root/cc/resources/picture_pile_base.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. has_any_recordings_
  2. has_any_recordings_
  3. has_any_recordings_
  4. Resize
  5. SetMinContentsScale
  6. ComputeTileGridInfo
  7. SetTileGridSize
  8. SetBufferPixels
  9. Clear
  10. HasRecordingAt
  11. CanRaster
  12. CanRasterSlowTileCheck
  13. PaddedRect
  14. PadRect
  15. AsValue
  16. AdvanceInvalidationHistory
  17. Invalidate
  18. NeedsRecording
  19. SetPicture
  20. GetPicture
  21. CloneForThread
  22. GetInvalidationFrequency

// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/resources/picture_pile_base.h"

#include <algorithm>
#include <set>
#include <vector>

#include "base/logging.h"
#include "base/values.h"
#include "cc/base/math_util.h"
#include "cc/debug/traced_value.h"
#include "third_party/skia/include/core/SkColor.h"
#include "ui/gfx/rect_conversions.h"

namespace {
// Dimensions of the tiles in this picture pile as well as the dimensions of
// the base picture in each tile.
const int kBasePictureSize = 512;
const int kTileGridBorderPixels = 1;
#ifdef NDEBUG
const bool kDefaultClearCanvasSetting = false;
#else
const bool kDefaultClearCanvasSetting = true;
#endif

// Invalidation frequency settings. kInvalidationFrequencyThreshold is a value
// between 0 and 1 meaning invalidation frequency between 0% and 100% that
// indicates when to stop invalidating offscreen regions.
// kFrequentInvalidationDistanceThreshold defines what it means to be
// "offscreen" in terms of distance to visible in css pixels.
const float kInvalidationFrequencyThreshold = 0.75f;
const int kFrequentInvalidationDistanceThreshold = 512;

}  // namespace

namespace cc {

PicturePileBase::PicturePileBase()
    : min_contents_scale_(0),
      background_color_(SkColorSetARGBInline(0, 0, 0, 0)),
      slow_down_raster_scale_factor_for_debug_(0),
      contents_opaque_(false),
      contents_fill_bounds_completely_(false),
      show_debug_picture_borders_(false),
      clear_canvas_with_debug_color_(kDefaultClearCanvasSetting),
      has_any_recordings_(false) {
  tiling_.SetMaxTextureSize(gfx::Size(kBasePictureSize, kBasePictureSize));
  tile_grid_info_.fTileInterval.setEmpty();
  tile_grid_info_.fMargin.setEmpty();
  tile_grid_info_.fOffset.setZero();
}

PicturePileBase::PicturePileBase(const PicturePileBase* other)
    : picture_map_(other->picture_map_),
      tiling_(other->tiling_),
      recorded_viewport_(other->recorded_viewport_),
      min_contents_scale_(other->min_contents_scale_),
      tile_grid_info_(other->tile_grid_info_),
      background_color_(other->background_color_),
      slow_down_raster_scale_factor_for_debug_(
          other->slow_down_raster_scale_factor_for_debug_),
      contents_opaque_(other->contents_opaque_),
      contents_fill_bounds_completely_(other->contents_fill_bounds_completely_),
      show_debug_picture_borders_(other->show_debug_picture_borders_),
      clear_canvas_with_debug_color_(other->clear_canvas_with_debug_color_),
      has_any_recordings_(other->has_any_recordings_) {}

PicturePileBase::PicturePileBase(const PicturePileBase* other,
                                 unsigned thread_index)
    : tiling_(other->tiling_),
      recorded_viewport_(other->recorded_viewport_),
      min_contents_scale_(other->min_contents_scale_),
      tile_grid_info_(other->tile_grid_info_),
      background_color_(other->background_color_),
      slow_down_raster_scale_factor_for_debug_(
          other->slow_down_raster_scale_factor_for_debug_),
      contents_opaque_(other->contents_opaque_),
      contents_fill_bounds_completely_(other->contents_fill_bounds_completely_),
      show_debug_picture_borders_(other->show_debug_picture_borders_),
      clear_canvas_with_debug_color_(other->clear_canvas_with_debug_color_),
      has_any_recordings_(other->has_any_recordings_) {
  for (PictureMap::const_iterator it = other->picture_map_.begin();
       it != other->picture_map_.end();
       ++it) {
    picture_map_[it->first] = it->second.CloneForThread(thread_index);
  }
}

