root/media/audio/win/core_audio_util_win.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ChannelConfigToChannelLayout
  2. ChannelLayoutToChannelConfig
  3. LoadAudiosesDll
  4. CanCreateDeviceEnumerator
  5. GetDeviceID
  6. IsSupported
  7. RefererenceTimeToTimeDelta
  8. GetShareMode
  9. NumberOfActiveDevices
  10. CreateDeviceEnumerator
  11. CreateDefaultDevice
  12. GetDefaultOutputDeviceID
  13. CreateDevice
  14. GetDeviceName
  15. GetAudioControllerID
  16. GetMatchingOutputDeviceID
  17. GetFriendlyName
  18. DeviceIsDefault
  19. GetDataFlow
  20. CreateClient
  21. CreateDefaultClient
  22. CreateClient
  23. GetSharedModeMixFormat
  24. IsFormatSupported
  25. IsChannelLayoutSupported
  26. GetDevicePeriod
  27. GetPreferredAudioParameters
  28. GetPreferredAudioParameters
  29. GetPreferredAudioParameters
  30. GetChannelConfig
  31. SharedModeInitialize
  32. CreateRenderClient
  33. CreateCaptureClient
  34. FillRenderEndpointBufferWithSilence

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/audio/win/core_audio_util_win.h"

#include <audioclient.h>
#include <devicetopology.h>
#include <functiondiscoverykeys_devpkey.h>

#include "base/command_line.h"
#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/win/scoped_co_mem.h"
#include "base/win/scoped_handle.h"
#include "base/win/scoped_propvariant.h"
#include "base/win/windows_version.h"
#include "media/base/media_switches.h"

using base::win::ScopedCoMem;
using base::win::ScopedHandle;

namespace media {

enum { KSAUDIO_SPEAKER_UNSUPPORTED = 0 };

// Converts Microsoft's channel configuration to ChannelLayout.
// This mapping is not perfect but the best we can do given the current
// ChannelLayout enumerator and the Windows-specific speaker configurations
// defined in ksmedia.h. Don't assume that the channel ordering in
// ChannelLayout is exactly the same as the Windows specific configuration.
// As an example: KSAUDIO_SPEAKER_7POINT1_SURROUND is mapped to
// CHANNEL_LAYOUT_7_1 but the positions of Back L, Back R and Side L, Side R
// speakers are different in these two definitions.
static ChannelLayout ChannelConfigToChannelLayout(ChannelConfig config) {
  switch (config) {
    case KSAUDIO_SPEAKER_DIRECTOUT:
      DVLOG(2) << "KSAUDIO_SPEAKER_DIRECTOUT=>CHANNEL_LAYOUT_NONE";
      return CHANNEL_LAYOUT_NONE;
    case KSAUDIO_SPEAKER_MONO:
      DVLOG(2) << "KSAUDIO_SPEAKER_MONO=>CHANNEL_LAYOUT_MONO";
      return CHANNEL_LAYOUT_MONO;
    case KSAUDIO_SPEAKER_STEREO:
      DVLOG(2) << "KSAUDIO_SPEAKER_STEREO=>CHANNEL_LAYOUT_STEREO";
      return CHANNEL_LAYOUT_STEREO;
    case KSAUDIO_SPEAKER_QUAD:
      DVLOG(2) << "KSAUDIO_SPEAKER_QUAD=>CHANNEL_LAYOUT_QUAD";
      return CHANNEL_LAYOUT_QUAD;
    case KSAUDIO_SPEAKER_SURROUND:
      DVLOG(2) << "KSAUDIO_SPEAKER_SURROUND=>CHANNEL_LAYOUT_4_0";
      return CHANNEL_LAYOUT_4_0;
    case KSAUDIO_SPEAKER_5POINT1:
      DVLOG(2) << "KSAUDIO_SPEAKER_5POINT1=>CHANNEL_LAYOUT_5_1_BACK";
      return CHANNEL_LAYOUT_5_1_BACK;
    case KSAUDIO_SPEAKER_5POINT1_SURROUND:
      DVLOG(2) << "KSAUDIO_SPEAKER_5POINT1_SURROUND=>CHANNEL_LAYOUT_5_1";
      return CHANNEL_LAYOUT_5_1;
    case KSAUDIO_SPEAKER_7POINT1:
      DVLOG(2) << "KSAUDIO_SPEAKER_7POINT1=>CHANNEL_LAYOUT_7_1_WIDE";
      return CHANNEL_LAYOUT_7_1_WIDE;
    case KSAUDIO_SPEAKER_7POINT1_SURROUND:
      DVLOG(2) << "KSAUDIO_SPEAKER_7POINT1_SURROUND=>CHANNEL_LAYOUT_7_1";
      return CHANNEL_LAYOUT_7_1;
    default:
      DVLOG(2) << "Unsupported channel configuration: " << config;
      return CHANNEL_LAYOUT_UNSUPPORTED;
  }
}

