root/media/filters/audio_renderer_algorithm.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. num_complete_frames_
  2. Initialize
  3. FillBuffer
  4. SetPlaybackRate
  5. FlushBuffers
  6. GetTime
  7. EnqueueBuffer
  8. IsQueueFull
  9. IncreaseQueueCapacity
  10. CanPerformWsola
  11. RunOneWsolaIteration
  12. UpdateOutputTime
  13. RemoveOldInputFrames
  14. WriteCompletedFramesTo
  15. TargetIsWithinSearchRegion
  16. GetOptimalBlock
  17. PeekAudioWithZeroPrepend

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/filters/audio_renderer_algorithm.h"

#include <algorithm>
#include <cmath>

#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "media/base/audio_buffer.h"
#include "media/base/audio_bus.h"
#include "media/base/limits.h"
#include "media/filters/wsola_internals.h"

namespace media {


// Waveform Similarity Overlap-and-add (WSOLA).
//
// One WSOLA iteration
//
// 1) Extract |target_block_| as input frames at indices
//    [|target_block_index_|, |target_block_index_| + |ola_window_size_|).
//    Note that |target_block_| is the "natural" continuation of the output.
//
// 2) Extract |search_block_| as input frames at indices
//    [|search_block_index_|,
//     |search_block_index_| + |num_candidate_blocks_| + |ola_window_size_|).
//
// 3) Find a block within the |search_block_| that is most similar
//    to |target_block_|. Let |optimal_index| be the index of such block and
//    write it to |optimal_block_|.
//
// 4) Update:
//    |optimal_block_| = |transition_window_| * |target_block_| +
//    (1 - |transition_window_|) * |optimal_block_|.
//
// 5) Overlap-and-add |optimal_block_| to the |wsola_output_|.
//
// 6) Update:
//    |target_block_| = |optimal_index| + |ola_window_size_| / 2.
//    |output_index_| = |output_index_| + |ola_window_size_| / 2,
//    |search_block_center_offset_| = |output_index_| * |playback_rate_|, and
//    |search_block_index_| = |search_block_center_offset_| -
//        |search_block_center_offset_|.

// Overlap-and-add window size in milliseconds.
static const int kOlaWindowSizeMs = 20;

// Size of search interval in milliseconds. The search interval is
// [-delta delta] around |output_index_| * |playback_rate_|. So the search
// interval is 2 * delta.
static const int kWsolaSearchIntervalMs = 30;

// The maximum size in seconds for the |audio_buffer_|. Arbitrarily determined.
static const int kMaxCapacityInSeconds = 3;

// The starting size in frames for |audio_buffer_|. Previous usage maintained a
// queue of 16 AudioBuffers, each of 512 frames. This worked well, so we
// maintain this number of frames.
static const int kStartingBufferSizeInFrames = 16 * 512;

COMPILE_ASSERT(kStartingBufferSizeInFrames <
               (kMaxCapacityInSeconds * limits::kMinSampleRate),
               max_capacity_smaller_than_starting_buffer_size);

AudioRendererAlgorithm::AudioRendererAlgorithm()
    : channels_(0),
      samples_per_second_(0),
      playback_rate_(0),
      capacity_(kStartingBufferSizeInFrames),
      output_time_(0.0),
      search_block_center_offset_(0),
      search_block_index_(0),
      num_candidate_blocks_(0),
      target_block_index_(0),
      ola_window_size_(0),
      ola_hop_size_(0),
      num_complete_frames_(0) {
}

AudioRendererAlgorithm::~AudioRendererAlgorithm() {}

void AudioRendererAlgorithm::Initialize(float initial_playback_rate,
                                        const AudioParameters& params) {
  CHECK(params.IsValid());

  channels_ = params.channels();
  samples_per_second_ = params.sample_rate();
  SetPlaybackRate(initial_playback_rate);
  num_candidate_blocks_ = (kWsolaSearchIntervalMs * samples_per_second_) / 1000;
  ola_window_size_ = kOlaWindowSizeMs * samples_per_second_ / 1000;

  // Make sure window size in an even number.
  ola_window_size_ += ola_window_size_ & 1;
  ola_hop_size_ = ola_window_size_ / 2;

  // |num_candidate_blocks_| / 2 is the offset of the center of the search
  // block to the center of the first (left most) candidate block. The offset
  // of the center of a candidate block to its left most point is
  // |ola_window_size_| / 2 - 1. Note that |ola_window_size_| is even and in
  // our convention the center belongs to the left half, so we need to subtract
  // one frame to get the correct offset.
  //
  //                             Search Block
  //              <------------------------------------------->
  //
  //   |ola_window_size_| / 2 - 1
  //              <----
  //
  //             |num_candidate_blocks_| / 2
  //                   <----------------
  //                                 center
  //              X----X----------------X---------------X-----X
  //              <---------->                     <---------->
  //                Candidate      ...               Candidate
  //                   1,          ...         |num_candidate_blocks_|
  search_block_center_offset_ = num_candidate_blocks_ / 2 +
      (ola_window_size_ / 2 - 1);

  ola_window_.reset(new float[ola_window_size_]);
  internal::GetSymmetricHanningWindow(ola_window_size_, ola_window_.get());

  transition_window_.reset(new float[ola_window_size_ * 2]);
  internal::GetSymmetricHanningWindow(2 * ola_window_size_,
                                      transition_window_.get());

  wsola_output_ = AudioBus::Create(channels_, ola_window_size_ + ola_hop_size_);
  wsola_output_->Zero();  // Initialize for overlap-and-add of the first block.

