root/content/browser/speech/speech_recognizer_impl.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. DetectClipping
  2. KeepAudioControllerRefcountedForDtor
  3. converted_data_
  4. ProvideInput
  5. state_
  6. StartRecognition
  7. AbortRecognition
  8. StopAudioCapture
  9. IsActive
  10. IsCapturingAudio
  11. recognition_engine
  12. OnError
  13. OnData
  14. OnAudioClosed
  15. OnSpeechRecognitionEngineResults
  16. OnSpeechRecognitionEngineError
  17. DispatchEvent
  18. ExecuteTransitionAndGetNextState
  19. ProcessAudioPipeline
  20. StartRecording
  21. StartRecognitionEngine
  22. WaitEnvironmentEstimationCompletion
  23. DetectUserSpeechOrTimeout
  24. DetectEndOfSpeech
  25. StopCaptureAndWaitForResult
  26. AbortSilently
  27. AbortWithError
  28. Abort
  29. ProcessIntermediateResult
  30. ProcessFinalResult
  31. DoNothing
  32. NotFeasible
  33. CloseAudioControllerAsynchronously
  34. GetElapsedTimeMs
  35. UpdateSignalAndNoiseLevels
  36. SetAudioManagerForTesting
  37. engine_error

// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "content/browser/speech/speech_recognizer_impl.h"

#include "base/basictypes.h"
#include "base/bind.h"
#include "base/time/time.h"
#include "content/browser/browser_main_loop.h"
#include "content/browser/speech/audio_buffer.h"
#include "content/browser/speech/google_one_shot_remote_engine.h"
#include "content/public/browser/speech_recognition_event_listener.h"
#include "media/base/audio_converter.h"
#include "net/url_request/url_request_context_getter.h"

#if defined(OS_WIN)
#include "media/audio/win/core_audio_util_win.h"
#endif

using media::AudioBus;
using media::AudioConverter;
using media::AudioInputController;
using media::AudioManager;
using media::AudioParameters;
using media::ChannelLayout;

namespace content {

// Private class which encapsulates the audio converter and the
// AudioConverter::InputCallback. It handles resampling, buffering and
// channel mixing between input and output parameters.
class SpeechRecognizerImpl::OnDataConverter
    : public media::AudioConverter::InputCallback {
 public:
  OnDataConverter(const AudioParameters& input_params,
                  const AudioParameters& output_params);
  virtual ~OnDataConverter();

  // Converts input |data| buffer into an AudioChunk where the input format
  // is given by |input_parameters_| and the output format by
  // |output_parameters_|.
  scoped_refptr<AudioChunk> Convert(const uint8* data, size_t size);

 private:
  // media::AudioConverter::InputCallback implementation.
  virtual double ProvideInput(AudioBus* dest,
                              base::TimeDelta buffer_delay) OVERRIDE;

  // Handles resampling, buffering, and channel mixing between input and output
  // parameters.
  AudioConverter audio_converter_;

  scoped_ptr<AudioBus> input_bus_;
  scoped_ptr<AudioBus> output_bus_;
  const AudioParameters input_parameters_;
  const AudioParameters output_parameters_;
  bool waiting_for_input_;
  scoped_ptr<uint8[]> converted_data_;

  DISALLOW_COPY_AND_ASSIGN(OnDataConverter);
};

namespace {

// The following constants are related to the volume level indicator shown in
// the UI for recorded audio.
// Multiplier used when new volume is greater than previous level.
const float kUpSmoothingFactor = 1.0f;
// Multiplier used when new volume is lesser than previous level.
const float kDownSmoothingFactor = 0.7f;
// RMS dB value of a maximum (unclipped) sine wave for int16 samples.
const float kAudioMeterMaxDb = 90.31f;
// This value corresponds to RMS dB for int16 with 6 most-significant-bits = 0.
// Values lower than this will display as empty level-meter.
const float kAudioMeterMinDb = 30.0f;
const float kAudioMeterDbRange = kAudioMeterMaxDb - kAudioMeterMinDb;

// Maximum level to draw to display unclipped meter. (1.0f displays clipping.)
const float kAudioMeterRangeMaxUnclipped = 47.0f / 48.0f;

