root/content/common/gpu/client/gl_helper_scaling.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. vertex_attributes_buffer_
  2. color_weights_location_
  3. Initialized
  4. subscaler_
  5. Execute
  6. Scale
  7. SrcSize
  8. SrcSubrect
  9. DstSize
  10. swizzle
  11. ConvertScalerOpsToScalerStages
  12. ComputeScalerStages
  13. CreateScaler
  14. CreatePlanarScaler
  15. CreateYuvMrtShader
  16. InitBuffer
  17. GetShaderProgram
  18. Setup
  19. UseProgram

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "content/common/gpu/client/gl_helper_scaling.h"

#include <deque>
#include <string>
#include <vector>

#include "base/bind.h"
#include "base/debug/trace_event.h"
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "base/memory/ref_counted.h"
#include "base/message_loop/message_loop.h"
#include "base/time/time.h"
#include "gpu/command_buffer/client/gles2_interface.h"
#include "third_party/skia/include/core/SkRegion.h"
#include "ui/gfx/rect.h"
#include "ui/gfx/size.h"

using gpu::gles2::GLES2Interface;

namespace content {

GLHelperScaling::GLHelperScaling(GLES2Interface* gl, GLHelper* helper)
    : gl_(gl), helper_(helper), vertex_attributes_buffer_(gl_) {
  InitBuffer();
}

GLHelperScaling::~GLHelperScaling() {}

// Used to keep track of a generated shader program. The program
// is passed in as text through Setup and is used by calling
// UseProgram() with the right parameters. Note that |gl_|
// and |helper_| are assumed to live longer than this program.
class ShaderProgram : public base::RefCounted<ShaderProgram> {
 public:
  ShaderProgram(GLES2Interface* gl, GLHelper* helper)
      : gl_(gl),
        helper_(helper),
        program_(gl_->CreateProgram()),
        position_location_(-1),
        texcoord_location_(-1),
        src_subrect_location_(-1),
        src_pixelsize_location_(-1),
        dst_pixelsize_location_(-1),
        scaling_vector_location_(-1),
        color_weights_location_(-1) {}

  // Compile shader program.
  void Setup(const GLchar* vertex_shader_text,
             const GLchar* fragment_shader_text);

  // UseProgram must be called with GL_TEXTURE_2D bound to the
  // source texture and GL_ARRAY_BUFFER bound to a vertex
  // attribute buffer.
  void UseProgram(const gfx::Size& src_size,
                  const gfx::Rect& src_subrect,
                  const gfx::Size& dst_size,
                  bool scale_x,
                  bool flip_y,
                  GLfloat color_weights[4]);

  bool Initialized() const { return position_location_ != -1; }

 private:
  friend class base::RefCounted<ShaderProgram>;
  ~ShaderProgram() { gl_->DeleteProgram(program_); }

  GLES2Interface* gl_;
  GLHelper* helper_;

  // A program for copying a source texture into a destination texture.
  GLuint program_;

  // The location of the position in the program.
  GLint position_location_;
  // The location of the texture coordinate in the program.
  GLint texcoord_location_;
  // The location of the source texture in the program.
  GLint texture_location_;
  // The location of the texture coordinate of
  // the sub-rectangle in the program.
  GLint src_subrect_location_;
  // Location of size of source image in pixels.
  GLint src_pixelsize_location_;
  // Location of size of destination image in pixels.
  GLint dst_pixelsize_location_;
  // Location of vector for scaling direction.
  GLint scaling_vector_location_;
  // Location of color weights.
  GLint color_weights_location_;

  DISALLOW_COPY_AND_ASSIGN(ShaderProgram);
};

// Implementation of a single stage in a scaler pipeline. If the pipeline has
// multiple stages, it calls Scale() on the subscaler, then further scales the
// output. Caches textures and framebuffers to avoid allocating/deleting
// them once per frame, which can be expensive on some drivers.
class ScalerImpl : public GLHelper::ScalerInterface,
                   public GLHelperScaling::ShaderInterface {
 public:
  // |gl| and |copy_impl| are expected to live longer than this object.
  // |src_size| is the size of the input texture in pixels.
  // |dst_size| is the size of the output texutre in pixels.
  // |src_subrect| is the portion of the src to copy to the output texture.
  // If |scale_x| is true, we are scaling along the X axis, otherwise Y.
  // If we are scaling in both X and Y, |scale_x| is ignored.
  // If |vertically_flip_texture| is true, output will be upside-down.
  // If |swizzle| is true, RGBA will be transformed into BGRA.
  // |color_weights| are only used together with SHADER_PLANAR to specify
  //   how to convert RGB colors into a single value.
  ScalerImpl(GLES2Interface* gl,
             GLHelperScaling* scaler_helper,
             const GLHelperScaling::ScalerStage& scaler_stage,
             ScalerImpl* subscaler,
             const float* color_weights)
      : gl_(gl),
        scaler_helper_(scaler_helper),
        spec_(scaler_stage),
        intermediate_texture_(0),
        dst_framebuffer_(gl),
        subscaler_(subscaler) {
    if (color_weights) {
      color_weights_[0] = color_weights[0];
      color_weights_[1] = color_weights[1];
      color_weights_[2] = color_weights[2];
      color_weights_[3] = color_weights[3];
    } else {
      color_weights_[0] = 0.0;
      color_weights_[1] = 0.0;
      color_weights_[2] = 0.0;
      color_weights_[3] = 0.0;
    }
    shader_program_ =
        scaler_helper_->GetShaderProgram(spec_.shader, spec_.swizzle);

