root/media/audio/mac/audio_low_latency_input_mac.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. number_of_channels_in_frame_
  2. Open
  3. Start
  4. Stop
  5. Close
  6. GetMaxVolume
  7. SetVolume
  8. GetVolume
  9. InputProc
  10. Provide
  11. HardwareSampleRate
  12. GetHardwareLatency
  13. GetCaptureLatency
  14. GetNumberOfChannelsFromStream
  15. HandleError
  16. IsVolumeSettableOnChannel

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/audio/mac/audio_low_latency_input_mac.h"

#include <CoreServices/CoreServices.h>

#include "base/basictypes.h"
#include "base/logging.h"
#include "base/mac/mac_logging.h"
#include "media/audio/mac/audio_manager_mac.h"
#include "media/base/data_buffer.h"

namespace media {

static std::ostream& operator<<(std::ostream& os,
                                const AudioStreamBasicDescription& format) {
  os << "sample rate       : " << format.mSampleRate << std::endl
     << "format ID         : " << format.mFormatID << std::endl
     << "format flags      : " << format.mFormatFlags << std::endl
     << "bytes per packet  : " << format.mBytesPerPacket << std::endl
     << "frames per packet : " << format.mFramesPerPacket << std::endl
     << "bytes per frame   : " << format.mBytesPerFrame << std::endl
     << "channels per frame: " << format.mChannelsPerFrame << std::endl
     << "bits per channel  : " << format.mBitsPerChannel;
  return os;
}

// See "Technical Note TN2091 - Device input using the HAL Output Audio Unit"
// http://developer.apple.com/library/mac/#technotes/tn2091/_index.html
// for more details and background regarding this implementation.

AUAudioInputStream::AUAudioInputStream(
    AudioManagerMac* manager,
    const AudioParameters& input_params,
    const AudioParameters& output_params,
    AudioDeviceID audio_device_id)
    : manager_(manager),
      sink_(NULL),
      audio_unit_(0),
      input_device_id_(audio_device_id),
      started_(false),
      hardware_latency_frames_(0),
      fifo_delay_bytes_(0),
      number_of_channels_in_frame_(0) {
  DCHECK(manager_);

  // Set up the desired (output) format specified by the client.
  format_.mSampleRate = input_params.sample_rate();
  format_.mFormatID = kAudioFormatLinearPCM;
  format_.mFormatFlags = kLinearPCMFormatFlagIsPacked |
                         kLinearPCMFormatFlagIsSignedInteger;
  format_.mBitsPerChannel = input_params.bits_per_sample();
  format_.mChannelsPerFrame = input_params.channels();
  format_.mFramesPerPacket = 1;  // uncompressed audio
  format_.mBytesPerPacket = (format_.mBitsPerChannel *
                             input_params.channels()) / 8;
  format_.mBytesPerFrame = format_.mBytesPerPacket;
  format_.mReserved = 0;

  DVLOG(1) << "Desired ouput format: " << format_;

  // Set number of sample frames per callback used by the internal audio layer.
  // An internal FIFO is then utilized to adapt the internal size to the size
  // requested by the client.
  // Note that we use the same native buffer size as for the output side here
  // since the AUHAL implementation requires that both capture and render side
  // use the same buffer size. See http://crbug.com/154352 for more details.
  number_of_frames_ = output_params.frames_per_buffer();
  DVLOG(1) << "Size of data buffer in frames : " << number_of_frames_;

  // Derive size (in bytes) of the buffers that we will render to.
  UInt32 data_byte_size = number_of_frames_ * format_.mBytesPerFrame;
  DVLOG(1) << "Size of data buffer in bytes : " << data_byte_size;

  // Allocate AudioBuffers to be used as storage for the received audio.
  // The AudioBufferList structure works as a placeholder for the
  // AudioBuffer structure, which holds a pointer to the actual data buffer.
  audio_data_buffer_.reset(new uint8[data_byte_size]);
  audio_buffer_list_.mNumberBuffers = 1;

  AudioBuffer* audio_buffer = audio_buffer_list_.mBuffers;
  audio_buffer->mNumberChannels = input_params.channels();
  audio_buffer->mDataByteSize = data_byte_size;
  audio_buffer->mData = audio_data_buffer_.get();