  // Auxiliary containers.
  optimal_block_ = AudioBus::Create(channels_, ola_window_size_);
  search_block_ = AudioBus::Create(
      channels_, num_candidate_blocks_ + (ola_window_size_ - 1));
  target_block_ = AudioBus::Create(channels_, ola_window_size_);
}

int AudioRendererAlgorithm::FillBuffer(AudioBus* dest, int requested_frames) {
  if (playback_rate_ == 0)
    return 0;

  DCHECK_EQ(channels_, dest->channels());

  int slower_step = ceil(ola_window_size_ * playback_rate_);
  int faster_step = ceil(ola_window_size_ / playback_rate_);

  // Optimize the most common |playback_rate_| ~= 1 case to use a single copy
  // instead of copying frame by frame.
  if (ola_window_size_ <= faster_step && slower_step >= ola_window_size_) {
    const int frames_to_copy =
        std::min(audio_buffer_.frames(), requested_frames);
    const int frames_read = audio_buffer_.ReadFrames(frames_to_copy, 0, dest);
    DCHECK_EQ(frames_read, frames_to_copy);
    return frames_read;
  }

  int rendered_frames = 0;
  do {
    rendered_frames += WriteCompletedFramesTo(
        requested_frames - rendered_frames, rendered_frames, dest);
  } while (rendered_frames < requested_frames && RunOneWsolaIteration());
  return rendered_frames;
}

void AudioRendererAlgorithm::SetPlaybackRate(float new_rate) {
  DCHECK_GE(new_rate, 0);
  playback_rate_ = new_rate;
}

void AudioRendererAlgorithm::FlushBuffers() {
  // Clear the queue of decoded packets (releasing the buffers).
  audio_buffer_.Clear();
  output_time_ = 0.0;
  search_block_index_ = 0;
  target_block_index_ = 0;
  wsola_output_->Zero();
  num_complete_frames_ = 0;

  // Reset |capacity_| so growth triggered by underflows doesn't penalize
  // seek time.
  capacity_ = kStartingBufferSizeInFrames;
}

base::TimeDelta AudioRendererAlgorithm::GetTime() {
  return audio_buffer_.current_time();
}

void AudioRendererAlgorithm::EnqueueBuffer(
    const scoped_refptr<AudioBuffer>& buffer_in) {
  DCHECK(!buffer_in->end_of_stream());
  audio_buffer_.Append(buffer_in);
}

bool AudioRendererAlgorithm::IsQueueFull() {
  return audio_buffer_.frames() >= capacity_;
}

void AudioRendererAlgorithm::IncreaseQueueCapacity() {
  int max_capacity = kMaxCapacityInSeconds * samples_per_second_;
  DCHECK_LE(capacity_, max_capacity);

  capacity_ = std::min(2 * capacity_, max_capacity);
}

bool AudioRendererAlgorithm::CanPerformWsola() const {
  const int search_block_size = num_candidate_blocks_ + (ola_window_size_ - 1);
  const int frames = audio_buffer_.frames();
  return target_block_index_ + ola_window_size_ <= frames &&
      search_block_index_ + search_block_size <= frames;
}

bool AudioRendererAlgorithm::RunOneWsolaIteration() {
  if (!CanPerformWsola())
    return false;

  GetOptimalBlock();

  // Overlap-and-add.
  for (int k = 0; k < channels_; ++k) {
    const float* const ch_opt_frame = optimal_block_->channel(k);
    float* ch_output = wsola_output_->channel(k) + num_complete_frames_;
    for (int n = 0; n < ola_hop_size_; ++n) {
      ch_output[n] = ch_output[n] * ola_window_[ola_hop_size_ + n] +
          ch_opt_frame[n] * ola_window_[n];
    }

    // Copy the second half to the output.
    memcpy(&ch_output[ola_hop_size_], &ch_opt_frame[ola_hop_size_],
           sizeof(*ch_opt_frame) * ola_hop_size_);
  }

  num_complete_frames_ += ola_hop_size_;
  UpdateOutputTime(ola_hop_size_);
  RemoveOldInputFrames();
  return true;
}

void AudioRendererAlgorithm::UpdateOutputTime(double time_change) {
  output_time_ += time_change;
  // Center of the search region, in frames.
  const int search_block_center_index = static_cast<int>(
      output_time_ * playback_rate_ + 0.5);
  search_block_index_ = search_block_center_index - search_block_center_offset_;
}

void AudioRendererAlgorithm::RemoveOldInputFrames() {
  const int earliest_used_index = std::min(target_block_index_,
                                           search_block_index_);
  if (earliest_used_index <= 0)
    return;  // Nothing to remove.