PicturePileBase::~PicturePileBase() {
}

void PicturePileBase::Resize(const gfx::Size& new_size) {
  if (size() == new_size)
    return;

  gfx::Size old_size = size();
  tiling_.SetTotalSize(new_size);

  has_any_recordings_ = false;

  // Find all tiles that contain any pixels outside the new size.
  std::vector<PictureMapKey> to_erase;
  int min_toss_x = tiling_.FirstBorderTileXIndexFromSrcCoord(
      std::min(old_size.width(), new_size.width()));
  int min_toss_y = tiling_.FirstBorderTileYIndexFromSrcCoord(
      std::min(old_size.height(), new_size.height()));
  for (PictureMap::const_iterator it = picture_map_.begin();
       it != picture_map_.end();
       ++it) {
    const PictureMapKey& key = it->first;
    if (key.first < min_toss_x && key.second < min_toss_y) {
      has_any_recordings_ |= !!it->second.GetPicture();
      continue;
    }
    to_erase.push_back(key);
  }

  for (size_t i = 0; i < to_erase.size(); ++i)
    picture_map_.erase(to_erase[i]);

  // Don't waste time in Resize figuring out what these hints should be.
  recorded_viewport_ = gfx::Rect();
}

void PicturePileBase::SetMinContentsScale(float min_contents_scale) {
  DCHECK(min_contents_scale);
  if (min_contents_scale_ == min_contents_scale)
    return;

  // Picture contents are played back scaled. When the final contents scale is
  // less than 1 (i.e. low res), then multiple recorded pixels will be used
  // to raster one final pixel.  To avoid splitting a final pixel across
  // pictures (which would result in incorrect rasterization due to blending), a
  // buffer margin is added so that any picture can be snapped to integral
  // final pixels.
  //
  // For example, if a 1/4 contents scale is used, then that would be 3 buffer
  // pixels, since that's the minimum number of pixels to add so that resulting
  // content can be snapped to a four pixel aligned grid.
  int buffer_pixels = static_cast<int>(ceil(1 / min_contents_scale) - 1);
  buffer_pixels = std::max(0, buffer_pixels);
  SetBufferPixels(buffer_pixels);
  min_contents_scale_ = min_contents_scale;
}

// static
void PicturePileBase::ComputeTileGridInfo(
    const gfx::Size& tile_grid_size,
    SkTileGridPicture::TileGridInfo* info) {
  DCHECK(info);
  info->fTileInterval.set(tile_grid_size.width() - 2 * kTileGridBorderPixels,
                          tile_grid_size.height() - 2 * kTileGridBorderPixels);
  DCHECK_GT(info->fTileInterval.width(), 0);
  DCHECK_GT(info->fTileInterval.height(), 0);
  info->fMargin.set(kTileGridBorderPixels, kTileGridBorderPixels);
  // Offset the tile grid coordinate space to take into account the fact
  // that the top-most and left-most tiles do not have top and left borders
  // respectively.
  info->fOffset.set(-kTileGridBorderPixels, -kTileGridBorderPixels);
}

void PicturePileBase::SetTileGridSize(const gfx::Size& tile_grid_size) {
  ComputeTileGridInfo(tile_grid_size, &tile_grid_info_);
}

void PicturePileBase::SetBufferPixels(int new_buffer_pixels) {
  if (new_buffer_pixels == buffer_pixels())
    return;

  Clear();
  tiling_.SetBorderTexels(new_buffer_pixels);
}

void PicturePileBase::Clear() {
  picture_map_.clear();
  recorded_viewport_ = gfx::Rect();
}

bool PicturePileBase::HasRecordingAt(int x, int y) {
  PictureMap::const_iterator found = picture_map_.find(PictureMapKey(x, y));
  if (found == picture_map_.end())
    return false;
  return !!found->second.GetPicture();
}

bool PicturePileBase::CanRaster(float contents_scale,
                                const gfx::Rect& content_rect) {
  if (tiling_.total_size().IsEmpty())
    return false;
  gfx::Rect layer_rect = gfx::ScaleToEnclosingRect(
      content_rect, 1.f / contents_scale);
  layer_rect.Intersect(gfx::Rect(tiling_.total_size()));

