root/content/common/inter_process_time_ticks_converter_unittest.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. RunTest
  2. TEST
  3. TEST
  4. TEST
  5. TEST
  6. TEST
  7. TEST
  8. TEST
  9. TEST
  10. TEST
  11. TEST
  12. TEST

// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "content/common/inter_process_time_ticks_converter.h"

#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"

using base::TimeTicks;

namespace content {

namespace {

struct TestParams {
  int64 local_lower_bound;
  int64 remote_lower_bound;
  int64 remote_upper_bound;
  int64 local_upper_bound;
  int64 test_time;
  int64 test_delta;
};

struct TestResults {
  int64 result_time;
  int32 result_delta;
};

TestResults RunTest(const TestParams& params) {
  TimeTicks local_lower_bound = TimeTicks::FromInternalValue(
      params.local_lower_bound);
  TimeTicks local_upper_bound = TimeTicks::FromInternalValue(
      params.local_upper_bound);
  TimeTicks remote_lower_bound = TimeTicks::FromInternalValue(
      params.remote_lower_bound);
  TimeTicks remote_upper_bound = TimeTicks::FromInternalValue(
      params.remote_upper_bound);
  TimeTicks test_time = TimeTicks::FromInternalValue(params.test_time);

  InterProcessTimeTicksConverter converter(
      LocalTimeTicks::FromTimeTicks(local_lower_bound),
      LocalTimeTicks::FromTimeTicks(local_upper_bound),
      RemoteTimeTicks::FromTimeTicks(remote_lower_bound),
      RemoteTimeTicks::FromTimeTicks(remote_upper_bound));

  TestResults results;
  results.result_time = converter.ToLocalTimeTicks(
      RemoteTimeTicks::FromTimeTicks(
          test_time)).ToTimeTicks().ToInternalValue();
  results.result_delta = converter.ToLocalTimeDelta(
      RemoteTimeDelta::FromRawDelta(params.test_delta)).ToInt32();
  return results;
}

TEST(InterProcessTimeTicksConverterTest, NullTime) {
  // Null / zero times should remain null.
  TestParams p;
  p.local_lower_bound = 1;
  p.remote_lower_bound = 2;
  p.remote_upper_bound = 5;
  p.local_upper_bound = 6;
  p.test_time = 0;
  p.test_delta = 0;
  TestResults results = RunTest(p);
  EXPECT_EQ(0, results.result_time);
  EXPECT_EQ(0, results.result_delta);
}

TEST(InterProcessTimeTicksConverterTest, NoSkew) {
  // All times are monotonic and centered, so no adjustment should occur.
  TestParams p;
  p.local_lower_bound = 1;
  p.remote_lower_bound = 2;
  p.remote_upper_bound = 5;
  p.local_upper_bound = 6;
  p.test_time = 3;
  p.test_delta = 1;
  TestResults results = RunTest(p);
  EXPECT_EQ(3, results.result_time);
  EXPECT_EQ(1, results.result_delta);
}

TEST(InterProcessTimeTicksConverterTest, OffsetMidpoints) {
  // All times are monotonic, but not centered. Adjust the |remote_*| times so
  // they are centered within the |local_*| times.
  TestParams p;
  p.local_lower_bound = 1;
  p.remote_lower_bound = 3;
  p.remote_upper_bound = 6;
  p.local_upper_bound = 6;
  p.test_time = 4;
  p.test_delta = 1;
  TestResults results = RunTest(p);
  EXPECT_EQ(3, results.result_time);
  EXPECT_EQ(1, results.result_delta);
}

TEST(InterProcessTimeTicksConverterTest, DoubleEndedSkew) {
  // |remote_lower_bound| occurs before |local_lower_bound| and
  // |remote_upper_bound| occurs after |local_upper_bound|. We must adjust both
  // bounds and scale down the delta. |test_time| is on the midpoint, so it
  // doesn't change. The ratio of local time to network time is 1:2, so we scale
  // |test_delta| to half.
  TestParams p;
  p.local_lower_bound = 3;
  p.remote_lower_bound = 1;
  p.remote_upper_bound = 9;
  p.local_upper_bound = 7;
  p.test_time = 5;
  p.test_delta = 2;
  TestResults results = RunTest(p);
  EXPECT_EQ(5, results.result_time);
  EXPECT_EQ(1, results.result_delta);
}