    if (subscaler_) {
      intermediate_texture_ = 0u;
      gl_->GenTextures(1, &intermediate_texture_);
      ScopedTextureBinder<GL_TEXTURE_2D> texture_binder(gl_,
                                                        intermediate_texture_);
      gl_->TexImage2D(GL_TEXTURE_2D,
                      0,
                      GL_RGBA,
                      spec_.src_size.width(),
                      spec_.src_size.height(),
                      0,
                      GL_RGBA,
                      GL_UNSIGNED_BYTE,
                      NULL);
    }
  }

  virtual ~ScalerImpl() {
    if (intermediate_texture_) {
      gl_->DeleteTextures(1, &intermediate_texture_);
    }
  }

  // GLHelperShader::ShaderInterface implementation.
  virtual void Execute(GLuint source_texture,
                       const std::vector<GLuint>& dest_textures) OVERRIDE {
    if (subscaler_) {
      subscaler_->Scale(source_texture, intermediate_texture_);
      source_texture = intermediate_texture_;
    }

    ScopedFramebufferBinder<GL_FRAMEBUFFER> framebuffer_binder(
        gl_, dst_framebuffer_);
    DCHECK_GT(dest_textures.size(), 0U);
    scoped_ptr<GLenum[]> buffers(new GLenum[dest_textures.size()]);
    for (size_t t = 0; t < dest_textures.size(); t++) {
      ScopedTextureBinder<GL_TEXTURE_2D> texture_binder(gl_, dest_textures[t]);
      gl_->FramebufferTexture2D(GL_FRAMEBUFFER,
                                GL_COLOR_ATTACHMENT0 + t,
                                GL_TEXTURE_2D,
                                dest_textures[t],
                                0);
      buffers[t] = GL_COLOR_ATTACHMENT0 + t;
    }
    ScopedTextureBinder<GL_TEXTURE_2D> texture_binder(gl_, source_texture);

    gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

    ScopedBufferBinder<GL_ARRAY_BUFFER> buffer_binder(
        gl_, scaler_helper_->vertex_attributes_buffer_);
    DCHECK(shader_program_->Initialized());
    shader_program_->UseProgram(spec_.src_size,
                                spec_.src_subrect,
                                spec_.dst_size,
                                spec_.scale_x,
                                spec_.vertically_flip_texture,
                                color_weights_);
    gl_->Viewport(0, 0, spec_.dst_size.width(), spec_.dst_size.height());

    if (dest_textures.size() > 1) {
      DCHECK_LE(static_cast<int>(dest_textures.size()),
                scaler_helper_->helper_->MaxDrawBuffers());
      gl_->DrawBuffersEXT(dest_textures.size(), buffers.get());
    }
    // Conduct texture mapping by drawing a quad composed of two triangles.
    gl_->DrawArrays(GL_TRIANGLE_STRIP, 0, 4);
    if (dest_textures.size() > 1) {
      // Set the draw buffers back to not confuse others.
      gl_->DrawBuffersEXT(1, &buffers[0]);
    }
  }

  // GLHelper::ScalerInterface implementation.
  virtual void Scale(GLuint source_texture, GLuint dest_texture) OVERRIDE {
    std::vector<GLuint> tmp(1);
    tmp[0] = dest_texture;
    Execute(source_texture, tmp);
  }

  virtual const gfx::Size& SrcSize() OVERRIDE {
    if (subscaler_) {
      return subscaler_->SrcSize();
    }
    return spec_.src_size;
  }
  virtual const gfx::Rect& SrcSubrect() OVERRIDE {
    if (subscaler_) {
      return subscaler_->SrcSubrect();
    }
    return spec_.src_subrect;
  }
  virtual const gfx::Size& DstSize() OVERRIDE { return spec_.dst_size; }

 private:
  GLES2Interface* gl_;
  GLHelperScaling* scaler_helper_;
  GLHelperScaling::ScalerStage spec_;
  GLfloat color_weights_[4];
  GLuint intermediate_texture_;
  scoped_refptr<ShaderProgram> shader_program_;
  ScopedFramebuffer dst_framebuffer_;
  scoped_ptr<ScalerImpl> subscaler_;
};

GLHelperScaling::ScalerStage::ScalerStage(ShaderType shader_,
                                          gfx::Size src_size_,
                                          gfx::Rect src_subrect_,
                                          gfx::Size dst_size_,
                                          bool scale_x_,
                                          bool vertically_flip_texture_,
                                          bool swizzle_)
    : shader(shader_),
      src_size(src_size_),
      src_subrect(src_subrect_),
      dst_size(dst_size_),
      scale_x(scale_x_),
      vertically_flip_texture(vertically_flip_texture_),
      swizzle(swizzle_) {}