  // Common case inside of viewport to avoid the slower map lookups.
  if (recorded_viewport_.Contains(layer_rect)) {
    // Sanity check that there are no false positives in recorded_viewport_.
    DCHECK(CanRasterSlowTileCheck(layer_rect));
    return true;
  }

  return CanRasterSlowTileCheck(layer_rect);
}

bool PicturePileBase::CanRasterSlowTileCheck(
    const gfx::Rect& layer_rect) const {
  bool include_borders = false;
  for (TilingData::Iterator tile_iter(&tiling_, layer_rect, include_borders);
       tile_iter;
       ++tile_iter) {
    PictureMap::const_iterator map_iter = picture_map_.find(tile_iter.index());
    if (map_iter == picture_map_.end())
      return false;
    if (!map_iter->second.GetPicture())
      return false;
  }
  return true;
}

gfx::Rect PicturePileBase::PaddedRect(const PictureMapKey& key) {
  gfx::Rect tile = tiling_.TileBounds(key.first, key.second);
  return PadRect(tile);
}

gfx::Rect PicturePileBase::PadRect(const gfx::Rect& rect) {
  gfx::Rect padded_rect = rect;
  padded_rect.Inset(
      -buffer_pixels(), -buffer_pixels(), -buffer_pixels(), -buffer_pixels());
  return padded_rect;
}

scoped_ptr<base::Value> PicturePileBase::AsValue() const {
  scoped_ptr<base::ListValue> pictures(new base::ListValue());
  gfx::Rect layer_rect(tiling_.total_size());
  std::set<void*> appended_pictures;
  bool include_borders = true;
  for (TilingData::Iterator tile_iter(&tiling_, layer_rect, include_borders);
       tile_iter;
       ++tile_iter) {
    PictureMap::const_iterator map_iter = picture_map_.find(tile_iter.index());
    if (map_iter == picture_map_.end())
      continue;

    Picture* picture = map_iter->second.GetPicture();
    if (picture && (appended_pictures.count(picture) == 0)) {
      appended_pictures.insert(picture);
      pictures->Append(TracedValue::CreateIDRef(picture).release());
    }
  }
  return pictures.PassAs<base::Value>();
}

PicturePileBase::PictureInfo::PictureInfo() : last_frame_number_(0) {}

PicturePileBase::PictureInfo::~PictureInfo() {}

void PicturePileBase::PictureInfo::AdvanceInvalidationHistory(
    int frame_number) {
  DCHECK_GE(frame_number, last_frame_number_);
  if (frame_number == last_frame_number_)
    return;

  invalidation_history_ <<= (frame_number - last_frame_number_);
  last_frame_number_ = frame_number;
}

bool PicturePileBase::PictureInfo::Invalidate(int frame_number) {
  AdvanceInvalidationHistory(frame_number);
  invalidation_history_.set(0);

  bool did_invalidate = !!picture_;
  picture_ = NULL;
  return did_invalidate;
}

bool PicturePileBase::PictureInfo::NeedsRecording(int frame_number,
                                                  int distance_to_visible) {
  AdvanceInvalidationHistory(frame_number);

  // We only need recording if we don't have a picture. Furthermore, we only
  // need a recording if we're within frequent invalidation distance threshold
  // or the invalidation is not frequent enough (below invalidation frequency
  // threshold).
  return !picture_ &&
         ((distance_to_visible <= kFrequentInvalidationDistanceThreshold) ||
          (GetInvalidationFrequency() < kInvalidationFrequencyThreshold));
}

void PicturePileBase::PictureInfo::SetPicture(scoped_refptr<Picture> picture) {
  picture_ = picture;
}

Picture* PicturePileBase::PictureInfo::GetPicture() const {
  return picture_.get();
}

PicturePileBase::PictureInfo PicturePileBase::PictureInfo::CloneForThread(
    int thread_index) const {
  PictureInfo info = *this;
  if (picture_.get())
    info.picture_ = picture_->GetCloneForDrawingOnThread(thread_index);
  return info;
}

float PicturePileBase::PictureInfo::GetInvalidationFrequency() const {
  return invalidation_history_.count() /
         static_cast<float>(INVALIDATION_FRAMES_TRACKED);
}

}  // namespace cc

/* [<][>][^][v][top][bottom][index][help] */