This source file includes following definitions.
- Max
- InDays
- InHours
- InMinutes
- InSecondsF
- InSeconds
- InMillisecondsF
- InMilliseconds
- InMillisecondsRoundedUp
- InMicroseconds
- Max
- FromTimeT
- ToTimeT
- FromDoubleT
- ToDoubleT
- FromTimeSpec
- FromJsTime
- ToJsTime
- ToJavaTime
- UnixEpoch
- LocalMidnight
- FromStringInternal
- unix_epoch
- UnixEpoch
- is_in_range
- HasValidValues
#include "base/time/time.h"
#include <limits>
#include <ostream>
#include "base/float_util.h"
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/third_party/nspr/prtime.h"
namespace base {
TimeDelta TimeDelta::Max() {
return TimeDelta(std::numeric_limits<int64>::max());
}
int TimeDelta::InDays() const {
if (is_max()) {
return std::numeric_limits<int>::max();
}
return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
}
int TimeDelta::InHours() const {
if (is_max()) {
return std::numeric_limits<int>::max();
}
return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
}
int TimeDelta::InMinutes() const {
if (is_max()) {
return std::numeric_limits<int>::max();
}
return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
}
double TimeDelta::InSecondsF() const {
if (is_max()) {
return std::numeric_limits<double>::infinity();
}
return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
}
int64 TimeDelta::InSeconds() const {
if (is_max()) {
return std::numeric_limits<int64>::max();
}
return delta_ / Time::kMicrosecondsPerSecond;
}
double TimeDelta::InMillisecondsF() const {
if (is_max()) {
return std::numeric_limits<double>::infinity();
}
return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
}
int64 TimeDelta::InMilliseconds() const {
if (is_max()) {
return std::numeric_limits<int64>::max();
}
return delta_ / Time::kMicrosecondsPerMillisecond;
}
int64 TimeDelta::InMillisecondsRoundedUp() const {
if (is_max()) {
return std::numeric_limits<int64>::max();
}
return (delta_ + Time::kMicrosecondsPerMillisecond - 1) /
Time::kMicrosecondsPerMillisecond;
}
int64 TimeDelta::InMicroseconds() const {
if (is_max()) {
return std::numeric_limits<int64>::max();
}
return delta_;
}
Time Time::Max() {
return Time(std::numeric_limits<int64>::max());
}
Time Time::FromTimeT(time_t tt) {
if (tt == 0)
return Time();
if (tt == std::numeric_limits<time_t>::max())
return Max();
return Time((tt * kMicrosecondsPerSecond) + kTimeTToMicrosecondsOffset);
}
time_t Time::ToTimeT() const {
if (is_null())
return 0;
if (is_max()) {
return std::numeric_limits<time_t>::max();
}
if (std::numeric_limits<int64>::max() - kTimeTToMicrosecondsOffset <= us_) {
DLOG(WARNING) << "Overflow when converting base::Time with internal " <<
"value " << us_ << " to time_t.";
return std::numeric_limits<time_t>::max();
}
return (us_ - kTimeTToMicrosecondsOffset) / kMicrosecondsPerSecond;
}
Time Time::FromDoubleT(double dt) {
if (dt == 0 || IsNaN(dt))
return Time();
if (dt == std::numeric_limits<double>::infinity())
return Max();
return Time(static_cast<int64>((dt *
static_cast<double>(kMicrosecondsPerSecond)) +
kTimeTToMicrosecondsOffset));
}
double Time::ToDoubleT() const {
if (is_null())
return 0;
if (is_max()) {
return std::numeric_limits<double>::infinity();
}
return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
static_cast<double>(kMicrosecondsPerSecond));
}
#if defined(OS_POSIX)
Time Time::FromTimeSpec(const timespec& ts) {
return FromDoubleT(ts.tv_sec +
static_cast<double>(ts.tv_nsec) /
base::Time::kNanosecondsPerSecond);
}
#endif
Time Time::FromJsTime(double ms_since_epoch) {
if (ms_since_epoch == std::numeric_limits<double>::infinity())
return Max();
return Time(static_cast<int64>(ms_since_epoch * kMicrosecondsPerMillisecond) +
kTimeTToMicrosecondsOffset);
}
double Time::ToJsTime() const {
if (is_null()) {
return 0;
}
if (is_max()) {
return std::numeric_limits<double>::infinity();
}
return (static_cast<double>(us_ - kTimeTToMicrosecondsOffset) /
kMicrosecondsPerMillisecond);
}
int64 Time::ToJavaTime() const {
if (is_null()) {
return 0;
}
if (is_max()) {
return std::numeric_limits<int64>::max();
}
return ((us_ - kTimeTToMicrosecondsOffset) /
kMicrosecondsPerMillisecond);
}
Time Time::UnixEpoch() {
Time time;
time.us_ = kTimeTToMicrosecondsOffset;
return time;
}
Time Time::LocalMidnight() const {
Exploded exploded;
LocalExplode(&exploded);
exploded.hour = 0;
exploded.minute = 0;
exploded.second = 0;
exploded.millisecond = 0;
return FromLocalExploded(exploded);
}
bool Time::FromStringInternal(const char* time_string,
bool is_local,
Time* parsed_time) {
DCHECK((time_string != NULL) && (parsed_time != NULL));
if (time_string[0] == '\0')
return false;
PRTime result_time = 0;
PRStatus result = PR_ParseTimeString(time_string,
is_local ? PR_FALSE : PR_TRUE,
&result_time);
if (PR_SUCCESS != result)
return false;
result_time += kTimeTToMicrosecondsOffset;
*parsed_time = Time(result_time);
return true;
}
class UnixEpochSingleton {
public:
UnixEpochSingleton()
: unix_epoch_(TimeTicks::Now() - (Time::Now() - Time::UnixEpoch())) {}
TimeTicks unix_epoch() const { return unix_epoch_; }
private:
const TimeTicks unix_epoch_;
DISALLOW_COPY_AND_ASSIGN(UnixEpochSingleton);
};
static LazyInstance<UnixEpochSingleton>::Leaky
leaky_unix_epoch_singleton_instance = LAZY_INSTANCE_INITIALIZER;
TimeTicks TimeTicks::UnixEpoch() {
return leaky_unix_epoch_singleton_instance.Get().unix_epoch();
}
inline bool is_in_range(int value, int lo, int hi) {
return lo <= value && value <= hi;
}
bool Time::Exploded::HasValidValues() const {
return is_in_range(month, 1, 12) &&
is_in_range(day_of_week, 0, 6) &&
is_in_range(day_of_month, 1, 31) &&
is_in_range(hour, 0, 23) &&
is_in_range(minute, 0, 59) &&
is_in_range(second, 0, 60) &&
is_in_range(millisecond, 0, 999);
}
}