// The important inputs for this function is |x_ops| and
// |y_ops|. They represent scaling operations to be done
// on an imag of size |src_size|. If |quality| is SCALER_QUALITY_BEST,
// then we will interpret these scale operations literally and we'll
// create one scaler stage for each ScaleOp.  However, if |quality|
// is SCALER_QUALITY_GOOD, then we can do a whole bunch of optimizations
// by combining two or more ScaleOps in to a single scaler stage.
// Normally we process ScaleOps from |y_ops| first and |x_ops| after
// all |y_ops| are processed, but sometimes we can combine one or more
// operation from both queues essentially for free. This is the reason
// why |x_ops| and |y_ops| aren't just one single queue.
void GLHelperScaling::ConvertScalerOpsToScalerStages(
    GLHelper::ScalerQuality quality,
    gfx::Size src_size,
    gfx::Rect src_subrect,
    const gfx::Size& dst_size,
    bool vertically_flip_texture,
    bool swizzle,
    std::deque<GLHelperScaling::ScaleOp>* x_ops,
    std::deque<GLHelperScaling::ScaleOp>* y_ops,
    std::vector<ScalerStage>* scaler_stages) {
  while (!x_ops->empty() || !y_ops->empty()) {
    gfx::Size intermediate_size = src_subrect.size();
    std::deque<ScaleOp>* current_queue = NULL;

    if (!y_ops->empty()) {
      current_queue = y_ops;
    } else {
      current_queue = x_ops;
    }

    ShaderType current_shader = SHADER_BILINEAR;
    switch (current_queue->front().scale_factor) {
      case 0:
        if (quality == GLHelper::SCALER_QUALITY_BEST) {
          current_shader = SHADER_BICUBIC_UPSCALE;
        }
        break;
      case 2:
        if (quality == GLHelper::SCALER_QUALITY_BEST) {
          current_shader = SHADER_BICUBIC_HALF_1D;
        }
        break;
      case 3:
        DCHECK(quality != GLHelper::SCALER_QUALITY_BEST);
        current_shader = SHADER_BILINEAR3;
        break;
      default:
        NOTREACHED();
    }
    bool scale_x = current_queue->front().scale_x;
    current_queue->front().UpdateSize(&intermediate_size);
    current_queue->pop_front();

    // Optimization: Sometimes we can combine 2-4 scaling operations into
    // one operation.
    if (quality == GLHelper::SCALER_QUALITY_GOOD) {
      if (!current_queue->empty() && current_shader == SHADER_BILINEAR) {
        // Combine two steps in the same dimension.
        current_queue->front().UpdateSize(&intermediate_size);
        current_queue->pop_front();
        current_shader = SHADER_BILINEAR2;
        if (!current_queue->empty()) {
          // Combine three steps in the same dimension.
          current_queue->front().UpdateSize(&intermediate_size);
          current_queue->pop_front();
          current_shader = SHADER_BILINEAR4;
        }
      }
      // Check if we can combine some steps in the other dimension as well.
      // Since all shaders currently use GL_LINEAR, we can easily scale up
      // or scale down by exactly 2x at the same time as we do another
      // operation. Currently, the following mergers are supported:
      // * 1 bilinear Y-pass with 1 bilinear X-pass (up or down)
      // * 2 bilinear Y-passes with 2 bilinear X-passes
      // * 1 bilinear Y-pass with N bilinear X-pass
      // * N bilinear Y-passes with 1 bilinear X-pass (down only)
      // Measurements indicate that generalizing this for 3x3 and 4x4
      // makes it slower on some platforms, such as the Pixel.
      if (!scale_x && x_ops->size() > 0 && x_ops->front().scale_factor <= 2) {
        int x_passes = 0;
        if (current_shader == SHADER_BILINEAR2 && x_ops->size() >= 2) {
          // 2y + 2x passes
          x_passes = 2;
          current_shader = SHADER_BILINEAR2X2;
        } else if (current_shader == SHADER_BILINEAR) {
          // 1y + Nx passes
          scale_x = true;
          switch (x_ops->size()) {
            case 0:
              NOTREACHED();
            case 1:
              if (x_ops->front().scale_factor == 3) {
                current_shader = SHADER_BILINEAR3;
              }
              x_passes = 1;
              break;
            case 2:
              x_passes = 2;
              current_shader = SHADER_BILINEAR2;
              break;
            default:
              x_passes = 3;
              current_shader = SHADER_BILINEAR4;
              break;
          }
        } else if (x_ops->front().scale_factor == 2) {
          // Ny + 1x-downscale
          x_passes = 1;
        }

        for (int i = 0; i < x_passes; i++) {
          x_ops->front().UpdateSize(&intermediate_size);
          x_ops->pop_front();
        }
      }
    }

    scaler_stages->push_back(ScalerStage(current_shader,
                                         src_size,
                                         src_subrect,
                                         intermediate_size,
                                         scale_x,
                                         vertically_flip_texture,
                                         swizzle));
    src_size = intermediate_size;
    src_subrect = gfx::Rect(intermediate_size);
    vertically_flip_texture = false;
    swizzle = false;
  }
}