// Returns true if more than 5% of the samples are at min or max value.
bool DetectClipping(const AudioChunk& chunk) {
  const int num_samples = chunk.NumSamples();
  const int16* samples = chunk.SamplesData16();
  const int kThreshold = num_samples / 20;
  int clipping_samples = 0;

  for (int i = 0; i < num_samples; ++i) {
    if (samples[i] <= -32767 || samples[i] >= 32767) {
      if (++clipping_samples > kThreshold)
        return true;
    }
  }
  return false;
}

void KeepAudioControllerRefcountedForDtor(scoped_refptr<AudioInputController>) {
}

}  // namespace

const int SpeechRecognizerImpl::kAudioSampleRate = 16000;
const ChannelLayout SpeechRecognizerImpl::kChannelLayout =
    media::CHANNEL_LAYOUT_MONO;
const int SpeechRecognizerImpl::kNumBitsPerAudioSample = 16;
const int SpeechRecognizerImpl::kNoSpeechTimeoutMs = 8000;
const int SpeechRecognizerImpl::kEndpointerEstimationTimeMs = 300;
media::AudioManager* SpeechRecognizerImpl::audio_manager_for_tests_ = NULL;

COMPILE_ASSERT(SpeechRecognizerImpl::kNumBitsPerAudioSample % 8 == 0,
               kNumBitsPerAudioSample_must_be_a_multiple_of_8);

// SpeechRecognizerImpl::OnDataConverter implementation

SpeechRecognizerImpl::OnDataConverter::OnDataConverter(
    const AudioParameters& input_params, const AudioParameters& output_params)
    : audio_converter_(input_params, output_params, false),
      input_bus_(AudioBus::Create(input_params)),
      output_bus_(AudioBus::Create(output_params)),
      input_parameters_(input_params),
      output_parameters_(output_params),
      waiting_for_input_(false),
      converted_data_(new uint8[output_parameters_.GetBytesPerBuffer()]) {
  audio_converter_.AddInput(this);
}

SpeechRecognizerImpl::OnDataConverter::~OnDataConverter() {
  // It should now be safe to unregister the converter since no more OnData()
  // callbacks are outstanding at this point.
  audio_converter_.RemoveInput(this);
}

scoped_refptr<AudioChunk> SpeechRecognizerImpl::OnDataConverter::Convert(
    const uint8* data, size_t size) {
  CHECK_EQ(size, static_cast<size_t>(input_parameters_.GetBytesPerBuffer()));

  input_bus_->FromInterleaved(
      data, input_bus_->frames(), input_parameters_.bits_per_sample() / 8);

  waiting_for_input_ = true;
  audio_converter_.Convert(output_bus_.get());

  output_bus_->ToInterleaved(
      output_bus_->frames(), output_parameters_.bits_per_sample() / 8,
      converted_data_.get());

  // TODO(primiano): Refactor AudioChunk to avoid the extra-copy here
  // (see http://crbug.com/249316 for details).
  return scoped_refptr<AudioChunk>(new AudioChunk(
      converted_data_.get(),
      output_parameters_.GetBytesPerBuffer(),
      output_parameters_.bits_per_sample() / 8));
}

double SpeechRecognizerImpl::OnDataConverter::ProvideInput(
    AudioBus* dest, base::TimeDelta buffer_delay) {
  // The audio converted should never ask for more than one bus in each call
  // to Convert(). If so, we have a serious issue in our design since we might
  // miss recorded chunks of 100 ms audio data.
  CHECK(waiting_for_input_);

  // Read from the input bus to feed the converter.
  input_bus_->CopyTo(dest);

  // |input_bus_| should only be provide once.
  waiting_for_input_ = false;
  return 1;
}

// SpeechRecognizerImpl implementation

SpeechRecognizerImpl::SpeechRecognizerImpl(
    SpeechRecognitionEventListener* listener,
    int session_id,
    bool continuous,
    bool provisional_results,
    SpeechRecognitionEngine* engine)
    : SpeechRecognizer(listener, session_id),
      recognition_engine_(engine),
      endpointer_(kAudioSampleRate),
      is_dispatching_event_(false),
      provisional_results_(provisional_results),
      state_(STATE_IDLE) {
  DCHECK(recognition_engine_ != NULL);
  if (!continuous) {
    // In single shot (non-continous) recognition,
    // the session is automatically ended after:
    //  - 0.5 seconds of silence if time <  3 seconds
    //  - 1   seconds of silence if time >= 3 seconds
    endpointer_.set_speech_input_complete_silence_length(
        base::Time::kMicrosecondsPerSecond / 2);
    endpointer_.set_long_speech_input_complete_silence_length(
        base::Time::kMicrosecondsPerSecond);
    endpointer_.set_long_speech_length(3 * base::Time::kMicrosecondsPerSecond);
  } else {
    // In continuous recognition, the session is automatically ended after 15
    // seconds of silence.
    const int64 cont_timeout_us = base::Time::kMicrosecondsPerSecond * 15;
    endpointer_.set_speech_input_complete_silence_length(cont_timeout_us);
    endpointer_.set_long_speech_length(0);  // Use only a single timeout.
  }
  endpointer_.StartSession();
  recognition_engine_->set_delegate(this);
}