// TODO(henrika): add mapping for all types in the ChannelLayout enumerator.
static ChannelConfig ChannelLayoutToChannelConfig(ChannelLayout layout) {
  switch (layout) {
    case CHANNEL_LAYOUT_NONE:
      DVLOG(2) << "CHANNEL_LAYOUT_NONE=>KSAUDIO_SPEAKER_UNSUPPORTED";
      return KSAUDIO_SPEAKER_UNSUPPORTED;
    case CHANNEL_LAYOUT_UNSUPPORTED:
      DVLOG(2) << "CHANNEL_LAYOUT_UNSUPPORTED=>KSAUDIO_SPEAKER_UNSUPPORTED";
      return KSAUDIO_SPEAKER_UNSUPPORTED;
    case CHANNEL_LAYOUT_MONO:
      DVLOG(2) << "CHANNEL_LAYOUT_MONO=>KSAUDIO_SPEAKER_MONO";
      return KSAUDIO_SPEAKER_MONO;
    case CHANNEL_LAYOUT_STEREO:
      DVLOG(2) << "CHANNEL_LAYOUT_STEREO=>KSAUDIO_SPEAKER_STEREO";
      return KSAUDIO_SPEAKER_STEREO;
    case CHANNEL_LAYOUT_QUAD:
      DVLOG(2) << "CHANNEL_LAYOUT_QUAD=>KSAUDIO_SPEAKER_QUAD";
      return KSAUDIO_SPEAKER_QUAD;
    case CHANNEL_LAYOUT_4_0:
      DVLOG(2) << "CHANNEL_LAYOUT_4_0=>KSAUDIO_SPEAKER_SURROUND";
      return KSAUDIO_SPEAKER_SURROUND;
    case CHANNEL_LAYOUT_5_1_BACK:
      DVLOG(2) << "CHANNEL_LAYOUT_5_1_BACK=>KSAUDIO_SPEAKER_5POINT1";
      return KSAUDIO_SPEAKER_5POINT1;
    case CHANNEL_LAYOUT_5_1:
      DVLOG(2) << "CHANNEL_LAYOUT_5_1=>KSAUDIO_SPEAKER_5POINT1_SURROUND";
      return KSAUDIO_SPEAKER_5POINT1_SURROUND;
    case CHANNEL_LAYOUT_7_1_WIDE:
      DVLOG(2) << "CHANNEL_LAYOUT_7_1_WIDE=>KSAUDIO_SPEAKER_7POINT1";
      return KSAUDIO_SPEAKER_7POINT1;
    case CHANNEL_LAYOUT_7_1:
      DVLOG(2) << "CHANNEL_LAYOUT_7_1=>KSAUDIO_SPEAKER_7POINT1_SURROUND";
      return KSAUDIO_SPEAKER_7POINT1_SURROUND;
    default:
      DVLOG(2) << "Unsupported channel layout: " << layout;
      return KSAUDIO_SPEAKER_UNSUPPORTED;
  }
}

static std::ostream& operator<<(std::ostream& os,
                                const WAVEFORMATPCMEX& format) {
  os << "wFormatTag: 0x" << std::hex << format.Format.wFormatTag
     << ", nChannels: " << std::dec << format.Format.nChannels
     << ", nSamplesPerSec: " << format.Format.nSamplesPerSec
     << ", nAvgBytesPerSec: " << format.Format.nAvgBytesPerSec
     << ", nBlockAlign: " << format.Format.nBlockAlign
     << ", wBitsPerSample: " << format.Format.wBitsPerSample
     << ", cbSize: " << format.Format.cbSize
     << ", wValidBitsPerSample: " << format.Samples.wValidBitsPerSample
     << ", dwChannelMask: 0x" << std::hex << format.dwChannelMask;
  return os;
}

static bool LoadAudiosesDll() {
  static const wchar_t* const kAudiosesDLL =
      L"%WINDIR%\\system32\\audioses.dll";

  wchar_t path[MAX_PATH] = {0};
  ExpandEnvironmentStringsW(kAudiosesDLL, path, arraysize(path));
  return (LoadLibraryExW(path, NULL, LOAD_WITH_ALTERED_SEARCH_PATH) != NULL);
}

static bool CanCreateDeviceEnumerator() {
  ScopedComPtr<IMMDeviceEnumerator> device_enumerator;
  HRESULT hr = device_enumerator.CreateInstance(__uuidof(MMDeviceEnumerator),
                                                NULL, CLSCTX_INPROC_SERVER);