  // Set up an internal FIFO buffer that will accumulate recorded audio frames
  // until a requested size is ready to be sent to the client.
  // It is not possible to ask for less than |kAudioFramesPerCallback| number of
  // audio frames.
  size_t requested_size_frames =
      input_params.GetBytesPerBuffer() / format_.mBytesPerPacket;
  if (requested_size_frames < number_of_frames_) {
    // For devices that only support a low sample rate like 8kHz, we adjust the
    // buffer size to match number_of_frames_.  The value of number_of_frames_
    // in this case has not been calculated based on hardware settings but
    // rather our hardcoded defaults (see ChooseBufferSize).
    requested_size_frames = number_of_frames_;
  }

  requested_size_bytes_ = requested_size_frames * format_.mBytesPerFrame;
  DVLOG(1) << "Requested buffer size in bytes : " << requested_size_bytes_;
  DVLOG_IF(0, requested_size_frames > number_of_frames_) << "FIFO is used";

  const int number_of_bytes = number_of_frames_ * format_.mBytesPerFrame;
  fifo_delay_bytes_ = requested_size_bytes_ - number_of_bytes;

  // Allocate some extra memory to avoid memory reallocations.
  // Ensure that the size is an even multiple of |number_of_frames_ and
  // larger than |requested_size_frames|.
  // Example: number_of_frames_=128, requested_size_frames=480 =>
  // allocated space equals 4*128=512 audio frames
  const int max_forward_capacity = number_of_bytes *
      ((requested_size_frames / number_of_frames_) + 1);
  fifo_.reset(new media::SeekableBuffer(0, max_forward_capacity));

  data_ = new media::DataBuffer(requested_size_bytes_);
}

AUAudioInputStream::~AUAudioInputStream() {}

// Obtain and open the AUHAL AudioOutputUnit for recording.
bool AUAudioInputStream::Open() {
  // Verify that we are not already opened.
  if (audio_unit_)
    return false;

  // Verify that we have a valid device.
  if (input_device_id_ == kAudioObjectUnknown) {
    NOTREACHED() << "Device ID is unknown";
    return false;
  }

  // Start by obtaining an AudioOuputUnit using an AUHAL component description.

  Component comp;
  ComponentDescription desc;

  // Description for the Audio Unit we want to use (AUHAL in this case).
  desc.componentType = kAudioUnitType_Output;
  desc.componentSubType = kAudioUnitSubType_HALOutput;
  desc.componentManufacturer = kAudioUnitManufacturer_Apple;
  desc.componentFlags = 0;
  desc.componentFlagsMask = 0;
  comp = FindNextComponent(0, &desc);
  DCHECK(comp);

  // Get access to the service provided by the specified Audio Unit.
  OSStatus result = OpenAComponent(comp, &audio_unit_);
  if (result) {
    HandleError(result);
    return false;
  }

  // Enable IO on the input scope of the Audio Unit.

  // After creating the AUHAL object, we must enable IO on the input scope
  // of the Audio Unit to obtain the device input. Input must be explicitly
  // enabled with the kAudioOutputUnitProperty_EnableIO property on Element 1
  // of the AUHAL. Beacause the AUHAL can be used for both input and output,
  // we must also disable IO on the output scope.

  UInt32 enableIO = 1;

  // Enable input on the AUHAL.
  result = AudioUnitSetProperty(audio_unit_,
                                kAudioOutputUnitProperty_EnableIO,
                                kAudioUnitScope_Input,
                                1,          // input element 1
                                &enableIO,  // enable
                                sizeof(enableIO));
  if (result) {
    HandleError(result);
    return false;
  }

  // Disable output on the AUHAL.
  enableIO = 0;
  result = AudioUnitSetProperty(audio_unit_,
                                kAudioOutputUnitProperty_EnableIO,
                                kAudioUnitScope_Output,
                                0,          // output element 0
                                &enableIO,  // disable
                                sizeof(enableIO));
  if (result) {
    HandleError(result);
    return false;
  }