// -------  Methods that trigger Finite State Machine (FSM) events ------------

// NOTE:all the external events and requests should be enqueued (PostTask), even
// if they come from the same (IO) thread, in order to preserve the relationship
// of causality between events and avoid interleaved event processing due to
// synchronous callbacks.

void SpeechRecognizerImpl::StartRecognition(const std::string& device_id) {
  DCHECK(!device_id.empty());
  device_id_ = device_id;

  BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
                          base::Bind(&SpeechRecognizerImpl::DispatchEvent,
                                     this, FSMEventArgs(EVENT_START)));
}

void SpeechRecognizerImpl::AbortRecognition() {
  BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
                          base::Bind(&SpeechRecognizerImpl::DispatchEvent,
                                     this, FSMEventArgs(EVENT_ABORT)));
}

void SpeechRecognizerImpl::StopAudioCapture() {
  BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
                          base::Bind(&SpeechRecognizerImpl::DispatchEvent,
                                     this, FSMEventArgs(EVENT_STOP_CAPTURE)));
}

bool SpeechRecognizerImpl::IsActive() const {
  // Checking the FSM state from another thread (thus, while the FSM is
  // potentially concurrently evolving) is meaningless.
  DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO));
  return state_ != STATE_IDLE && state_ != STATE_ENDED;
}

bool SpeechRecognizerImpl::IsCapturingAudio() const {
  DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); // See IsActive().
  const bool is_capturing_audio = state_ >= STATE_STARTING &&
                                  state_ <= STATE_RECOGNIZING;
  DCHECK((is_capturing_audio && (audio_controller_.get() != NULL)) ||
         (!is_capturing_audio && audio_controller_.get() == NULL));
  return is_capturing_audio;
}

const SpeechRecognitionEngine&
SpeechRecognizerImpl::recognition_engine() const {
  return *(recognition_engine_.get());
}

SpeechRecognizerImpl::~SpeechRecognizerImpl() {
  endpointer_.EndSession();
  if (audio_controller_.get()) {
    audio_controller_->Close(
        base::Bind(&KeepAudioControllerRefcountedForDtor, audio_controller_));
  }
}

// Invoked in the audio thread.
void SpeechRecognizerImpl::OnError(AudioInputController* controller,
    media::AudioInputController::ErrorCode error_code) {
  FSMEventArgs event_args(EVENT_AUDIO_ERROR);
  BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
                          base::Bind(&SpeechRecognizerImpl::DispatchEvent,
                                     this, event_args));
}

void SpeechRecognizerImpl::OnData(AudioInputController* controller,
                                  const uint8* data, uint32 size) {
  if (size == 0)  // This could happen when audio capture stops and is normal.
    return;

  // Convert audio from native format to fixed format used by WebSpeech.
  FSMEventArgs event_args(EVENT_AUDIO_DATA);
  event_args.audio_data = audio_converter_->Convert(data, size);

  BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
                          base::Bind(&SpeechRecognizerImpl::DispatchEvent,
                                     this, event_args));
}

void SpeechRecognizerImpl::OnAudioClosed(AudioInputController*) {}

void SpeechRecognizerImpl::OnSpeechRecognitionEngineResults(
    const SpeechRecognitionResults& results) {
  FSMEventArgs event_args(EVENT_ENGINE_RESULT);
  event_args.engine_results = results;
  BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
                          base::Bind(&SpeechRecognizerImpl::DispatchEvent,
                                     this, event_args));
}

void SpeechRecognizerImpl::OnSpeechRecognitionEngineError(
    const SpeechRecognitionError& error) {
  FSMEventArgs event_args(EVENT_ENGINE_ERROR);
  event_args.engine_error = error;
  BrowserThread::PostTask(BrowserThread::IO, FROM_HERE,
                          base::Bind(&SpeechRecognizerImpl::DispatchEvent,
                                     this, event_args));
}