  // Remove frames from input and adjust indices accordingly.
  audio_buffer_.SeekFrames(earliest_used_index);
  target_block_index_ -= earliest_used_index;

  // Adjust output index.
  double output_time_change = static_cast<double>(earliest_used_index) /
      playback_rate_;
  CHECK_GE(output_time_, output_time_change);
  UpdateOutputTime(-output_time_change);
}

int AudioRendererAlgorithm::WriteCompletedFramesTo(
    int requested_frames, int dest_offset, AudioBus* dest) {
  int rendered_frames = std::min(num_complete_frames_, requested_frames);

  if (rendered_frames == 0)
    return 0;  // There is nothing to read from |wsola_output_|, return.

  wsola_output_->CopyPartialFramesTo(0, rendered_frames, dest_offset, dest);

  // Remove the frames which are read.
  int frames_to_move = wsola_output_->frames() - rendered_frames;
  for (int k = 0; k < channels_; ++k) {
    float* ch = wsola_output_->channel(k);
    memmove(ch, &ch[rendered_frames], sizeof(*ch) * frames_to_move);
  }
  num_complete_frames_ -= rendered_frames;
  return rendered_frames;
}

bool AudioRendererAlgorithm::TargetIsWithinSearchRegion() const {
  const int search_block_size = num_candidate_blocks_ + (ola_window_size_ - 1);

  return target_block_index_ >= search_block_index_ &&
      target_block_index_ + ola_window_size_ <=
      search_block_index_ + search_block_size;
}

void AudioRendererAlgorithm::GetOptimalBlock() {
  int optimal_index = 0;

  // An interval around last optimal block which is excluded from the search.
  // This is to reduce the buzzy sound. The number 160 is rather arbitrary and
  // derived heuristically.
  const int kExcludeIntervalLengthFrames = 160;
  if (TargetIsWithinSearchRegion()) {
    optimal_index = target_block_index_;
    PeekAudioWithZeroPrepend(optimal_index, optimal_block_.get());
  } else {
    PeekAudioWithZeroPrepend(target_block_index_, target_block_.get());
    PeekAudioWithZeroPrepend(search_block_index_, search_block_.get());
    int last_optimal = target_block_index_ - ola_hop_size_ -
        search_block_index_;
    internal::Interval exclude_iterval = std::make_pair(
        last_optimal - kExcludeIntervalLengthFrames / 2,
        last_optimal + kExcludeIntervalLengthFrames / 2);

    // |optimal_index| is in frames and it is relative to the beginning of the
    // |search_block_|.
    optimal_index = internal::OptimalIndex(
        search_block_.get(), target_block_.get(), exclude_iterval);

    // Translate |index| w.r.t. the beginning of |audio_buffer_| and extract the
    // optimal block.
    optimal_index += search_block_index_;
    PeekAudioWithZeroPrepend(optimal_index, optimal_block_.get());

    // Make a transition from target block to the optimal block if different.
    // Target block has the best continuation to the current output.
    // Optimal block is the most similar block to the target, however, it might
    // introduce some discontinuity when over-lap-added. Therefore, we combine
    // them for a smoother transition. The length of transition window is twice
    // as that of the optimal-block which makes it like a weighting function
    // where target-block has higher weight close to zero (weight of 1 at index
    // 0) and lower weight close the end.
    for (int k = 0; k < channels_; ++k) {
      float* ch_opt = optimal_block_->channel(k);
      const float* const ch_target = target_block_->channel(k);
      for (int n = 0; n < ola_window_size_; ++n) {
        ch_opt[n] = ch_opt[n] * transition_window_[n] + ch_target[n] *
            transition_window_[ola_window_size_ + n];
      }
    }
  }

  // Next target is one hop ahead of the current optimal.
  target_block_index_ = optimal_index + ola_hop_size_;
}

void AudioRendererAlgorithm::PeekAudioWithZeroPrepend(
    int read_offset_frames, AudioBus* dest) {
  CHECK_LE(read_offset_frames + dest->frames(), audio_buffer_.frames());

  int write_offset = 0;
  int num_frames_to_read = dest->frames();
  if (read_offset_frames < 0) {
    int num_zero_frames_appended = std::min(-read_offset_frames,
                                            num_frames_to_read);
    read_offset_frames = 0;
    num_frames_to_read -= num_zero_frames_appended;
    write_offset = num_zero_frames_appended;
    dest->ZeroFrames(num_zero_frames_appended);
  }
  audio_buffer_.PeekFrames(num_frames_to_read, read_offset_frames,
                           write_offset, dest);
}

}  // namespace media

/* [<][>][^][v][top][bottom][index][help] */