void GLHelperScaling::ComputeScalerStages(
    GLHelper::ScalerQuality quality,
    const gfx::Size& src_size,
    const gfx::Rect& src_subrect,
    const gfx::Size& dst_size,
    bool vertically_flip_texture,
    bool swizzle,
    std::vector<ScalerStage>* scaler_stages) {
  if (quality == GLHelper::SCALER_QUALITY_FAST ||
      src_subrect.size() == dst_size) {
    scaler_stages->push_back(ScalerStage(SHADER_BILINEAR,
                                         src_size,
                                         src_subrect,
                                         dst_size,
                                         false,
                                         vertically_flip_texture,
                                         swizzle));
    return;
  }

  std::deque<GLHelperScaling::ScaleOp> x_ops, y_ops;
  GLHelperScaling::ScaleOp::AddOps(src_subrect.width(),
                                   dst_size.width(),
                                   true,
                                   quality == GLHelper::SCALER_QUALITY_GOOD,
                                   &x_ops);
  GLHelperScaling::ScaleOp::AddOps(src_subrect.height(),
                                   dst_size.height(),
                                   false,
                                   quality == GLHelper::SCALER_QUALITY_GOOD,
                                   &y_ops);

  ConvertScalerOpsToScalerStages(quality,
                                 src_size,
                                 src_subrect,
                                 dst_size,
                                 vertically_flip_texture,
                                 swizzle,
                                 &x_ops,
                                 &y_ops,
                                 scaler_stages);
}

GLHelper::ScalerInterface* GLHelperScaling::CreateScaler(
    GLHelper::ScalerQuality quality,
    gfx::Size src_size,
    gfx::Rect src_subrect,
    const gfx::Size& dst_size,
    bool vertically_flip_texture,
    bool swizzle) {
  std::vector<ScalerStage> scaler_stages;
  ComputeScalerStages(quality,
                      src_size,
                      src_subrect,
                      dst_size,
                      vertically_flip_texture,
                      swizzle,
                      &scaler_stages);

  ScalerImpl* ret = NULL;
  for (unsigned int i = 0; i < scaler_stages.size(); i++) {
    ret = new ScalerImpl(gl_, this, scaler_stages[i], ret, NULL);
  }
  return ret;
}

GLHelper::ScalerInterface* GLHelperScaling::CreatePlanarScaler(
    const gfx::Size& src_size,
    const gfx::Rect& src_subrect,
    const gfx::Size& dst_size,
    bool vertically_flip_texture,
    bool swizzle,
    const float color_weights[4]) {
  ScalerStage stage(SHADER_PLANAR,
                    src_size,
                    src_subrect,
                    dst_size,
                    true,
                    vertically_flip_texture,
                    swizzle);
  return new ScalerImpl(gl_, this, stage, NULL, color_weights);
}

GLHelperScaling::ShaderInterface* GLHelperScaling::CreateYuvMrtShader(
    const gfx::Size& src_size,
    const gfx::Rect& src_subrect,
    const gfx::Size& dst_size,
    bool vertically_flip_texture,
    bool swizzle,
    ShaderType shader) {
  DCHECK(shader == SHADER_YUV_MRT_PASS1 || shader == SHADER_YUV_MRT_PASS2);
  ScalerStage stage(shader,
                    src_size,
                    src_subrect,
                    dst_size,
                    true,
                    vertically_flip_texture,
                    swizzle);
  return new ScalerImpl(gl_, this, stage, NULL, NULL);
}

const GLfloat GLHelperScaling::kVertexAttributes[] = {
    -1.0f, -1.0f, 0.0f, 0.0f,     // vertex 0
    1.0f,  -1.0f, 1.0f, 0.0f,     // vertex 1
    -1.0f, 1.0f,  0.0f, 1.0f,     // vertex 2
    1.0f,  1.0f,  1.0f, 1.0f, };  // vertex 3

void GLHelperScaling::InitBuffer() {
  ScopedBufferBinder<GL_ARRAY_BUFFER> buffer_binder(gl_,
                                                    vertex_attributes_buffer_);
  gl_->BufferData(GL_ARRAY_BUFFER,
                  sizeof(kVertexAttributes),
                  kVertexAttributes,
                  GL_STATIC_DRAW);
}

scoped_refptr<ShaderProgram> GLHelperScaling::GetShaderProgram(ShaderType type,
                                                               bool swizzle) {
  ShaderProgramKeyType key(type, swizzle);
  scoped_refptr<ShaderProgram>& cache_entry(shader_programs_[key]);
  if (!cache_entry.get()) {
    cache_entry = new ShaderProgram(gl_, helper_);
    std::basic_string<GLchar> vertex_program;
    std::basic_string<GLchar> fragment_program;
    std::basic_string<GLchar> vertex_header;
    std::basic_string<GLchar> fragment_directives;
    std::basic_string<GLchar> fragment_header;
    std::basic_string<GLchar> shared_variables;