  // Next, set the audio device to be the Audio Unit's current device.
  // Note that, devices can only be set to the AUHAL after enabling IO.
  result = AudioUnitSetProperty(audio_unit_,
                                kAudioOutputUnitProperty_CurrentDevice,
                                kAudioUnitScope_Global,
                                0,
                                &input_device_id_,
                                sizeof(input_device_id_));
  if (result) {
    HandleError(result);
    return false;
  }

  // Register the input procedure for the AUHAL.
  // This procedure will be called when the AUHAL has received new data
  // from the input device.
  AURenderCallbackStruct callback;
  callback.inputProc = InputProc;
  callback.inputProcRefCon = this;
  result = AudioUnitSetProperty(audio_unit_,
                                kAudioOutputUnitProperty_SetInputCallback,
                                kAudioUnitScope_Global,
                                0,
                                &callback,
                                sizeof(callback));
  if (result) {
    HandleError(result);
    return false;
  }

  // Set up the the desired (output) format.
  // For obtaining input from a device, the device format is always expressed
  // on the output scope of the AUHAL's Element 1.
  result = AudioUnitSetProperty(audio_unit_,
                                kAudioUnitProperty_StreamFormat,
                                kAudioUnitScope_Output,
                                1,
                                &format_,
                                sizeof(format_));
  if (result) {
    HandleError(result);
    return false;
  }

  // Set the desired number of frames in the IO buffer (output scope).
  // WARNING: Setting this value changes the frame size for all audio units in
  // the current process.  It's imperative that the input and output frame sizes
  // be the same as the frames_per_buffer() returned by
  // GetInputStreamParameters().
  // TODO(henrika): Due to http://crrev.com/159666 this is currently not true
  // and should be fixed, a CHECK() should be added at that time.
  result = AudioUnitSetProperty(audio_unit_,
                                kAudioDevicePropertyBufferFrameSize,
                                kAudioUnitScope_Output,
                                1,
                                &number_of_frames_,  // size is set in the ctor
                                sizeof(number_of_frames_));
  if (result) {
    HandleError(result);
    return false;
  }

  // Finally, initialize the audio unit and ensure that it is ready to render.
  // Allocates memory according to the maximum number of audio frames
  // it can produce in response to a single render call.
  result = AudioUnitInitialize(audio_unit_);
  if (result) {
    HandleError(result);
    return false;
  }

  // The hardware latency is fixed and will not change during the call.
  hardware_latency_frames_ = GetHardwareLatency();

  // The master channel is 0, Left and right are channels 1 and 2.
  // And the master channel is not counted in |number_of_channels_in_frame_|.
  number_of_channels_in_frame_ = GetNumberOfChannelsFromStream();

  return true;
}

void AUAudioInputStream::Start(AudioInputCallback* callback) {
  DCHECK(callback);
  DLOG_IF(ERROR, !audio_unit_) << "Open() has not been called successfully";
  if (started_ || !audio_unit_)
    return;
  sink_ = callback;
  StartAgc();
  OSStatus result = AudioOutputUnitStart(audio_unit_);
  if (result == noErr) {
    started_ = true;
  }
  OSSTATUS_DLOG_IF(ERROR, result != noErr, result)
      << "Failed to start acquiring data";
}

void AUAudioInputStream::Stop() {
  if (!started_)
    return;
  StopAgc();
  OSStatus result = AudioOutputUnitStop(audio_unit_);
  DCHECK_EQ(result, noErr);
  started_ = false;
  sink_ = NULL;

  OSSTATUS_DLOG_IF(ERROR, result != noErr, result)
      << "Failed to stop acquiring data";
}

void AUAudioInputStream::Close() {
  // It is valid to call Close() before calling open or Start().
  // It is also valid to call Close() after Start() has been called.
  if (started_) {
    Stop();
  }
  if (audio_unit_) {
    // Deallocate the audio unit’s resources.
    AudioUnitUninitialize(audio_unit_);

    // Terminates our connection to the AUHAL component.
    CloseComponent(audio_unit_);
    audio_unit_ = 0;
  }

  // Inform the audio manager that we have been closed. This can cause our
  // destruction.
  manager_->ReleaseInputStream(this);
}

double AUAudioInputStream::GetMaxVolume() {
  // Verify that we have a valid device.
  if (input_device_id_ == kAudioObjectUnknown) {
    NOTREACHED() << "Device ID is unknown";
    return 0.0;
  }