  // If we hit CO_E_NOTINITIALIZED, CoInitialize has not been called and it
  // must be called at least once for each thread that uses the COM library.
  CHECK_NE(hr, CO_E_NOTINITIALIZED);

  return SUCCEEDED(hr);
}

static std::string GetDeviceID(IMMDevice* device) {
  ScopedCoMem<WCHAR> device_id_com;
  std::string device_id;
  if (SUCCEEDED(device->GetId(&device_id_com)))
    base::WideToUTF8(device_id_com, wcslen(device_id_com), &device_id);
  return device_id;
}

bool CoreAudioUtil::IsSupported() {
  // It is possible to force usage of WaveXxx APIs by using a command line flag.
  const CommandLine* cmd_line = CommandLine::ForCurrentProcess();
  if (cmd_line->HasSwitch(switches::kForceWaveAudio)) {
    DVLOG(1) << "Forcing usage of Windows WaveXxx APIs";
    return false;
  }

  // Microsoft does not plan to make the Core Audio APIs available for use
  // with earlier versions of Windows, including Microsoft Windows Server 2003,
  // Windows XP, Windows Millennium Edition, Windows 2000, and Windows 98.
  if (base::win::GetVersion() < base::win::VERSION_VISTA)
    return false;

  // The audio core APIs are implemented in the Mmdevapi.dll and Audioses.dll
  // system components.
  // Dependency Walker shows that it is enough to verify possibility to load
  // the Audioses DLL since it depends on Mmdevapi.dll.
  // See http://crbug.com/166397 why this extra step is required to guarantee
  // Core Audio support.
  static bool g_audioses_dll_available = LoadAudiosesDll();
  if (!g_audioses_dll_available)
    return false;

  // Being able to load the Audioses.dll does not seem to be sufficient for
  // all devices to guarantee Core Audio support. To be 100%, we also verify
  // that it is possible to a create the IMMDeviceEnumerator interface. If this
  // works as well we should be home free.
  static bool g_can_create_device_enumerator = CanCreateDeviceEnumerator();
  LOG_IF(ERROR, !g_can_create_device_enumerator)
      << "Failed to create Core Audio device enumerator on thread with ID "
      << GetCurrentThreadId();
  return g_can_create_device_enumerator;
}

base::TimeDelta CoreAudioUtil::RefererenceTimeToTimeDelta(REFERENCE_TIME time) {
  // Each unit of reference time is 100 nanoseconds <=> 0.1 microsecond.
  return base::TimeDelta::FromMicroseconds(0.1 * time + 0.5);
}

AUDCLNT_SHAREMODE CoreAudioUtil::GetShareMode() {
  const CommandLine* cmd_line = CommandLine::ForCurrentProcess();
  if (cmd_line->HasSwitch(switches::kEnableExclusiveAudio))
    return AUDCLNT_SHAREMODE_EXCLUSIVE;
  return AUDCLNT_SHAREMODE_SHARED;
}

int CoreAudioUtil::NumberOfActiveDevices(EDataFlow data_flow) {
  DCHECK(IsSupported());
  // Create the IMMDeviceEnumerator interface.
  ScopedComPtr<IMMDeviceEnumerator> device_enumerator =
      CreateDeviceEnumerator();
  if (!device_enumerator)
    return 0;

  // Generate a collection of active (present and not disabled) audio endpoint
  // devices for the specified data-flow direction.
  // This method will succeed even if all devices are disabled.
  ScopedComPtr<IMMDeviceCollection> collection;
  HRESULT hr = device_enumerator->EnumAudioEndpoints(data_flow,
                                                     DEVICE_STATE_ACTIVE,
                                                     collection.Receive());
  if (FAILED(hr)) {
    LOG(ERROR) << "IMMDeviceCollection::EnumAudioEndpoints: " << std::hex << hr;
    return 0;
  }

  // Retrieve the number of active audio devices for the specified direction
  UINT number_of_active_devices = 0;
  collection->GetCount(&number_of_active_devices);
  DVLOG(2) << ((data_flow == eCapture) ? "[in ] " : "[out] ")
           << "number of devices: " << number_of_active_devices;
  return static_cast<int>(number_of_active_devices);
}

ScopedComPtr<IMMDeviceEnumerator> CoreAudioUtil::CreateDeviceEnumerator() {
  DCHECK(IsSupported());
  ScopedComPtr<IMMDeviceEnumerator> device_enumerator;
  HRESULT hr = device_enumerator.CreateInstance(__uuidof(MMDeviceEnumerator),
                                                NULL, CLSCTX_INPROC_SERVER);
  CHECK(SUCCEEDED(hr));
  return device_enumerator;
}

ScopedComPtr<IMMDevice> CoreAudioUtil::CreateDefaultDevice(EDataFlow data_flow,
                                                           ERole role) {
  DCHECK(IsSupported());
  ScopedComPtr<IMMDevice> endpoint_device;

  // Create the IMMDeviceEnumerator interface.
  ScopedComPtr<IMMDeviceEnumerator> device_enumerator =
      CreateDeviceEnumerator();
  if (!device_enumerator)
    return endpoint_device;