    vertex_header.append(
        "precision highp float;\n"
        "attribute vec2 a_position;\n"
        "attribute vec2 a_texcoord;\n"
        "uniform vec4 src_subrect;\n");

    fragment_header.append(
        "precision mediump float;\n"
        "uniform sampler2D s_texture;\n");

    vertex_program.append(
        "  gl_Position = vec4(a_position, 0.0, 1.0);\n"
        "  vec2 texcoord = src_subrect.xy + a_texcoord * src_subrect.zw;\n");

    switch (type) {
      case SHADER_BILINEAR:
        shared_variables.append("varying vec2 v_texcoord;\n");
        vertex_program.append("  v_texcoord = texcoord;\n");
        fragment_program.append(
            "  gl_FragColor = texture2D(s_texture, v_texcoord);\n");
        break;

      case SHADER_BILINEAR2:
        // This is equivialent to two passes of the BILINEAR shader above.
        // It can be used to scale an image down 1.0x-2.0x in either dimension,
        // or exactly 4x.
        shared_variables.append(
            "varying vec4 v_texcoords;\n");  // 2 texcoords packed in one quad
        vertex_header.append(
            "uniform vec2 scaling_vector;\n"
            "uniform vec2 dst_pixelsize;\n");
        vertex_program.append(
            "  vec2 step = scaling_vector * src_subrect.zw / dst_pixelsize;\n"
            "  step /= 4.0;\n"
            "  v_texcoords.xy = texcoord + step;\n"
            "  v_texcoords.zw = texcoord - step;\n");

        fragment_program.append(
            "  gl_FragColor = (texture2D(s_texture, v_texcoords.xy) +\n"
            "                  texture2D(s_texture, v_texcoords.zw)) / 2.0;\n");
        break;

      case SHADER_BILINEAR3:
        // This is kind of like doing 1.5 passes of the BILINEAR shader.
        // It can be used to scale an image down 1.5x-3.0x, or exactly 6x.
        shared_variables.append(
            "varying vec4 v_texcoords1;\n"  // 2 texcoords packed in one quad
            "varying vec2 v_texcoords2;\n");
        vertex_header.append(
            "uniform vec2 scaling_vector;\n"
            "uniform vec2 dst_pixelsize;\n");
        vertex_program.append(
            "  vec2 step = scaling_vector * src_subrect.zw / dst_pixelsize;\n"
            "  step /= 3.0;\n"
            "  v_texcoords1.xy = texcoord + step;\n"
            "  v_texcoords1.zw = texcoord;\n"
            "  v_texcoords2 = texcoord - step;\n");
        fragment_program.append(
            "  gl_FragColor = (texture2D(s_texture, v_texcoords1.xy) +\n"
            "                  texture2D(s_texture, v_texcoords1.zw) +\n"
            "                  texture2D(s_texture, v_texcoords2)) / 3.0;\n");
        break;

      case SHADER_BILINEAR4:
        // This is equivialent to three passes of the BILINEAR shader above,
        // It can be used to scale an image down 2.0x-4.0x or exactly 8x.
        shared_variables.append("varying vec4 v_texcoords[2];\n");
        vertex_header.append(
            "uniform vec2 scaling_vector;\n"
            "uniform vec2 dst_pixelsize;\n");
        vertex_program.append(
            "  vec2 step = scaling_vector * src_subrect.zw / dst_pixelsize;\n"
            "  step /= 8.0;\n"
            "  v_texcoords[0].xy = texcoord - step * 3.0;\n"
            "  v_texcoords[0].zw = texcoord - step;\n"
            "  v_texcoords[1].xy = texcoord + step;\n"
            "  v_texcoords[1].zw = texcoord + step * 3.0;\n");
        fragment_program.append(
            "  gl_FragColor = (\n"
            "      texture2D(s_texture, v_texcoords[0].xy) +\n"
            "      texture2D(s_texture, v_texcoords[0].zw) +\n"
            "      texture2D(s_texture, v_texcoords[1].xy) +\n"
            "      texture2D(s_texture, v_texcoords[1].zw)) / 4.0;\n");
        break;

      case SHADER_BILINEAR2X2:
        // This is equivialent to four passes of the BILINEAR shader above.
        // Two in each dimension. It can be used to scale an image down
        // 1.0x-2.0x in both X and Y directions. Or, it could be used to
        // scale an image down by exactly 4x in both dimensions.
        shared_variables.append("varying vec4 v_texcoords[2];\n");
        vertex_header.append("uniform vec2 dst_pixelsize;\n");
        vertex_program.append(
            "  vec2 step = src_subrect.zw / 4.0 / dst_pixelsize;\n"
            "  v_texcoords[0].xy = texcoord + vec2(step.x, step.y);\n"
            "  v_texcoords[0].zw = texcoord + vec2(step.x, -step.y);\n"
            "  v_texcoords[1].xy = texcoord + vec2(-step.x, step.y);\n"
            "  v_texcoords[1].zw = texcoord + vec2(-step.x, -step.y);\n");
        fragment_program.append(
            "  gl_FragColor = (\n"
            "      texture2D(s_texture, v_texcoords[0].xy) +\n"
            "      texture2D(s_texture, v_texcoords[0].zw) +\n"
            "      texture2D(s_texture, v_texcoords[1].xy) +\n"
            "      texture2D(s_texture, v_texcoords[1].zw)) / 4.0;\n");
        break;