// -----------------------  Core FSM implementation ---------------------------
// TODO(primiano): After the changes in the media package (r129173), this class
// slightly violates the SpeechRecognitionEventListener interface contract. In
// particular, it is not true anymore that this class can be freed after the
// OnRecognitionEnd event, since the audio_controller_.Close() asynchronous
// call can be still in progress after the end event. Currently, it does not
// represent a problem for the browser itself, since refcounting protects us
// against such race conditions. However, we should fix this in the next CLs.
// For instance, tests are currently working just because the
// TestAudioInputController is not closing asynchronously as the real controller
// does, but they will become flaky if TestAudioInputController will be fixed.

void SpeechRecognizerImpl::DispatchEvent(const FSMEventArgs& event_args) {
  DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO));
  DCHECK_LE(event_args.event, EVENT_MAX_VALUE);
  DCHECK_LE(state_, STATE_MAX_VALUE);

  // Event dispatching must be sequential, otherwise it will break all the rules
  // and the assumptions of the finite state automata model.
  DCHECK(!is_dispatching_event_);
  is_dispatching_event_ = true;

  // Guard against the delegate freeing us until we finish processing the event.
  scoped_refptr<SpeechRecognizerImpl> me(this);

  if (event_args.event == EVENT_AUDIO_DATA) {
    DCHECK(event_args.audio_data.get() != NULL);
    ProcessAudioPipeline(*event_args.audio_data.get());
  }

  // The audio pipeline must be processed before the event dispatch, otherwise
  // it would take actions according to the future state instead of the current.
  state_ = ExecuteTransitionAndGetNextState(event_args);
  is_dispatching_event_ = false;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::ExecuteTransitionAndGetNextState(
    const FSMEventArgs& event_args) {
  const FSMEvent event = event_args.event;
  switch (state_) {
    case STATE_IDLE:
      switch (event) {
        // TODO(primiano): restore UNREACHABLE_CONDITION on EVENT_ABORT and
        // EVENT_STOP_CAPTURE below once speech input extensions are fixed.
        case EVENT_ABORT:
          return AbortSilently(event_args);
        case EVENT_START:
          return StartRecording(event_args);
        case EVENT_STOP_CAPTURE:
          return AbortSilently(event_args);
        case EVENT_AUDIO_DATA:     // Corner cases related to queued messages
        case EVENT_ENGINE_RESULT:  // being lately dispatched.
        case EVENT_ENGINE_ERROR:
        case EVENT_AUDIO_ERROR:
          return DoNothing(event_args);
      }
      break;
    case STATE_STARTING:
      switch (event) {
        case EVENT_ABORT:
          return AbortWithError(event_args);
        case EVENT_START:
          return NotFeasible(event_args);
        case EVENT_STOP_CAPTURE:
          return AbortSilently(event_args);
        case EVENT_AUDIO_DATA:
          return StartRecognitionEngine(event_args);
        case EVENT_ENGINE_RESULT:
          return NotFeasible(event_args);
        case EVENT_ENGINE_ERROR:
        case EVENT_AUDIO_ERROR:
          return AbortWithError(event_args);
      }
      break;
    case STATE_ESTIMATING_ENVIRONMENT:
      switch (event) {
        case EVENT_ABORT:
          return AbortWithError(event_args);
        case EVENT_START:
          return NotFeasible(event_args);
        case EVENT_STOP_CAPTURE:
          return StopCaptureAndWaitForResult(event_args);
        case EVENT_AUDIO_DATA:
          return WaitEnvironmentEstimationCompletion(event_args);
        case EVENT_ENGINE_RESULT:
          return ProcessIntermediateResult(event_args);
        case EVENT_ENGINE_ERROR:
        case EVENT_AUDIO_ERROR:
          return AbortWithError(event_args);
      }
      break;
    case STATE_WAITING_FOR_SPEECH:
      switch (event) {
        case EVENT_ABORT:
          return AbortWithError(event_args);
        case EVENT_START:
          return NotFeasible(event_args);
        case EVENT_STOP_CAPTURE:
          return StopCaptureAndWaitForResult(event_args);
        case EVENT_AUDIO_DATA:
          return DetectUserSpeechOrTimeout(event_args);
        case EVENT_ENGINE_RESULT:
          return ProcessIntermediateResult(event_args);
        case EVENT_ENGINE_ERROR:
        case EVENT_AUDIO_ERROR:
          return AbortWithError(event_args);
      }
      break;
    case STATE_RECOGNIZING:
      switch (event) {
        case EVENT_ABORT:
          return AbortWithError(event_args);
        case EVENT_START:
          return NotFeasible(event_args);
        case EVENT_STOP_CAPTURE:
          return StopCaptureAndWaitForResult(event_args);
        case EVENT_AUDIO_DATA:
          return DetectEndOfSpeech(event_args);
        case EVENT_ENGINE_RESULT:
          return ProcessIntermediateResult(event_args);
        case EVENT_ENGINE_ERROR:
        case EVENT_AUDIO_ERROR:
          return AbortWithError(event_args);
      }
      break;
    case STATE_WAITING_FINAL_RESULT:
      switch (event) {
        case EVENT_ABORT:
          return AbortWithError(event_args);
        case EVENT_START:
          return NotFeasible(event_args);
        case EVENT_STOP_CAPTURE:
        case EVENT_AUDIO_DATA:
          return DoNothing(event_args);
        case EVENT_ENGINE_RESULT:
          return ProcessFinalResult(event_args);
        case EVENT_ENGINE_ERROR:
        case EVENT_AUDIO_ERROR:
          return AbortWithError(event_args);
      }
      break;