  // Retrieve the default audio endpoint for the specified data-flow
  // direction and role.
  HRESULT hr = device_enumerator->GetDefaultAudioEndpoint(
      data_flow, role, endpoint_device.Receive());

  if (FAILED(hr)) {
    DVLOG(1) << "IMMDeviceEnumerator::GetDefaultAudioEndpoint: "
             << std::hex << hr;
    return endpoint_device;
  }

  // Verify that the audio endpoint device is active, i.e., that the audio
  // adapter that connects to the endpoint device is present and enabled.
  DWORD state = DEVICE_STATE_DISABLED;
  hr = endpoint_device->GetState(&state);
  if (SUCCEEDED(hr)) {
    if (!(state & DEVICE_STATE_ACTIVE)) {
      DVLOG(1) << "Selected endpoint device is not active";
      endpoint_device.Release();
    }
  }
  return endpoint_device;
}

std::string CoreAudioUtil::GetDefaultOutputDeviceID() {
  DCHECK(IsSupported());
  ScopedComPtr<IMMDevice> device(CreateDefaultDevice(eRender, eConsole));
  return device ? GetDeviceID(device) : std::string();
}

ScopedComPtr<IMMDevice> CoreAudioUtil::CreateDevice(
    const std::string& device_id) {
  DCHECK(IsSupported());
  ScopedComPtr<IMMDevice> endpoint_device;

  // Create the IMMDeviceEnumerator interface.
  ScopedComPtr<IMMDeviceEnumerator> device_enumerator =
      CreateDeviceEnumerator();
  if (!device_enumerator)
    return endpoint_device;

  // Retrieve an audio device specified by an endpoint device-identification
  // string.
  HRESULT hr = device_enumerator->GetDevice(
      base::UTF8ToUTF16(device_id).c_str(), endpoint_device.Receive());
  DVLOG_IF(1, FAILED(hr)) << "IMMDeviceEnumerator::GetDevice: "
                          << std::hex << hr;
  return endpoint_device;
}

HRESULT CoreAudioUtil::GetDeviceName(IMMDevice* device, AudioDeviceName* name) {
  DCHECK(IsSupported());

  // Retrieve unique name of endpoint device.
  // Example: "{0.0.1.00000000}.{8db6020f-18e3-4f25-b6f5-7726c9122574}".
  AudioDeviceName device_name;
  device_name.unique_id = GetDeviceID(device);
  if (device_name.unique_id.empty())
    return E_FAIL;

  // Retrieve user-friendly name of endpoint device.
  // Example: "Microphone (Realtek High Definition Audio)".
  ScopedComPtr<IPropertyStore> properties;
  HRESULT hr = device->OpenPropertyStore(STGM_READ, properties.Receive());
  if (FAILED(hr))
    return hr;
  base::win::ScopedPropVariant friendly_name;
  hr = properties->GetValue(PKEY_Device_FriendlyName, friendly_name.Receive());
  if (FAILED(hr))
    return hr;
  if (friendly_name.get().vt == VT_LPWSTR && friendly_name.get().pwszVal) {
    base::WideToUTF8(friendly_name.get().pwszVal,
                     wcslen(friendly_name.get().pwszVal),
                     &device_name.device_name);
  }

  *name = device_name;
  DVLOG(2) << "friendly name: " << device_name.device_name;
  DVLOG(2) << "unique id    : " << device_name.unique_id;
  return hr;
}

std::string CoreAudioUtil::GetAudioControllerID(IMMDevice* device,
    IMMDeviceEnumerator* enumerator) {
  DCHECK(IsSupported());

  // Fetching the controller device id could be as simple as fetching the value
  // of the "{B3F8FA53-0004-438E-9003-51A46E139BFC},2" property in the property
  // store of the |device|, but that key isn't defined in any header and
  // according to MS should not be relied upon.
  // So, instead, we go deeper, look at the device topology and fetch the
  // PKEY_Device_InstanceId of the associated physical audio device.
  ScopedComPtr<IDeviceTopology> topology;
  ScopedComPtr<IConnector> connector;
  ScopedCoMem<WCHAR> filter_id;
  if (FAILED(device->Activate(__uuidof(IDeviceTopology), CLSCTX_ALL, NULL,
             topology.ReceiveVoid()) ||
      // For our purposes checking the first connected device should be enough
      // and if there are cases where there are more than one device connected
      // we're not sure how to handle that anyway. So we pass 0.
      FAILED(topology->GetConnector(0, connector.Receive())) ||
      FAILED(connector->GetDeviceIdConnectedTo(&filter_id)))) {
    DLOG(ERROR) << "Failed to get the device identifier of the audio device";
    return std::string();
  }