      case SHADER_BICUBIC_HALF_1D:
        // This scales down texture by exactly half in one dimension.
        // directions in one pass. We use bilinear lookup to reduce
        // the number of texture reads from 8 to 4
        shared_variables.append(
            "const float CenterDist = 99.0 / 140.0;\n"
            "const float LobeDist = 11.0 / 4.0;\n"
            "const float CenterWeight = 35.0 / 64.0;\n"
            "const float LobeWeight = -3.0 / 64.0;\n"
            "varying vec4 v_texcoords[2];\n");
        vertex_header.append(
            "uniform vec2 scaling_vector;\n"
            "uniform vec2 src_pixelsize;\n");
        vertex_program.append(
            "  vec2 step = src_subrect.zw * scaling_vector / src_pixelsize;\n"
            "  v_texcoords[0].xy = texcoord - LobeDist * step;\n"
            "  v_texcoords[0].zw = texcoord - CenterDist * step;\n"
            "  v_texcoords[1].xy = texcoord + CenterDist * step;\n"
            "  v_texcoords[1].zw = texcoord + LobeDist * step;\n");
        fragment_program.append(
            "  gl_FragColor = \n"
            // Lobe pixels
            "      (texture2D(s_texture, v_texcoords[0].xy) +\n"
            "       texture2D(s_texture, v_texcoords[1].zw)) *\n"
            "          LobeWeight +\n"
            // Center pixels
            "      (texture2D(s_texture, v_texcoords[0].zw) +\n"
            "       texture2D(s_texture, v_texcoords[1].xy)) *\n"
            "          CenterWeight;\n");
        break;

      case SHADER_BICUBIC_UPSCALE:
        // When scaling up, we need 4 texture reads, but we can
        // save some instructions because will know in which range of
        // the bicubic function each call call to the bicubic function
        // will be in.
        // Also, when sampling the bicubic function like this, the sum
        // is always exactly one, so we can skip normalization as well.
        shared_variables.append("varying vec2 v_texcoord;\n");
        vertex_program.append("  v_texcoord = texcoord;\n");
        fragment_header.append(
            "uniform vec2 src_pixelsize;\n"
            "uniform vec2 scaling_vector;\n"
            "const float a = -0.5;\n"
            // This function is equivialent to calling the bicubic
            // function with x-1, x, 1-x and 2-x
            // (assuming 0 <= x < 1)
            "vec4 filt4(float x) {\n"
            "  return vec4(x * x * x, x * x, x, 1) *\n"
            "         mat4(       a,      -2.0 * a,   a, 0.0,\n"
            "               a + 2.0,      -a - 3.0, 0.0, 1.0,\n"
            "              -a - 2.0, 3.0 + 2.0 * a,  -a, 0.0,\n"
            "                    -a,             a, 0.0, 0.0);\n"
            "}\n"
            "mat4 pixels_x(vec2 pos, vec2 step) {\n"
            "  return mat4(\n"
            "      texture2D(s_texture, pos - step),\n"
            "      texture2D(s_texture, pos),\n"
            "      texture2D(s_texture, pos + step),\n"
            "      texture2D(s_texture, pos + step * 2.0));\n"
            "}\n");
        fragment_program.append(
            "  vec2 pixel_pos = v_texcoord * src_pixelsize - \n"
            "      scaling_vector / 2.0;\n"
            "  float frac = fract(dot(pixel_pos, scaling_vector));\n"
            "  vec2 base = (floor(pixel_pos) + vec2(0.5)) / src_pixelsize;\n"
            "  vec2 step = scaling_vector / src_pixelsize;\n"
            "  gl_FragColor = pixels_x(base, step) * filt4(frac);\n");
        break;

      case SHADER_PLANAR:
        // Converts four RGBA pixels into one pixel. Each RGBA
        // pixel will be dot-multiplied with the color weights and
        // then placed into a component of the output. This is used to
        // convert RGBA textures into Y, U and V textures. We do this
        // because single-component textures are not renderable on all
        // architectures.
        shared_variables.append("varying vec4 v_texcoords[2];\n");
        vertex_header.append(
            "uniform vec2 scaling_vector;\n"
            "uniform vec2 dst_pixelsize;\n");
        vertex_program.append(
            "  vec2 step = scaling_vector * src_subrect.zw / dst_pixelsize;\n"
            "  step /= 4.0;\n"
            "  v_texcoords[0].xy = texcoord - step * 1.5;\n"
            "  v_texcoords[0].zw = texcoord - step * 0.5;\n"
            "  v_texcoords[1].xy = texcoord + step * 0.5;\n"
            "  v_texcoords[1].zw = texcoord + step * 1.5;\n");
        fragment_header.append("uniform vec4 color_weights;\n");
        fragment_program.append(
            "  gl_FragColor = color_weights * mat4(\n"
            "    vec4(texture2D(s_texture, v_texcoords[0].xy).rgb, 1.0),\n"
            "    vec4(texture2D(s_texture, v_texcoords[0].zw).rgb, 1.0),\n"
            "    vec4(texture2D(s_texture, v_texcoords[1].xy).rgb, 1.0),\n"
            "    vec4(texture2D(s_texture, v_texcoords[1].zw).rgb, 1.0));\n");
        break;