    // TODO(primiano): remove this state when speech input extensions support
    // will be removed and STATE_IDLE.EVENT_ABORT,EVENT_STOP_CAPTURE will be
    // reset to NotFeasible (see TODO above).
    case STATE_ENDED:
      return DoNothing(event_args);
  }
  return NotFeasible(event_args);
}

// ----------- Contract for all the FSM evolution functions below -------------
//  - Are guaranteed to be executed in the IO thread;
//  - Are guaranteed to be not reentrant (themselves and each other);
//  - event_args members are guaranteed to be stable during the call;
//  - The class won't be freed in the meanwhile due to callbacks;
//  - IsCapturingAudio() returns true if and only if audio_controller_ != NULL.

// TODO(primiano): the audio pipeline is currently serial. However, the
// clipper->endpointer->vumeter chain and the sr_engine could be parallelized.
// We should profile the execution to see if it would be worth or not.
void SpeechRecognizerImpl::ProcessAudioPipeline(const AudioChunk& raw_audio) {
  const bool route_to_endpointer = state_ >= STATE_ESTIMATING_ENVIRONMENT &&
                                   state_ <= STATE_RECOGNIZING;
  const bool route_to_sr_engine = route_to_endpointer;
  const bool route_to_vumeter = state_ >= STATE_WAITING_FOR_SPEECH &&
                                state_ <= STATE_RECOGNIZING;
  const bool clip_detected = DetectClipping(raw_audio);
  float rms = 0.0f;

  num_samples_recorded_ += raw_audio.NumSamples();

  if (route_to_endpointer)
    endpointer_.ProcessAudio(raw_audio, &rms);

  if (route_to_vumeter) {
    DCHECK(route_to_endpointer); // Depends on endpointer due to |rms|.
    UpdateSignalAndNoiseLevels(rms, clip_detected);
  }
  if (route_to_sr_engine) {
    DCHECK(recognition_engine_.get() != NULL);
    recognition_engine_->TakeAudioChunk(raw_audio);
  }
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::StartRecording(const FSMEventArgs&) {
  DCHECK(recognition_engine_.get() != NULL);
  DCHECK(!IsCapturingAudio());
  const bool unit_test_is_active = (audio_manager_for_tests_ != NULL);
  AudioManager* audio_manager = unit_test_is_active ?
                                audio_manager_for_tests_ :
                                AudioManager::Get();
  DCHECK(audio_manager != NULL);

  DVLOG(1) << "SpeechRecognizerImpl starting audio capture.";
  num_samples_recorded_ = 0;
  audio_level_ = 0;
  listener()->OnRecognitionStart(session_id());

  // TODO(xians): Check if the OS has the device with |device_id_|, return
  // |SPEECH_AUDIO_ERROR_DETAILS_NO_MIC| if the target device does not exist.
  if (!audio_manager->HasAudioInputDevices()) {
    return Abort(SpeechRecognitionError(SPEECH_RECOGNITION_ERROR_AUDIO,
                                        SPEECH_AUDIO_ERROR_DETAILS_NO_MIC));
  }

  int chunk_duration_ms = recognition_engine_->GetDesiredAudioChunkDurationMs();

