root/google_apis/cup/client_update_protocol.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ByteVectorToSP
  2. HashDigestSize
  3. Hash
  4. Hash
  5. SymConcat
  6. SymSign
  7. SymSignVerify
  8. RsaPad
  9. UrlSafeB64Encode
  10. UrlSafeB64Decode
  11. Create
  12. GetVersionedSecret
  13. SignRequest
  14. ValidateResponse
  15. BuildRandomSharedKey
  16. SetSharedKeyForTesting
  17. DeriveSharedKey

// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "google_apis/cup/client_update_protocol.h"

#include "base/base64.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/sha1.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "crypto/hmac.h"
#include "crypto/random.h"

namespace {

base::StringPiece ByteVectorToSP(const std::vector<uint8>& vec) {
  if (vec.empty())
    return base::StringPiece();

  return base::StringPiece(reinterpret_cast<const char*>(&vec[0]), vec.size());
}

// This class needs to implement the same hashing and signing functions as the
// Google Update server; for now, this is SHA-1 and HMAC-SHA1, but this may
// change to SHA-256 in the near future.  For this reason, all primitives are
// wrapped.  The name "SymSign" is used to mirror the CUP specification.
size_t HashDigestSize() {
  return base::kSHA1Length;
}

std::vector<uint8> Hash(const std::vector<uint8>& data) {
  std::vector<uint8> result(HashDigestSize());
  base::SHA1HashBytes(data.empty() ? NULL : &data[0],
                      data.size(),
                      &result[0]);
  return result;
}

std::vector<uint8> Hash(const base::StringPiece& sdata) {
  std::vector<uint8> result(HashDigestSize());
  base::SHA1HashBytes(sdata.empty() ?
                          NULL :
                          reinterpret_cast<const unsigned char*>(sdata.data()),
                      sdata.length(),
                      &result[0]);
  return result;
}

std::vector<uint8> SymConcat(uint8 id,
                             const std::vector<uint8>* h1,
                             const std::vector<uint8>* h2,
                             const std::vector<uint8>* h3) {
  std::vector<uint8> result;
  result.push_back(id);
  const std::vector<uint8>* args[] = { h1, h2, h3 };
  for (size_t i = 0; i != arraysize(args); ++i) {
    if (args[i]) {
      DCHECK_EQ(args[i]->size(), HashDigestSize());
      result.insert(result.end(), args[i]->begin(), args[i]->end());
    }
  }

  return result;
}

std::vector<uint8> SymSign(const std::vector<uint8>& key,
                           const std::vector<uint8>& hashes) {
  DCHECK(!key.empty());
  DCHECK(!hashes.empty());

  crypto::HMAC hmac(crypto::HMAC::SHA1);
  if (!hmac.Init(&key[0], key.size()))
    return std::vector<uint8>();

  std::vector<uint8> result(hmac.DigestLength());
  if (!hmac.Sign(ByteVectorToSP(hashes), &result[0], result.size()))
    return std::vector<uint8>();

  return result;
}

bool SymSignVerify(const std::vector<uint8>& key,
                   const std::vector<uint8>& hashes,
                   const std::vector<uint8>& server_proof) {
  DCHECK(!key.empty());
  DCHECK(!hashes.empty());
  DCHECK(!server_proof.empty());

  crypto::HMAC hmac(crypto::HMAC::SHA1);
  if (!hmac.Init(&key[0], key.size()))
    return false;

  return hmac.Verify(ByteVectorToSP(hashes), ByteVectorToSP(server_proof));
}

// RsaPad() is implemented as described in the CUP spec.  It is NOT a general
// purpose padding algorithm.
std::vector<uint8> RsaPad(size_t rsa_key_size,
                          const std::vector<uint8>& entropy) {
  DCHECK_GE(rsa_key_size, HashDigestSize());

  // The result gets padded with zeros if the result size is greater than
  // the size of the buffer provided by the caller.
  std::vector<uint8> result(entropy);
  result.resize(rsa_key_size - HashDigestSize());

  // For use with RSA, the input needs to be smaller than the RSA modulus,
  // which has always the msb set.
  result[0] &= 127;  // Reset msb
  result[0] |= 64;   // Set second highest bit.

  std::vector<uint8> digest = Hash(result);
  result.insert(result.end(), digest.begin(), digest.end());
  DCHECK_EQ(result.size(), rsa_key_size);
  return result;
}

// CUP passes the versioned secret in the query portion of the URL for the
// update check service -- and that means that a URL-safe variant of Base64 is
// needed.  Call the standard Base64 encoder/decoder and then apply fixups.
std::string UrlSafeB64Encode(const std::vector<uint8>& data) {
  std::string result;
  base::Base64Encode(ByteVectorToSP(data), &result);