      case SHADER_YUV_MRT_PASS1:
        // RGB24 to YV12 in two passes; writing two 8888 targets each pass.
        //
        // YV12 is full-resolution luma and half-resolution blue/red chroma.
        //
        //                  (original)
        //    RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
        //    RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
        //    RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
        //    RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
        //    RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
        //    RGBX RGBX RGBX RGBX RGBX RGBX RGBX RGBX
        //      |
        //      |      (y plane)    (temporary)
        //      |      YYYY YYYY     UUVV UUVV
        //      +--> { YYYY YYYY  +  UUVV UUVV }
        //             YYYY YYYY     UUVV UUVV
        //   First     YYYY YYYY     UUVV UUVV
        //    pass     YYYY YYYY     UUVV UUVV
        //             YYYY YYYY     UUVV UUVV
        //                              |
        //                              |  (u plane) (v plane)
        //   Second                     |      UUUU   VVVV
        //     pass                     +--> { UUUU + VVVV }
        //                                     UUUU   VVVV
        //
        shared_variables.append("varying vec4 v_texcoords[2];\n");
        vertex_header.append(
            "uniform vec2 scaling_vector;\n"
            "uniform vec2 dst_pixelsize;\n");
        vertex_program.append(
            "  vec2 step = scaling_vector * src_subrect.zw / dst_pixelsize;\n"
            "  step /= 4.0;\n"
            "  v_texcoords[0].xy = texcoord - step * 1.5;\n"
            "  v_texcoords[0].zw = texcoord - step * 0.5;\n"
            "  v_texcoords[1].xy = texcoord + step * 0.5;\n"
            "  v_texcoords[1].zw = texcoord + step * 1.5;\n");
        fragment_directives.append("#extension GL_EXT_draw_buffers : enable\n");
        fragment_header.append(
            "const vec3 kRGBtoY = vec3(0.257, 0.504, 0.098);\n"
            "const float kYBias = 0.0625;\n"
            // Divide U and V by two to compensate for averaging below.
            "const vec3 kRGBtoU = vec3(-0.148, -0.291, 0.439) / 2.0;\n"
            "const vec3 kRGBtoV = vec3(0.439, -0.368, -0.071) / 2.0;\n"
            "const float kUVBias = 0.5;\n");
        fragment_program.append(
            "  vec3 pixel1 = texture2D(s_texture, v_texcoords[0].xy).rgb;\n"
            "  vec3 pixel2 = texture2D(s_texture, v_texcoords[0].zw).rgb;\n"
            "  vec3 pixel3 = texture2D(s_texture, v_texcoords[1].xy).rgb;\n"
            "  vec3 pixel4 = texture2D(s_texture, v_texcoords[1].zw).rgb;\n"
            "  vec3 pixel12 = pixel1 + pixel2;\n"
            "  vec3 pixel34 = pixel3 + pixel4;\n"
            "  gl_FragData[0] = vec4(dot(pixel1, kRGBtoY),\n"
            "                        dot(pixel2, kRGBtoY),\n"
            "                        dot(pixel3, kRGBtoY),\n"
            "                        dot(pixel4, kRGBtoY)) + kYBias;\n"
            "  gl_FragData[1] = vec4(dot(pixel12, kRGBtoU),\n"
            "                        dot(pixel34, kRGBtoU),\n"
            "                        dot(pixel12, kRGBtoV),\n"
            "                        dot(pixel34, kRGBtoV)) + kUVBias;\n");
        break;

      case SHADER_YUV_MRT_PASS2:
        // We're just sampling two pixels and unswizzling them.  There's
        // no need to do vertical scaling with math, since bilinear
        // interpolation in the sampler takes care of that.
        shared_variables.append("varying vec4 v_texcoords;\n");
        vertex_header.append(
            "uniform vec2 scaling_vector;\n"
            "uniform vec2 dst_pixelsize;\n");
        vertex_program.append(
            "  vec2 step = scaling_vector * src_subrect.zw / dst_pixelsize;\n"
            "  step /= 2.0;\n"
            "  v_texcoords.xy = texcoord - step * 0.5;\n"
            "  v_texcoords.zw = texcoord + step * 0.5;\n");
        fragment_directives.append("#extension GL_EXT_draw_buffers : enable\n");
        fragment_program.append(
            "  vec4 lo_uuvv = texture2D(s_texture, v_texcoords.xy);\n"
            "  vec4 hi_uuvv = texture2D(s_texture, v_texcoords.zw);\n"
            "  gl_FragData[0] = vec4(lo_uuvv.rg, hi_uuvv.rg);\n"
            "  gl_FragData[1] = vec4(lo_uuvv.ba, hi_uuvv.ba);\n");
        break;
    }
    if (swizzle) {
      switch(type) {
        case SHADER_YUV_MRT_PASS1:
          fragment_program.append("  gl_FragData[0] = gl_FragData[0].bgra;\n");
          break;
        case SHADER_YUV_MRT_PASS2:
          fragment_program.append("  gl_FragData[0] = gl_FragData[0].bgra;\n");
          fragment_program.append("  gl_FragData[1] = gl_FragData[1].bgra;\n");
          break;
        default:
          fragment_program.append("  gl_FragColor = gl_FragColor.bgra;\n");
          break;
      }
    }