  AudioParameters in_params = audio_manager->GetInputStreamParameters(
      device_id_);
  if (!in_params.IsValid() && !unit_test_is_active) {
    DLOG(ERROR) << "Invalid native audio input parameters";
    return Abort(SpeechRecognitionError(SPEECH_RECOGNITION_ERROR_AUDIO));
  }

  // Audio converter shall provide audio based on these parameters as output.
  // Hard coded, WebSpeech specific parameters are utilized here.
  int frames_per_buffer = (kAudioSampleRate * chunk_duration_ms) / 1000;
  AudioParameters output_parameters = AudioParameters(
      AudioParameters::AUDIO_PCM_LOW_LATENCY, kChannelLayout, kAudioSampleRate,
      kNumBitsPerAudioSample, frames_per_buffer);

  // Audio converter will receive audio based on these parameters as input.
  // On Windows we start by verifying that Core Audio is supported. If not,
  // the WaveIn API is used and we might as well avoid all audio conversations
  // since WaveIn does the conversion for us.
  // TODO(henrika): this code should be moved to platform dependent audio
  // managers.
  bool use_native_audio_params = true;
#if defined(OS_WIN)
  use_native_audio_params = media::CoreAudioUtil::IsSupported();
  DVLOG_IF(1, !use_native_audio_params) << "Reverting to WaveIn for WebSpeech";
#endif

  AudioParameters input_parameters = output_parameters;
  if (use_native_audio_params && !unit_test_is_active) {
    // Use native audio parameters but avoid opening up at the native buffer
    // size. Instead use same frame size (in milliseconds) as WebSpeech uses.
    // We rely on internal buffers in the audio back-end to fulfill this request
    // and the idea is to simplify the audio conversion since each Convert()
    // call will then render exactly one ProvideInput() call.
    // Due to implementation details in the audio converter, 2 milliseconds
    // are added to the default frame size (100 ms) to ensure there is enough
    // data to generate 100 ms of output when resampling.
    frames_per_buffer =
        ((in_params.sample_rate() * (chunk_duration_ms + 2)) / 1000.0) + 0.5;
    input_parameters.Reset(in_params.format(),
                           in_params.channel_layout(),
                           in_params.channels(),
                           in_params.input_channels(),
                           in_params.sample_rate(),
                           in_params.bits_per_sample(),
                           frames_per_buffer);
  }

  // Create an audio converter which converts data between native input format
  // and WebSpeech specific output format.
  audio_converter_.reset(
      new OnDataConverter(input_parameters, output_parameters));

  audio_controller_ = AudioInputController::Create(
      audio_manager, this, input_parameters, device_id_, NULL);

  if (!audio_controller_.get()) {
    return Abort(SpeechRecognitionError(SPEECH_RECOGNITION_ERROR_AUDIO));
  }

  // The endpointer needs to estimate the environment/background noise before
  // starting to treat the audio as user input. We wait in the state
  // ESTIMATING_ENVIRONMENT until such interval has elapsed before switching
  // to user input mode.
  endpointer_.SetEnvironmentEstimationMode();
  audio_controller_->Record();
  return STATE_STARTING;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::StartRecognitionEngine(const FSMEventArgs& event_args) {
  // This is the first audio packet captured, so the recognition engine is
  // started and the delegate notified about the event.
  DCHECK(recognition_engine_.get() != NULL);
  recognition_engine_->StartRecognition();
  listener()->OnAudioStart(session_id());