  // Now look at the properties of the connected device node and fetch the
  // instance id (PKEY_Device_InstanceId) of the device node that uniquely
  // identifies the controller.
  ScopedComPtr<IMMDevice> device_node;
  ScopedComPtr<IPropertyStore> properties;
  base::win::ScopedPropVariant instance_id;
  if (FAILED(enumerator->GetDevice(filter_id, device_node.Receive())) ||
      FAILED(device_node->OpenPropertyStore(STGM_READ, properties.Receive())) ||
      FAILED(properties->GetValue(PKEY_Device_InstanceId,
                                  instance_id.Receive())) ||
      instance_id.get().vt != VT_LPWSTR) {
    DLOG(ERROR) << "Failed to get instance id of the audio device node";
    return std::string();
  }

  std::string controller_id;
  base::WideToUTF8(instance_id.get().pwszVal,
                   wcslen(instance_id.get().pwszVal),
                   &controller_id);

  return controller_id;
}

std::string CoreAudioUtil::GetMatchingOutputDeviceID(
    const std::string& input_device_id) {
  ScopedComPtr<IMMDevice> input_device(CreateDevice(input_device_id));
  if (!input_device)
    return std::string();

  // See if we can get id of the associated controller.
  ScopedComPtr<IMMDeviceEnumerator> enumerator(CreateDeviceEnumerator());
  std::string controller_id(GetAudioControllerID(input_device, enumerator));
  if (controller_id.empty())
    return std::string();

  // Now enumerate the available (and active) output devices and see if any of
  // them is associated with the same controller.
  ScopedComPtr<IMMDeviceCollection> collection;
  enumerator->EnumAudioEndpoints(eRender, DEVICE_STATE_ACTIVE,
      collection.Receive());
  if (!collection)
    return std::string();

  UINT count = 0;
  collection->GetCount(&count);
  ScopedComPtr<IMMDevice> output_device;
  for (UINT i = 0; i < count; ++i) {
    collection->Item(i, output_device.Receive());
    std::string output_controller_id(GetAudioControllerID(
        output_device, enumerator));
    if (output_controller_id == controller_id)
      break;
    output_device = NULL;
  }

  return output_device ? GetDeviceID(output_device) : std::string();
}

std::string CoreAudioUtil::GetFriendlyName(const std::string& device_id) {
  DCHECK(IsSupported());
  ScopedComPtr<IMMDevice> audio_device = CreateDevice(device_id);
  if (!audio_device)
    return std::string();

  AudioDeviceName device_name;
  HRESULT hr = GetDeviceName(audio_device, &device_name);
  if (FAILED(hr))
    return std::string();

  return device_name.device_name;
}

bool CoreAudioUtil::DeviceIsDefault(EDataFlow flow,
                                    ERole role,
                                    const std::string& device_id) {
  DCHECK(IsSupported());
  ScopedComPtr<IMMDevice> device = CreateDefaultDevice(flow, role);
  if (!device)
    return false;

  std::string str_default(GetDeviceID(device));
  return device_id.compare(str_default) == 0;
}

EDataFlow CoreAudioUtil::GetDataFlow(IMMDevice* device) {
  DCHECK(IsSupported());
  ScopedComPtr<IMMEndpoint> endpoint;
  HRESULT hr = device->QueryInterface(endpoint.Receive());
  if (FAILED(hr)) {
    DVLOG(1) << "IMMDevice::QueryInterface: " << std::hex << hr;
    return eAll;
  }

  EDataFlow data_flow;
  hr = endpoint->GetDataFlow(&data_flow);
  if (FAILED(hr)) {
    DVLOG(1) << "IMMEndpoint::GetDataFlow: " << std::hex << hr;
    return eAll;
  }
  return data_flow;
}

ScopedComPtr<IAudioClient> CoreAudioUtil::CreateClient(
    IMMDevice* audio_device) {
  DCHECK(IsSupported());

  // Creates and activates an IAudioClient COM object given the selected
  // endpoint device.
  ScopedComPtr<IAudioClient> audio_client;
  HRESULT hr = audio_device->Activate(__uuidof(IAudioClient),
                                      CLSCTX_INPROC_SERVER,
                                      NULL,
                                      audio_client.ReceiveVoid());
  DVLOG_IF(1, FAILED(hr)) << "IMMDevice::Activate: " << std::hex << hr;
  return audio_client;
}

ScopedComPtr<IAudioClient> CoreAudioUtil::CreateDefaultClient(
    EDataFlow data_flow, ERole role) {
  DCHECK(IsSupported());
  ScopedComPtr<IMMDevice> default_device(CreateDefaultDevice(data_flow, role));
  return (default_device ? CreateClient(default_device) :
      ScopedComPtr<IAudioClient>());
}

ScopedComPtr<IAudioClient> CoreAudioUtil::CreateClient(
    const std::string& device_id, EDataFlow data_flow, ERole role) {
  if (device_id.empty())
    return CreateDefaultClient(data_flow, role);