  // Do an tr|+/|-_| on the output, and strip any '=' padding.
  for (std::string::iterator it = result.begin(); it != result.end(); ++it) {
    switch (*it) {
      case '+':
        *it = '-';
        break;
      case '/':
        *it = '_';
        break;
      default:
        break;
    }
  }
  base::TrimString(result, "=", &result);

  return result;
}

std::vector<uint8> UrlSafeB64Decode(const base::StringPiece& input) {
  std::string unsafe(input.begin(), input.end());
  for (std::string::iterator it = unsafe.begin(); it != unsafe.end(); ++it) {
    switch (*it) {
      case '-':
        *it = '+';
        break;
      case '_':
        *it = '/';
        break;
      default:
        break;
    }
  }
  if (unsafe.length() % 4)
    unsafe.append(4 - (unsafe.length() % 4), '=');

  std::string decoded;
  if (!base::Base64Decode(unsafe, &decoded))
    return std::vector<uint8>();

  return std::vector<uint8>(decoded.begin(), decoded.end());
}

}  // end namespace

ClientUpdateProtocol::ClientUpdateProtocol(int key_version)
    : pub_key_version_(key_version) {
}

scoped_ptr<ClientUpdateProtocol> ClientUpdateProtocol::Create(
    int key_version,
    const base::StringPiece& public_key) {
  DCHECK_GT(key_version, 0);
  DCHECK(!public_key.empty());

  scoped_ptr<ClientUpdateProtocol> result(
      new ClientUpdateProtocol(key_version));
  if (!result)
    return scoped_ptr<ClientUpdateProtocol>();

  if (!result->LoadPublicKey(public_key))
    return scoped_ptr<ClientUpdateProtocol>();

  if (!result->BuildRandomSharedKey())
    return scoped_ptr<ClientUpdateProtocol>();

  return result.Pass();
}

std::string ClientUpdateProtocol::GetVersionedSecret() const {
  return base::StringPrintf("%d:%s",
                            pub_key_version_,
                            UrlSafeB64Encode(encrypted_key_source_).c_str());
}

bool ClientUpdateProtocol::SignRequest(const base::StringPiece& url,
                                       const base::StringPiece& request_body,
                                       std::string* client_proof) {
  DCHECK(!encrypted_key_source_.empty());
  DCHECK(!url.empty());
  DCHECK(!request_body.empty());
  DCHECK(client_proof);

  // Compute the challenge hash:
  //   hw = HASH(HASH(v|w)|HASH(request_url)|HASH(body)).
  // Keep the challenge hash for later to validate the server's response.
  std::vector<uint8> internal_hashes;

  std::vector<uint8> h;
  h = Hash(GetVersionedSecret());
  internal_hashes.insert(internal_hashes.end(), h.begin(), h.end());
  h = Hash(url);
  internal_hashes.insert(internal_hashes.end(), h.begin(), h.end());
  h = Hash(request_body);
  internal_hashes.insert(internal_hashes.end(), h.begin(), h.end());
  DCHECK_EQ(internal_hashes.size(), 3 * HashDigestSize());

  client_challenge_hash_ = Hash(internal_hashes);

  // Sign the challenge hash (hw) using the shared key (sk) to produce the
  // client proof (cp).
  std::vector<uint8> raw_client_proof =
      SymSign(shared_key_, SymConcat(3, &client_challenge_hash_, NULL, NULL));
  if (raw_client_proof.empty()) {
    client_challenge_hash_.clear();
    return false;
  }

  *client_proof = UrlSafeB64Encode(raw_client_proof);
  return true;
}

bool ClientUpdateProtocol::ValidateResponse(
    const base::StringPiece& response_body,
    const base::StringPiece& server_cookie,
    const base::StringPiece& server_proof) {
  DCHECK(!client_challenge_hash_.empty());

  if (response_body.empty() || server_cookie.empty() || server_proof.empty())
    return false;

  // Decode the server proof from URL-safe Base64 to a binary HMAC for the
  // response.
  std::vector<uint8> sp_decoded = UrlSafeB64Decode(server_proof);
  if (sp_decoded.empty())
    return false;

  // If the request was received by the server, the server will use its
  // private key to decrypt |w_|, yielding the original contents of |r_|.
  // The server can then recreate |sk_|, compute |hw_|, and SymSign(3|hw)
  // to ensure that the cp matches the contents.  It will then use |sk_|
  // to sign its response, producing the server proof |sp|.
  std::vector<uint8> hm = Hash(response_body);
  std::vector<uint8> hc = Hash(server_cookie);
  return SymSignVerify(shared_key_,
                       SymConcat(1, &client_challenge_hash_, &hm, &hc),
                       sp_decoded);
}

bool ClientUpdateProtocol::BuildRandomSharedKey() {
  DCHECK_GE(PublicKeyLength(), HashDigestSize());

  // Start by generating some random bytes that are suitable to be encrypted;
  // this will be the source of the shared HMAC key that client and server use.
  // (CUP specification calls this "r".)
  std::vector<uint8> key_source;
  std::vector<uint8> entropy(PublicKeyLength() - HashDigestSize());
  crypto::RandBytes(&entropy[0], entropy.size());
  key_source = RsaPad(PublicKeyLength(), entropy);

  return DeriveSharedKey(key_source);
}

bool ClientUpdateProtocol::SetSharedKeyForTesting(
  const base::StringPiece& key_source) {
  DCHECK_EQ(key_source.length(), PublicKeyLength());

  return DeriveSharedKey(std::vector<uint8>(key_source.begin(),
                                            key_source.end()));
}

bool ClientUpdateProtocol::DeriveSharedKey(const std::vector<uint8>& source) {
  DCHECK(!source.empty());
  DCHECK_GE(source.size(), HashDigestSize());
  DCHECK_EQ(source.size(), PublicKeyLength());

  // Hash the key source (r) to generate a new shared HMAC key (sk').
  shared_key_ = Hash(source);

  // Encrypt the key source (r) using the public key (pk[v]) to generate the
  // encrypted key source (w).
  if (!EncryptKeySource(source))
    return false;
  if (encrypted_key_source_.size() != PublicKeyLength())
    return false;

  return true;
}

/* [<][>][^][v][top][bottom][index][help] */