  // This is a little hack, since TakeAudioChunk() is already called by
  // ProcessAudioPipeline(). It is the best tradeoff, unless we allow dropping
  // the first audio chunk captured after opening the audio device.
  recognition_engine_->TakeAudioChunk(*(event_args.audio_data.get()));
  return STATE_ESTIMATING_ENVIRONMENT;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::WaitEnvironmentEstimationCompletion(const FSMEventArgs&) {
  DCHECK(endpointer_.IsEstimatingEnvironment());
  if (GetElapsedTimeMs() >= kEndpointerEstimationTimeMs) {
    endpointer_.SetUserInputMode();
    listener()->OnEnvironmentEstimationComplete(session_id());
    return STATE_WAITING_FOR_SPEECH;
  } else {
    return STATE_ESTIMATING_ENVIRONMENT;
  }
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::DetectUserSpeechOrTimeout(const FSMEventArgs&) {
  if (endpointer_.DidStartReceivingSpeech()) {
    listener()->OnSoundStart(session_id());
    return STATE_RECOGNIZING;
  } else if (GetElapsedTimeMs() >= kNoSpeechTimeoutMs) {
    return Abort(SpeechRecognitionError(SPEECH_RECOGNITION_ERROR_NO_SPEECH));
  }
  return STATE_WAITING_FOR_SPEECH;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::DetectEndOfSpeech(const FSMEventArgs& event_args) {
  if (endpointer_.speech_input_complete())
    return StopCaptureAndWaitForResult(event_args);
  return STATE_RECOGNIZING;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::StopCaptureAndWaitForResult(const FSMEventArgs&) {
  DCHECK(state_ >= STATE_ESTIMATING_ENVIRONMENT && state_ <= STATE_RECOGNIZING);

  DVLOG(1) << "Concluding recognition";
  CloseAudioControllerAsynchronously();
  recognition_engine_->AudioChunksEnded();

  if (state_ > STATE_WAITING_FOR_SPEECH)
    listener()->OnSoundEnd(session_id());

  listener()->OnAudioEnd(session_id());
  return STATE_WAITING_FINAL_RESULT;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::AbortSilently(const FSMEventArgs& event_args) {
  DCHECK_NE(event_args.event, EVENT_AUDIO_ERROR);
  DCHECK_NE(event_args.event, EVENT_ENGINE_ERROR);
  return Abort(SpeechRecognitionError(SPEECH_RECOGNITION_ERROR_NONE));
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::AbortWithError(const FSMEventArgs& event_args) {
  if (event_args.event == EVENT_AUDIO_ERROR) {
    return Abort(SpeechRecognitionError(SPEECH_RECOGNITION_ERROR_AUDIO));
  } else if (event_args.event == EVENT_ENGINE_ERROR) {
    return Abort(event_args.engine_error);
  }
  return Abort(SpeechRecognitionError(SPEECH_RECOGNITION_ERROR_ABORTED));
}

SpeechRecognizerImpl::FSMState SpeechRecognizerImpl::Abort(
    const SpeechRecognitionError& error) {
  if (IsCapturingAudio())
    CloseAudioControllerAsynchronously();

  DVLOG(1) << "SpeechRecognizerImpl canceling recognition. ";

  // The recognition engine is initialized only after STATE_STARTING.
  if (state_ > STATE_STARTING) {
    DCHECK(recognition_engine_.get() != NULL);
    recognition_engine_->EndRecognition();
  }

  if (state_ > STATE_WAITING_FOR_SPEECH && state_ < STATE_WAITING_FINAL_RESULT)
    listener()->OnSoundEnd(session_id());

  if (state_ > STATE_STARTING && state_ < STATE_WAITING_FINAL_RESULT)
    listener()->OnAudioEnd(session_id());

  if (error.code != SPEECH_RECOGNITION_ERROR_NONE)
    listener()->OnRecognitionError(session_id(), error);

  listener()->OnRecognitionEnd(session_id());

  return STATE_ENDED;
}

SpeechRecognizerImpl::FSMState SpeechRecognizerImpl::ProcessIntermediateResult(
    const FSMEventArgs& event_args) {
  // Provisional results can occur only if explicitly enabled in the JS API.
  DCHECK(provisional_results_);

  // In continuous recognition, intermediate results can occur even when we are
  // in the ESTIMATING_ENVIRONMENT or WAITING_FOR_SPEECH states (if the
  // recognition engine is "faster" than our endpointer). In these cases we
  // skip the endpointer and fast-forward to the RECOGNIZING state, with respect
  // of the events triggering order.
  if (state_ == STATE_ESTIMATING_ENVIRONMENT) {
    DCHECK(endpointer_.IsEstimatingEnvironment());
    endpointer_.SetUserInputMode();
    listener()->OnEnvironmentEstimationComplete(session_id());
  } else if (state_ == STATE_WAITING_FOR_SPEECH) {
    listener()->OnSoundStart(session_id());
  } else {
    DCHECK_EQ(STATE_RECOGNIZING, state_);
  }

