,
TYPE_INTERFACE = 4,
TYPE_ENDPOINT = 5,
TYPE_DEVICE_QUALIFIER = 6,
TYPE_OTHER_SPEED_CONFIGURATION = 7,
TYPE_INTERFACE_POWER = 8,
TYPE_CS_INTERFACE = 36,
TYPE_CS_ENDPOINT = 37,
};
enum DescriptorSubType {
SUBTYPE_MS_DESCRIPTOR_UNDEFINED = 0,
SUBTYPE_MS_HEADER = 1,
SUBTYPE_MIDI_IN_JACK = 2,
SUBTYPE_MIDI_OUT_JACK = 3,
SUBTYPE_ELEMENT = 4,
};
enum JackType {
JACK_TYPE_UNDEFINED = 0,
JACK_TYPE_EMBEDDED = 1,
JACK_TYPE_EXTERNAL = 2,
};
const uint8 kAudioInterfaceClass = 1;
const uint8 kAudioMidiInterfaceSubclass = 3;
class JackMatcher {
public:
explicit JackMatcher(uint8 id) : id_(id) {}
bool operator() (const UsbMidiJack& jack) const {
return jack.jack_id == id_;
}
private:
uint8 id_;
};
}
UsbMidiDescriptorParser::UsbMidiDescriptorParser()
: is_parsing_usb_midi_interface_(false),
current_endpoint_address_(0),
current_cable_number_(0) {}
UsbMidiDescriptorParser::~UsbMidiDescriptorParser() {}
bool UsbMidiDescriptorParser::Parse(UsbMidiDevice* device,
const uint8* data,
size_t size,
std::vector<UsbMidiJack>* jacks) {
jacks->clear();
bool result = ParseInternal(device, data, size, jacks);
if (!result)
jacks->clear();
Clear();
return result;
}
bool UsbMidiDescriptorParser::ParseInternal(UsbMidiDevice* device,
const uint8* data,
size_t size,
std::vector<UsbMidiJack>* jacks) {
for (const uint8* current = data;
current < data + size;
current += current[0]) {
uint8 length = current[0];
if (length < 2) {
DVLOG(1) << "Descriptor Type is not accessible.";
return false;
}
if (current + length > data + size) {
DVLOG(1) << "The header size is incorrect.";
return false;
}
DescriptorType descriptor_type = static_cast<DescriptorType>(current[1]);
if (descriptor_type != TYPE_INTERFACE && !is_parsing_usb_midi_interface_)
continue;
switch (descriptor_type) {
case TYPE_INTERFACE:
if (!ParseInterface(current, length))
return false;
break;
case TYPE_CS_INTERFACE:
if (!ParseCSInterface(device, current, length))
return false;
break;
case TYPE_ENDPOINT:
if (!ParseEndpoint(current, length))
return false;
break;
case TYPE_CS_ENDPOINT:
if (!ParseCSEndpoint(current, length, jacks))
return false;
break;
default:
break;
}
}
return true;
}
bool UsbMidiDescriptorParser::ParseInterface(const uint8* data, size_t size) {
if (size != 9) {
DVLOG(1) << "INTERFACE header size is incorrect.";
return false;
}
incomplete_jacks_.clear();
uint8 interface_class = data[5];
uint8 interface_subclass = data[6];
is_parsing_usb_midi_interface_ =
interface_class == kAudioInterfaceClass &&
interface_subclass == kAudioMidiInterfaceSubclass;
return true;
}
bool UsbMidiDescriptorParser::ParseCSInterface(UsbMidiDevice* device,
const uint8* data,
size_t size) {
if (size < 3) {
DVLOG(1) << "CS_INTERFACE header size is incorrect.";
return false;
}
DescriptorSubType subtype = static_cast<DescriptorSubType>(data[2]);
if (subtype != SUBTYPE_MIDI_OUT_JACK &&
subtype != SUBTYPE_MIDI_IN_JACK)
return true;
if (size < 6) {
DVLOG(1) << "CS_INTERFACE (MIDI JACK) header size is incorrect.";
return false;
}
uint8 jack_type = data[3];
uint8 id = data[4];
if (jack_type == JACK_TYPE_EMBEDDED) {
incomplete_jacks_.push_back(UsbMidiJack(device, id, 0, 0));
}
return true;
}
bool UsbMidiDescriptorParser::ParseEndpoint(const uint8* data, size_t size) {
if (size < 4) {
DVLOG(1) << "ENDPOINT header size is incorrect.";
return false;
}
current_endpoint_address_ = data[2];
current_cable_number_ = 0;
return true;
}
bool UsbMidiDescriptorParser::ParseCSEndpoint(const uint8* data,
size_t size,
std::vector<UsbMidiJack>* jacks) {
const size_t kSizeForEmptyJacks = 4;
if (size < kSizeForEmptyJacks) {
DVLOG(1) << "CS_ENDPOINT header size is incorrect.";
return false;
}
uint8 num_jacks = data[3];
if (size != kSizeForEmptyJacks + num_jacks) {
DVLOG(1) << "CS_ENDPOINT header size is incorrect.";
return false;
}
for (size_t i = 0; i < num_jacks; ++i) {
uint8 jack = data[kSizeForEmptyJacks + i];
std::vector<UsbMidiJack>::iterator it =
std::find_if(incomplete_jacks_.begin(),
incomplete_jacks_.end(),
JackMatcher(jack));
if (it == incomplete_jacks_.end()) {
DVLOG(1) << "A non-existing MIDI jack is associated.";
return false;
}
if (current_cable_number_ > 0xf) {
DVLOG(1) << "Cable number should range from 0x0 to 0xf.";
return false;
}
it->cable_number = current_cable_number_++;
it->endpoint_address = current_endpoint_address_;
jacks->push_back(*it);
incomplete_jacks_.erase(it);
}
return true;
}
void UsbMidiDescriptorParser::Clear() {
is_parsing_usb_midi_interface_ = false;
current_endpoint_address_ = 0;
current_cable_number_ = 0;
incomplete_jacks_.clear();
}
}