TEST(InterProcessTimeTicksConverterTest, FrontEndSkew) {
  // |remote_upper_bound| is coherent, but |remote_lower_bound| is not. So we
  // adjust the lower bound and move |test_time| out. The scale factor is 2:3,
  // but since we use integers, the numbers truncate from 3.33 to 3 and 1.33
  // to 1.
  TestParams p;
  p.local_lower_bound = 3;
  p.remote_lower_bound = 1;
  p.remote_upper_bound = 7;
  p.local_upper_bound = 7;
  p.test_time = 3;
  p.test_delta = 2;
  TestResults results = RunTest(p);
  EXPECT_EQ(4, results.result_time);
  EXPECT_EQ(1, results.result_delta);
}

TEST(InterProcessTimeTicksConverterTest, BackEndSkew) {
  // Like the previous test, but |remote_lower_bound| is coherent and
  // |remote_upper_bound| is skewed.
  TestParams p;
  p.local_lower_bound = 1;
  p.remote_lower_bound = 1;
  p.remote_upper_bound = 7;
  p.local_upper_bound = 5;
  p.test_time = 3;
  p.test_delta = 2;
  TestResults results = RunTest(p);
  EXPECT_EQ(2, results.result_time);
  EXPECT_EQ(1, results.result_delta);
}

TEST(InterProcessTimeTicksConverterTest, Instantaneous) {
  // The bounds are all okay, but the |remote_lower_bound| and
  // |remote_upper_bound| have the same value. No adjustments should be made and
  // no divide-by-zero errors should occur.
  TestParams p;
  p.local_lower_bound = 1;
  p.remote_lower_bound = 2;
  p.remote_upper_bound = 2;
  p.local_upper_bound = 3;
  p.test_time = 2;
  p.test_delta = 0;
  TestResults results = RunTest(p);
  EXPECT_EQ(2, results.result_time);
  EXPECT_EQ(0, results.result_delta);
}

TEST(InterProcessTimeTicksConverterTest, OffsetInstantaneous) {
  // The bounds are all okay, but the |remote_lower_bound| and
  // |remote_upper_bound| have the same value and are offset from the midpoint
  // of |local_lower_bound| and |local_upper_bound|. An offset should be applied
  // to make the midpoints line up.
  TestParams p;
  p.local_lower_bound = 1;
  p.remote_lower_bound = 3;
  p.remote_upper_bound = 3;
  p.local_upper_bound = 3;
  p.test_time = 3;
  p.test_delta = 0;
  TestResults results = RunTest(p);
  EXPECT_EQ(2, results.result_time);
  EXPECT_EQ(0, results.result_delta);
}

TEST(InterProcessTimeTicksConverterTest, DisjointInstantaneous) {
  // |local_lower_bound| and |local_upper_bound| are the same. No matter what
  // the other values are, they must fit within [local_lower_bound,
  // local_upper_bound].  So, all of the values should be adjusted so they are
  // exactly that value.
  TestParams p;
  p.local_lower_bound = 1;
  p.remote_lower_bound = 2;
  p.remote_upper_bound = 2;
  p.local_upper_bound = 1;
  p.test_time = 2;
  p.test_delta = 0;
  TestResults results = RunTest(p);
  EXPECT_EQ(1, results.result_time);
  EXPECT_EQ(0, results.result_delta);
}

TEST(InterProcessTimeTicksConverterTest, RoundingNearEdges) {
  // Verify that rounding never causes a value to appear outside the given
  // |local_*| range.
  const int kMaxRange = 101;
  for (int i = 1; i < kMaxRange; ++i) {
    for (int j = 1; j < kMaxRange; ++j) {
      TestParams p;
      p.local_lower_bound = 1;
      p.remote_lower_bound = 1;
      p.remote_upper_bound = j;
      p.local_upper_bound = i;

      p.test_time = 1;
      p.test_delta = 0;
      TestResults results = RunTest(p);
      EXPECT_LE(1, results.result_time);
      EXPECT_EQ(0, results.result_delta);

      p.test_time = j;
      p.test_delta = j - 1;
      results = RunTest(p);
      EXPECT_GE(i, results.result_time);
      EXPECT_GE(i - 1, results.result_delta);
    }
  }
}

TEST(InterProcessTimeTicksConverterTest, DisjointRanges) {
  TestParams p;
  p.local_lower_bound = 10;
  p.remote_lower_bound = 30;
  p.remote_upper_bound = 41;
  p.local_upper_bound = 20;
  p.test_time = 41;
  p.test_delta = 0;
  TestResults results = RunTest(p);
  EXPECT_EQ(20, results.result_time);
  EXPECT_EQ(0, results.result_delta);
}

}  // anonymous namespace

}  // namespace content

/* [<][>][^][v][top][bottom][index][help] */