  listener()->OnRecognitionResults(session_id(), event_args.engine_results);
  return STATE_RECOGNIZING;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::ProcessFinalResult(const FSMEventArgs& event_args) {
  const SpeechRecognitionResults& results = event_args.engine_results;
  SpeechRecognitionResults::const_iterator i = results.begin();
  bool provisional_results_pending = false;
  bool results_are_empty = true;
  for (; i != results.end(); ++i) {
    const SpeechRecognitionResult& result = *i;
    if (result.is_provisional) {
      DCHECK(provisional_results_);
      provisional_results_pending = true;
    } else if (results_are_empty) {
      results_are_empty = result.hypotheses.empty();
    }
  }

  if (provisional_results_pending) {
    listener()->OnRecognitionResults(session_id(), results);
    // We don't end the recognition if a provisional result is received in
    // STATE_WAITING_FINAL_RESULT. A definitive result will come next and will
    // end the recognition.
    return state_;
  }

  recognition_engine_->EndRecognition();

  if (!results_are_empty) {
    // We could receive an empty result (which we won't propagate further)
    // in the following (continuous) scenario:
    //  1. The caller start pushing audio and receives some results;
    //  2. A |StopAudioCapture| is issued later;
    //  3. The final audio frames captured in the interval ]1,2] do not lead to
    //     any result (nor any error);
    //  4. The speech recognition engine, therefore, emits an empty result to
    //     notify that the recognition is ended with no error, yet neither any
    //     further result.
    listener()->OnRecognitionResults(session_id(), results);
  }

  listener()->OnRecognitionEnd(session_id());
  return STATE_ENDED;
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::DoNothing(const FSMEventArgs&) const {
  return state_;  // Just keep the current state.
}

SpeechRecognizerImpl::FSMState
SpeechRecognizerImpl::NotFeasible(const FSMEventArgs& event_args) {
  NOTREACHED() << "Unfeasible event " << event_args.event
               << " in state " << state_;
  return state_;
}

void SpeechRecognizerImpl::CloseAudioControllerAsynchronously() {
  DCHECK(IsCapturingAudio());
  DVLOG(1) << "SpeechRecognizerImpl closing audio controller.";
  // Issues a Close on the audio controller, passing an empty callback. The only
  // purpose of such callback is to keep the audio controller refcounted until
  // Close has completed (in the audio thread) and automatically destroy it
  // afterwards (upon return from OnAudioClosed).
  audio_controller_->Close(base::Bind(&SpeechRecognizerImpl::OnAudioClosed,
                                      this, audio_controller_));
  audio_controller_ = NULL;  // The controller is still refcounted by Bind.
}

int SpeechRecognizerImpl::GetElapsedTimeMs() const {
  return (num_samples_recorded_ * 1000) / kAudioSampleRate;
}

void SpeechRecognizerImpl::UpdateSignalAndNoiseLevels(const float& rms,
                                                  bool clip_detected) {
  // Calculate the input volume to display in the UI, smoothing towards the
  // new level.
  // TODO(primiano): Do we really need all this floating point arith here?
  // Perhaps it might be quite expensive on mobile.
  float level = (rms - kAudioMeterMinDb) /
      (kAudioMeterDbRange / kAudioMeterRangeMaxUnclipped);
  level = std::min(std::max(0.0f, level), kAudioMeterRangeMaxUnclipped);
  const float smoothing_factor = (level > audio_level_) ? kUpSmoothingFactor :
                                                          kDownSmoothingFactor;
  audio_level_ += (level - audio_level_) * smoothing_factor;

  float noise_level = (endpointer_.NoiseLevelDb() - kAudioMeterMinDb) /
      (kAudioMeterDbRange / kAudioMeterRangeMaxUnclipped);
  noise_level = std::min(std::max(0.0f, noise_level),
                         kAudioMeterRangeMaxUnclipped);

  listener()->OnAudioLevelsChange(
      session_id(), clip_detected ? 1.0f : audio_level_, noise_level);
}

void SpeechRecognizerImpl::SetAudioManagerForTesting(
    AudioManager* audio_manager) {
  audio_manager_for_tests_ = audio_manager;
}

SpeechRecognizerImpl::FSMEventArgs::FSMEventArgs(FSMEvent event_value)
    : event(event_value),
      audio_data(NULL),
      engine_error(SPEECH_RECOGNITION_ERROR_NONE) {
}

SpeechRecognizerImpl::FSMEventArgs::~FSMEventArgs() {
}

}  // namespace content

/* [<][>][^][v][top][bottom][index][help] */