  ScopedComPtr<IMMDevice> device(CreateDevice(device_id));
  if (!device)
    return ScopedComPtr<IAudioClient>();

 return CreateClient(device);
}

HRESULT CoreAudioUtil::GetSharedModeMixFormat(
    IAudioClient* client, WAVEFORMATPCMEX* format) {
  DCHECK(IsSupported());
  ScopedCoMem<WAVEFORMATPCMEX> format_pcmex;
  HRESULT hr = client->GetMixFormat(
      reinterpret_cast<WAVEFORMATEX**>(&format_pcmex));
  if (FAILED(hr))
    return hr;

  size_t bytes = sizeof(WAVEFORMATEX) + format_pcmex->Format.cbSize;
  DCHECK_EQ(bytes, sizeof(WAVEFORMATPCMEX));

  memcpy(format, format_pcmex, bytes);
  DVLOG(2) << *format;

  return hr;
}

bool CoreAudioUtil::IsFormatSupported(IAudioClient* client,
                                      AUDCLNT_SHAREMODE share_mode,
                                      const WAVEFORMATPCMEX* format) {
  DCHECK(IsSupported());
  ScopedCoMem<WAVEFORMATEXTENSIBLE> closest_match;
  HRESULT hr = client->IsFormatSupported(
      share_mode, reinterpret_cast<const WAVEFORMATEX*>(format),
      reinterpret_cast<WAVEFORMATEX**>(&closest_match));

  // This log can only be triggered for shared mode.
  DLOG_IF(ERROR, hr == S_FALSE) << "Format is not supported "
                                << "but a closest match exists.";
  // This log can be triggered both for shared and exclusive modes.
  DLOG_IF(ERROR, hr == AUDCLNT_E_UNSUPPORTED_FORMAT) << "Unsupported format.";
  if (hr == S_FALSE) {
    DVLOG(2) << *closest_match;
  }

  return (hr == S_OK);
}

bool CoreAudioUtil::IsChannelLayoutSupported(const std::string& device_id,
                                             EDataFlow data_flow,
                                             ERole role,
                                             ChannelLayout channel_layout) {
  DCHECK(IsSupported());

  // First, get the preferred mixing format for shared mode streams.

  ScopedComPtr<IAudioClient> client(CreateClient(device_id, data_flow, role));
  if (!client)
    return false;

  WAVEFORMATPCMEX format;
  HRESULT hr = GetSharedModeMixFormat(client, &format);
  if (FAILED(hr))
    return false;

  // Next, check if it is possible to use an alternative format where the
  // channel layout (and possibly number of channels) is modified.

  // Convert generic channel layout into Windows-specific channel configuration.
  ChannelConfig new_config = ChannelLayoutToChannelConfig(channel_layout);
  if (new_config == KSAUDIO_SPEAKER_UNSUPPORTED) {
    return false;
  }
  format.dwChannelMask = new_config;

  // Modify the format if the new channel layout has changed the number of
  // utilized channels.
  const int channels = ChannelLayoutToChannelCount(channel_layout);
  if (channels != format.Format.nChannels) {
    format.Format.nChannels = channels;
    format.Format.nBlockAlign = (format.Format.wBitsPerSample / 8) * channels;
    format.Format.nAvgBytesPerSec = format.Format.nSamplesPerSec *
                                    format.Format.nBlockAlign;
  }
  DVLOG(2) << format;

  // Some devices can initialize a shared-mode stream with a format that is
  // not identical to the mix format obtained from the GetMixFormat() method.
  // However, chances of succeeding increases if we use the same number of
  // channels and the same sample rate as the mix format. I.e, this call will
  // return true only in those cases where the audio engine is able to support
  // an even wider range of shared-mode formats where the installation package
  // for the audio device includes a local effects (LFX) audio processing
  // object (APO) that can handle format conversions.
  return CoreAudioUtil::IsFormatSupported(client, AUDCLNT_SHAREMODE_SHARED,
                                          &format);
}

HRESULT CoreAudioUtil::GetDevicePeriod(IAudioClient* client,
                                       AUDCLNT_SHAREMODE share_mode,
                                       REFERENCE_TIME* device_period) {
  DCHECK(IsSupported());

  // Get the period of the engine thread.
  REFERENCE_TIME default_period = 0;
  REFERENCE_TIME minimum_period = 0;
  HRESULT hr = client->GetDevicePeriod(&default_period, &minimum_period);
  if (FAILED(hr))
    return hr;

  *device_period = (share_mode == AUDCLNT_SHAREMODE_SHARED) ? default_period :
      minimum_period;
  DVLOG(2) << "device_period: "
           << RefererenceTimeToTimeDelta(*device_period).InMillisecondsF()
           << " [ms]";
  return hr;
}

HRESULT CoreAudioUtil::GetPreferredAudioParameters(
    IAudioClient* client, AudioParameters* params) {
  DCHECK(IsSupported());
  WAVEFORMATPCMEX mix_format;
  HRESULT hr = GetSharedModeMixFormat(client, &mix_format);
  if (FAILED(hr))
    return hr;

  REFERENCE_TIME default_period = 0;
  hr = GetDevicePeriod(client, AUDCLNT_SHAREMODE_SHARED, &default_period);
  if (FAILED(hr))
    return hr;