  // Query if any of the master, left or right channels has volume control.
  for (int i = 0; i <= number_of_channels_in_frame_; ++i) {
    // If the volume is settable, the  valid volume range is [0.0, 1.0].
    if (IsVolumeSettableOnChannel(i))
      return 1.0;
  }

  // Volume control is not available for the audio stream.
  return 0.0;
}

void AUAudioInputStream::SetVolume(double volume) {
  DVLOG(1) << "SetVolume(volume=" << volume << ")";
  DCHECK_GE(volume, 0.0);
  DCHECK_LE(volume, 1.0);

  // Verify that we have a valid device.
  if (input_device_id_ == kAudioObjectUnknown) {
    NOTREACHED() << "Device ID is unknown";
    return;
  }

  Float32 volume_float32 = static_cast<Float32>(volume);
  AudioObjectPropertyAddress property_address = {
    kAudioDevicePropertyVolumeScalar,
    kAudioDevicePropertyScopeInput,
    kAudioObjectPropertyElementMaster
  };

  // Try to set the volume for master volume channel.
  if (IsVolumeSettableOnChannel(kAudioObjectPropertyElementMaster)) {
    OSStatus result = AudioObjectSetPropertyData(input_device_id_,
                                                 &property_address,
                                                 0,
                                                 NULL,
                                                 sizeof(volume_float32),
                                                 &volume_float32);
    if (result != noErr) {
      DLOG(WARNING) << "Failed to set volume to " << volume_float32;
    }
    return;
  }

  // There is no master volume control, try to set volume for each channel.
  int successful_channels = 0;
  for (int i = 1; i <= number_of_channels_in_frame_; ++i) {
    property_address.mElement = static_cast<UInt32>(i);
    if (IsVolumeSettableOnChannel(i)) {
      OSStatus result = AudioObjectSetPropertyData(input_device_id_,
                                                   &property_address,
                                                   0,
                                                   NULL,
                                                   sizeof(volume_float32),
                                                   &volume_float32);
      if (result == noErr)
        ++successful_channels;
    }
  }

  DLOG_IF(WARNING, successful_channels == 0)
      << "Failed to set volume to " << volume_float32;

  // Update the AGC volume level based on the last setting above. Note that,
  // the volume-level resolution is not infinite and it is therefore not
  // possible to assume that the volume provided as input parameter can be
  // used directly. Instead, a new query to the audio hardware is required.
  // This method does nothing if AGC is disabled.
  UpdateAgcVolume();
}

double AUAudioInputStream::GetVolume() {
  // Verify that we have a valid device.
  if (input_device_id_ == kAudioObjectUnknown){
    NOTREACHED() << "Device ID is unknown";
    return 0.0;
  }

  AudioObjectPropertyAddress property_address = {
    kAudioDevicePropertyVolumeScalar,
    kAudioDevicePropertyScopeInput,
    kAudioObjectPropertyElementMaster
  };

  if (AudioObjectHasProperty(input_device_id_, &property_address)) {
    // The device supports master volume control, get the volume from the
    // master channel.
    Float32 volume_float32 = 0.0;
    UInt32 size = sizeof(volume_float32);
    OSStatus result = AudioObjectGetPropertyData(input_device_id_,
                                                 &property_address,
                                                 0,
                                                 NULL,
                                                 &size,
                                                 &volume_float32);
    if (result == noErr)
      return static_cast<double>(volume_float32);
  } else {
    // There is no master volume control, try to get the average volume of
    // all the channels.
    Float32 volume_float32 = 0.0;
    int successful_channels = 0;
    for (int i = 1; i <= number_of_channels_in_frame_; ++i) {
      property_address.mElement = static_cast<UInt32>(i);
      if (AudioObjectHasProperty(input_device_id_, &property_address)) {
        Float32 channel_volume = 0;
        UInt32 size = sizeof(channel_volume);
        OSStatus result = AudioObjectGetPropertyData(input_device_id_,
                                                     &property_address,
                                                     0,
                                                     NULL,
                                                     &size,
                                                     &channel_volume);
        if (result == noErr) {
          volume_float32 += channel_volume;
          ++successful_channels;
        }
      }
    }