    vertex_program = vertex_header + shared_variables + "void main() {\n" +
                     vertex_program + "}\n";

    fragment_program = fragment_directives + fragment_header +
                       shared_variables + "void main() {\n" + fragment_program +
                       "}\n";

    cache_entry->Setup(vertex_program.c_str(), fragment_program.c_str());
  }
  return cache_entry;
}

void ShaderProgram::Setup(const GLchar* vertex_shader_text,
                          const GLchar* fragment_shader_text) {
  // Shaders to map the source texture to |dst_texture_|.
  GLuint vertex_shader =
      helper_->CompileShaderFromSource(vertex_shader_text, GL_VERTEX_SHADER);
  if (vertex_shader == 0)
    return;

  gl_->AttachShader(program_, vertex_shader);
  gl_->DeleteShader(vertex_shader);

  GLuint fragment_shader = helper_->CompileShaderFromSource(
      fragment_shader_text, GL_FRAGMENT_SHADER);
  if (fragment_shader == 0)
    return;
  gl_->AttachShader(program_, fragment_shader);
  gl_->DeleteShader(fragment_shader);

  gl_->LinkProgram(program_);

  GLint link_status = 0;
  gl_->GetProgramiv(program_, GL_LINK_STATUS, &link_status);
  if (!link_status)
    return;

  position_location_ = gl_->GetAttribLocation(program_, "a_position");
  texcoord_location_ = gl_->GetAttribLocation(program_, "a_texcoord");
  texture_location_ = gl_->GetUniformLocation(program_, "s_texture");
  src_subrect_location_ = gl_->GetUniformLocation(program_, "src_subrect");
  src_pixelsize_location_ = gl_->GetUniformLocation(program_, "src_pixelsize");
  dst_pixelsize_location_ = gl_->GetUniformLocation(program_, "dst_pixelsize");
  scaling_vector_location_ =
      gl_->GetUniformLocation(program_, "scaling_vector");
  color_weights_location_ = gl_->GetUniformLocation(program_, "color_weights");
  return;
}

void ShaderProgram::UseProgram(const gfx::Size& src_size,
                               const gfx::Rect& src_subrect,
                               const gfx::Size& dst_size,
                               bool scale_x,
                               bool flip_y,
                               GLfloat color_weights[4]) {
  gl_->UseProgram(program_);

  // OpenGL defines the last parameter to VertexAttribPointer as type
  // "const GLvoid*" even though it is actually an offset into the buffer
  // object's data store and not a pointer to the client's address space.
  const void* offsets[2] = {
      0, reinterpret_cast<const void*>(2 * sizeof(GLfloat))
  };

  gl_->VertexAttribPointer(position_location_,
                           2,
                           GL_FLOAT,
                           GL_FALSE,
                           4 * sizeof(GLfloat),
                           offsets[0]);
  gl_->EnableVertexAttribArray(position_location_);

  gl_->VertexAttribPointer(texcoord_location_,
                           2,
                           GL_FLOAT,
                           GL_FALSE,
                           4 * sizeof(GLfloat),
                           offsets[1]);
  gl_->EnableVertexAttribArray(texcoord_location_);

  gl_->Uniform1i(texture_location_, 0);

  // Convert |src_subrect| to texture coordinates.
  GLfloat src_subrect_texcoord[] = {
      static_cast<float>(src_subrect.x()) / src_size.width(),
      static_cast<float>(src_subrect.y()) / src_size.height(),
      static_cast<float>(src_subrect.width()) / src_size.width(),
      static_cast<float>(src_subrect.height()) / src_size.height(), };
  if (flip_y) {
    src_subrect_texcoord[1] += src_subrect_texcoord[3];
    src_subrect_texcoord[3] *= -1.0;
  }
  gl_->Uniform4fv(src_subrect_location_, 1, src_subrect_texcoord);

  gl_->Uniform2f(src_pixelsize_location_, src_size.width(), src_size.height());
  gl_->Uniform2f(dst_pixelsize_location_,
                 static_cast<float>(dst_size.width()),
                 static_cast<float>(dst_size.height()));

  gl_->Uniform2f(
      scaling_vector_location_, scale_x ? 1.0 : 0.0, scale_x ? 0.0 : 1.0);
  gl_->Uniform4fv(color_weights_location_, 1, color_weights);
}

}  // namespace content

/* [<][>][^][v][top][bottom][index][help] */