  // Get the integer mask which corresponds to the channel layout the
  // audio engine uses for its internal processing/mixing of shared-mode
  // streams. This mask indicates which channels are present in the multi-
  // channel stream. The least significant bit corresponds with the Front Left
  // speaker, the next least significant bit corresponds to the Front Right
  // speaker, and so on, continuing in the order defined in KsMedia.h.
  // See http://msdn.microsoft.com/en-us/library/windows/hardware/ff537083.aspx
  // for more details.
  ChannelConfig channel_config = mix_format.dwChannelMask;

  // Convert Microsoft's channel configuration to genric ChannelLayout.
  ChannelLayout channel_layout = ChannelConfigToChannelLayout(channel_config);

  // Some devices don't appear to set a valid channel layout, so guess based on
  // the number of channels.  See http://crbug.com/311906.
  if (channel_layout == CHANNEL_LAYOUT_UNSUPPORTED) {
    VLOG(1) << "Unsupported channel config: "
            << std::hex << channel_config
            << ".  Guessing layout by channel count: "
            << std::dec << mix_format.Format.nChannels;
    channel_layout = GuessChannelLayout(mix_format.Format.nChannels);
  }

  // Preferred sample rate.
  int sample_rate = mix_format.Format.nSamplesPerSec;

  // TODO(henrika): possibly use format.Format.wBitsPerSample here instead.
  // We use a hard-coded value of 16 bits per sample today even if most audio
  // engines does the actual mixing in 32 bits per sample.
  int bits_per_sample = 16;

  // We are using the native device period to derive the smallest possible
  // buffer size in shared mode. Note that the actual endpoint buffer will be
  // larger than this size but it will be possible to fill it up in two calls.
  // TODO(henrika): ensure that this scheme works for capturing as well.
  int frames_per_buffer = static_cast<int>(sample_rate *
      RefererenceTimeToTimeDelta(default_period).InSecondsF() + 0.5);

  DVLOG(1) << "channel_layout   : " << channel_layout;
  DVLOG(1) << "sample_rate      : " << sample_rate;
  DVLOG(1) << "bits_per_sample  : " << bits_per_sample;
  DVLOG(1) << "frames_per_buffer: " << frames_per_buffer;

  AudioParameters audio_params(AudioParameters::AUDIO_PCM_LOW_LATENCY,
                               channel_layout,
                               sample_rate,
                               bits_per_sample,
                               frames_per_buffer);

  *params = audio_params;
  return hr;
}

HRESULT CoreAudioUtil::GetPreferredAudioParameters(
    EDataFlow data_flow, ERole role, AudioParameters* params) {
  DCHECK(IsSupported());
  ScopedComPtr<IAudioClient> client(CreateDefaultClient(data_flow, role));
  if (!client) {
    // Map NULL-pointer to new error code which can be different from the
    // actual error code. The exact value is not important here.
    return AUDCLNT_E_ENDPOINT_CREATE_FAILED;
  }

  HRESULT hr = GetPreferredAudioParameters(client, params);
  if (FAILED(hr))
    return hr;

  if (role == eCommunications) {
    // Raise the 'DUCKING' flag for default communication devices.
    *params = AudioParameters(params->format(), params->channel_layout(),
        params->channels(), params->input_channels(), params->sample_rate(),
        params->bits_per_sample(), params->frames_per_buffer(),
        params->effects() | AudioParameters::DUCKING);
  }

  return hr;
}

HRESULT CoreAudioUtil::GetPreferredAudioParameters(
    const std::string& device_id, AudioParameters* params) {
  DCHECK(IsSupported());
  ScopedComPtr<IMMDevice> device(CreateDevice(device_id));
  if (!device) {
    // Map NULL-pointer to new error code which can be different from the
    // actual error code. The exact value is not important here.
    return AUDCLNT_E_DEVICE_INVALIDATED;
  }

  ScopedComPtr<IAudioClient> client(CreateClient(device));
  if (!client) {
    // Map NULL-pointer to new error code which can be different from the
    // actual error code. The exact value is not important here.
    return AUDCLNT_E_ENDPOINT_CREATE_FAILED;
  }
  return GetPreferredAudioParameters(client, params);
}

ChannelConfig CoreAudioUtil::GetChannelConfig(const std::string& device_id,
                                              EDataFlow data_flow) {
  ScopedComPtr<IAudioClient> client(
      CreateClient(device_id, data_flow, eConsole));

  WAVEFORMATPCMEX format = {0};
  if (!client || FAILED(GetSharedModeMixFormat(client, &format)))
    return 0;

  return static_cast<ChannelConfig>(format.dwChannelMask);
}

HRESULT CoreAudioUtil::SharedModeInitialize(IAudioClient* client,
                                            const WAVEFORMATPCMEX* format,
                                            HANDLE event_handle,
                                            uint32* endpoint_buffer_size) {
  DCHECK(IsSupported());