    // Get the average volume of the channels.
    if (successful_channels != 0)
      return static_cast<double>(volume_float32 / successful_channels);
  }

  DLOG(WARNING) << "Failed to get volume";
  return 0.0;
}

// AUHAL AudioDeviceOutput unit callback
OSStatus AUAudioInputStream::InputProc(void* user_data,
                                       AudioUnitRenderActionFlags* flags,
                                       const AudioTimeStamp* time_stamp,
                                       UInt32 bus_number,
                                       UInt32 number_of_frames,
                                       AudioBufferList* io_data) {
  // Verify that the correct bus is used (Input bus/Element 1)
  DCHECK_EQ(bus_number, static_cast<UInt32>(1));
  AUAudioInputStream* audio_input =
      reinterpret_cast<AUAudioInputStream*>(user_data);
  DCHECK(audio_input);
  if (!audio_input)
    return kAudioUnitErr_InvalidElement;

  // Receive audio from the AUHAL from the output scope of the Audio Unit.
  OSStatus result = AudioUnitRender(audio_input->audio_unit(),
                                    flags,
                                    time_stamp,
                                    bus_number,
                                    number_of_frames,
                                    audio_input->audio_buffer_list());
  if (result)
    return result;

  // Deliver recorded data to the consumer as a callback.
  return audio_input->Provide(number_of_frames,
                              audio_input->audio_buffer_list(),
                              time_stamp);
}

OSStatus AUAudioInputStream::Provide(UInt32 number_of_frames,
                                     AudioBufferList* io_data,
                                     const AudioTimeStamp* time_stamp) {
  // Update the capture latency.
  double capture_latency_frames = GetCaptureLatency(time_stamp);

  // The AGC volume level is updated once every second on a separate thread.
  // Note that, |volume| is also updated each time SetVolume() is called
  // through IPC by the render-side AGC.
  double normalized_volume = 0.0;
  GetAgcVolume(&normalized_volume);

  AudioBuffer& buffer = io_data->mBuffers[0];
  uint8* audio_data = reinterpret_cast<uint8*>(buffer.mData);
  uint32 capture_delay_bytes = static_cast<uint32>
      ((capture_latency_frames + 0.5) * format_.mBytesPerFrame);
  // Account for the extra delay added by the FIFO.
  capture_delay_bytes += fifo_delay_bytes_;
  DCHECK(audio_data);
  if (!audio_data)
    return kAudioUnitErr_InvalidElement;

  // Accumulate captured audio in FIFO until we can match the output size
  // requested by the client.
  fifo_->Append(audio_data, buffer.mDataByteSize);

  // Deliver recorded data to the client as soon as the FIFO contains a
  // sufficient amount.
  if (fifo_->forward_bytes() >= requested_size_bytes_) {
    // Read from FIFO into temporary data buffer.
    fifo_->Read(data_->writable_data(), requested_size_bytes_);

    // Deliver data packet, delay estimation and volume level to the user.
    sink_->OnData(this,
                  data_->data(),
                  requested_size_bytes_,
                  capture_delay_bytes,
                  normalized_volume);
  }

  return noErr;
}

int AUAudioInputStream::HardwareSampleRate() {
  // Determine the default input device's sample-rate.
  AudioDeviceID device_id = kAudioObjectUnknown;
  UInt32 info_size = sizeof(device_id);

  AudioObjectPropertyAddress default_input_device_address = {
    kAudioHardwarePropertyDefaultInputDevice,
    kAudioObjectPropertyScopeGlobal,
    kAudioObjectPropertyElementMaster
  };
  OSStatus result = AudioObjectGetPropertyData(kAudioObjectSystemObject,
                                               &default_input_device_address,
                                               0,
                                               0,
                                               &info_size,
                                               &device_id);
  if (result != noErr)
    return 0.0;

  Float64 nominal_sample_rate;
  info_size = sizeof(nominal_sample_rate);

  AudioObjectPropertyAddress nominal_sample_rate_address = {
    kAudioDevicePropertyNominalSampleRate,
    kAudioObjectPropertyScopeGlobal,
    kAudioObjectPropertyElementMaster
  };
  result = AudioObjectGetPropertyData(device_id,
                                      &nominal_sample_rate_address,
                                      0,
                                      0,
                                      &info_size,
                                      &nominal_sample_rate);
  if (result != noErr)
    return 0.0;

  return static_cast<int>(nominal_sample_rate);
}

double AUAudioInputStream::GetHardwareLatency() {
  if (!audio_unit_ || input_device_id_ == kAudioObjectUnknown) {
    DLOG(WARNING) << "Audio unit object is NULL or device ID is unknown";
    return 0.0;
  }

  // Get audio unit latency.
  Float64 audio_unit_latency_sec = 0.0;
  UInt32 size = sizeof(audio_unit_latency_sec);
  OSStatus result = AudioUnitGetProperty(audio_unit_,
                                         kAudioUnitProperty_Latency,
                                         kAudioUnitScope_Global,
                                         0,
                                         &audio_unit_latency_sec,
                                         &size);
  OSSTATUS_DLOG_IF(WARNING, result != noErr, result)
      << "Could not get audio unit latency";

  // Get input audio device latency.
  AudioObjectPropertyAddress property_address = {
    kAudioDevicePropertyLatency,
    kAudioDevicePropertyScopeInput,
    kAudioObjectPropertyElementMaster
  };
  UInt32 device_latency_frames = 0;
  size = sizeof(device_latency_frames);
  result = AudioObjectGetPropertyData(input_device_id_,
                                      &property_address,
                                      0,
                                      NULL,
                                      &size,
                                      &device_latency_frames);
  DLOG_IF(WARNING, result != noErr) << "Could not get audio device latency.";

  return static_cast<double>((audio_unit_latency_sec *
      format_.mSampleRate) + device_latency_frames);
}

double AUAudioInputStream::GetCaptureLatency(
    const AudioTimeStamp* input_time_stamp) {
  // Get the delay between between the actual recording instant and the time
  // when the data packet is provided as a callback.
  UInt64 capture_time_ns = AudioConvertHostTimeToNanos(
      input_time_stamp->mHostTime);
  UInt64 now_ns = AudioConvertHostTimeToNanos(AudioGetCurrentHostTime());
  double delay_frames = static_cast<double>
      (1e-9 * (now_ns - capture_time_ns) * format_.mSampleRate);

  // Total latency is composed by the dynamic latency and the fixed
  // hardware latency.
  return (delay_frames + hardware_latency_frames_);
}

int AUAudioInputStream::GetNumberOfChannelsFromStream() {
  // Get the stream format, to be able to read the number of channels.
  AudioObjectPropertyAddress property_address = {
    kAudioDevicePropertyStreamFormat,
    kAudioDevicePropertyScopeInput,
    kAudioObjectPropertyElementMaster
  };
  AudioStreamBasicDescription stream_format;
  UInt32 size = sizeof(stream_format);
  OSStatus result = AudioObjectGetPropertyData(input_device_id_,
                                               &property_address,
                                               0,
                                               NULL,
                                               &size,
                                               &stream_format);
  if (result != noErr) {
    DLOG(WARNING) << "Could not get stream format";
    return 0;
  }

  return static_cast<int>(stream_format.mChannelsPerFrame);
}

void AUAudioInputStream::HandleError(OSStatus err) {
  NOTREACHED() << "error " << GetMacOSStatusErrorString(err)
               << " (" << err << ")";
  if (sink_)
    sink_->OnError(this);
}

bool AUAudioInputStream::IsVolumeSettableOnChannel(int channel) {
  Boolean is_settable = false;
  AudioObjectPropertyAddress property_address = {
    kAudioDevicePropertyVolumeScalar,
    kAudioDevicePropertyScopeInput,
    static_cast<UInt32>(channel)
  };
  OSStatus result = AudioObjectIsPropertySettable(input_device_id_,
                                                  &property_address,
                                                  &is_settable);
  return (result == noErr) ? is_settable : false;
}

}  // namespace media

/* [<][>][^][v][top][bottom][index][help] */