  // Use default flags (i.e, dont set AUDCLNT_STREAMFLAGS_NOPERSIST) to
  // ensure that the volume level and muting state for a rendering session
  // are persistent across system restarts. The volume level and muting
  // state for a capture session are never persistent.
  DWORD stream_flags = 0;

  // Enable event-driven streaming if a valid event handle is provided.
  // After the stream starts, the audio engine will signal the event handle
  // to notify the client each time a buffer becomes ready to process.
  // Event-driven buffering is supported for both rendering and capturing.
  // Both shared-mode and exclusive-mode streams can use event-driven buffering.
  bool use_event = (event_handle != NULL &&
                    event_handle != INVALID_HANDLE_VALUE);
  if (use_event)
    stream_flags |= AUDCLNT_STREAMFLAGS_EVENTCALLBACK;
  DVLOG(2) << "stream_flags: 0x" << std::hex << stream_flags;

  // Initialize the shared mode client for minimal delay.
  HRESULT hr = client->Initialize(AUDCLNT_SHAREMODE_SHARED,
                                  stream_flags,
                                  0,
                                  0,
                                  reinterpret_cast<const WAVEFORMATEX*>(format),
                                  NULL);
  if (FAILED(hr)) {
    DVLOG(1) << "IAudioClient::Initialize: " << std::hex << hr;
    return hr;
  }

  if (use_event) {
    hr = client->SetEventHandle(event_handle);
    if (FAILED(hr)) {
      DVLOG(1) << "IAudioClient::SetEventHandle: " << std::hex << hr;
      return hr;
    }
  }

  UINT32 buffer_size_in_frames = 0;
  hr = client->GetBufferSize(&buffer_size_in_frames);
  if (FAILED(hr)) {
    DVLOG(1) << "IAudioClient::GetBufferSize: " << std::hex << hr;
    return hr;
  }

  *endpoint_buffer_size = buffer_size_in_frames;
  DVLOG(2) << "endpoint buffer size: " << buffer_size_in_frames;

  // TODO(henrika): utilize when delay measurements are added.
  REFERENCE_TIME  latency = 0;
  hr = client->GetStreamLatency(&latency);
  DVLOG(2) << "stream latency: "
           << RefererenceTimeToTimeDelta(latency).InMillisecondsF() << " [ms]";
  return hr;
}

ScopedComPtr<IAudioRenderClient> CoreAudioUtil::CreateRenderClient(
    IAudioClient* client) {
  DCHECK(IsSupported());

  // Get access to the IAudioRenderClient interface. This interface
  // enables us to write output data to a rendering endpoint buffer.
  ScopedComPtr<IAudioRenderClient> audio_render_client;
  HRESULT hr = client->GetService(__uuidof(IAudioRenderClient),
                                  audio_render_client.ReceiveVoid());
  if (FAILED(hr)) {
    DVLOG(1) << "IAudioClient::GetService: " << std::hex << hr;
    return ScopedComPtr<IAudioRenderClient>();
  }
  return audio_render_client;
}

ScopedComPtr<IAudioCaptureClient> CoreAudioUtil::CreateCaptureClient(
    IAudioClient* client) {
  DCHECK(IsSupported());

  // Get access to the IAudioCaptureClient interface. This interface
  // enables us to read input data from a capturing endpoint buffer.
  ScopedComPtr<IAudioCaptureClient> audio_capture_client;
  HRESULT hr = client->GetService(__uuidof(IAudioCaptureClient),
                                  audio_capture_client.ReceiveVoid());
  if (FAILED(hr)) {
    DVLOG(1) << "IAudioClient::GetService: " << std::hex << hr;
    return ScopedComPtr<IAudioCaptureClient>();
  }
  return audio_capture_client;
}

bool CoreAudioUtil::FillRenderEndpointBufferWithSilence(
    IAudioClient* client, IAudioRenderClient* render_client) {
  DCHECK(IsSupported());

  UINT32 endpoint_buffer_size = 0;
  if (FAILED(client->GetBufferSize(&endpoint_buffer_size)))
    return false;

  UINT32 num_queued_frames = 0;
  if (FAILED(client->GetCurrentPadding(&num_queued_frames)))
    return false;

  BYTE* data = NULL;
  int num_frames_to_fill = endpoint_buffer_size - num_queued_frames;
  if (FAILED(render_client->GetBuffer(num_frames_to_fill, &data)))
    return false;

  // Using the AUDCLNT_BUFFERFLAGS_SILENT flag eliminates the need to
  // explicitly write silence data to the rendering buffer.
  DVLOG(2) << "filling up " << num_frames_to_fill << " frames with silence";
  return SUCCEEDED(render_client->ReleaseBuffer(num_frames_to_fill,
                                                AUDCLNT_BUFFERFLAGS_SILENT));
}

}  // namespace media

/* [<][>][^][v][top][bottom][index][help] */