root/base/time/time_posix.cc

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. SysTimeFromTimeStruct
  2. SysTimeToTimeStruct
  3. SysTimeFromTimeStruct
  4. SysTimeToTimeStruct
  5. ClockNow
  6. ToTimeSpec
  7. Now
  8. NowFromSystemTime
  9. Explode
  10. FromExploded
  11. Now
  12. HighResNow
  13. IsHighResNowFastAndReliable
  14. ThreadNow
  15. NowFromSystemTraceTime
  16. NowFromSystemTraceTime
  17. FromTimeVal
  18. ToTimeVal

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/time/time.h"

#include <stdint.h>
#include <sys/time.h>
#include <time.h>
#if defined(OS_ANDROID)
#include <time64.h>
#endif
#include <unistd.h>

#include <limits>
#include <ostream>

#include "base/basictypes.h"
#include "base/logging.h"
#include "base/port.h"
#include "build/build_config.h"

#if defined(OS_ANDROID)
#include "base/os_compat_android.h"
#elif defined(OS_NACL)
#include "base/os_compat_nacl.h"
#endif

namespace {

#if !defined(OS_MACOSX)
// Define a system-specific SysTime that wraps either to a time_t or
// a time64_t depending on the host system, and associated convertion.
// See crbug.com/162007
#if defined(OS_ANDROID)
typedef time64_t SysTime;

SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) {
  if (is_local)
    return mktime64(timestruct);
  else
    return timegm64(timestruct);
}

void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) {
  if (is_local)
    localtime64_r(&t, timestruct);
  else
    gmtime64_r(&t, timestruct);
}

#else  // OS_ANDROID
typedef time_t SysTime;

SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) {
  if (is_local)
    return mktime(timestruct);
  else
    return timegm(timestruct);
}

void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) {
  if (is_local)
    localtime_r(&t, timestruct);
  else
    gmtime_r(&t, timestruct);
}
#endif  // OS_ANDROID

// Helper function to get results from clock_gettime() as TimeTicks object.
// Minimum requirement is MONOTONIC_CLOCK to be supported on the system.
// FreeBSD 6 has CLOCK_MONOTONIC but defines _POSIX_MONOTONIC_CLOCK to -1.
#if (defined(OS_POSIX) &&                                               \
     defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0) || \
    defined(OS_BSD) || defined(OS_ANDROID)
base::TimeTicks ClockNow(clockid_t clk_id) {
  uint64_t absolute_micro;

  struct timespec ts;
  if (clock_gettime(clk_id, &ts) != 0) {
    NOTREACHED() << "clock_gettime(" << clk_id << ") failed.";
    return base::TimeTicks();
  }

  absolute_micro =
      (static_cast<int64>(ts.tv_sec) * base::Time::kMicrosecondsPerSecond) +
      (static_cast<int64>(ts.tv_nsec) / base::Time::kNanosecondsPerMicrosecond);

  return base::TimeTicks::FromInternalValue(absolute_micro);
}
#else  // _POSIX_MONOTONIC_CLOCK
#error No usable tick clock function on this platform.
#endif  // _POSIX_MONOTONIC_CLOCK
#endif  // !defined(OS_MACOSX)

}  // namespace

namespace base {

struct timespec TimeDelta::ToTimeSpec() const {
  int64 microseconds = InMicroseconds();
  time_t seconds = 0;
  if (microseconds >= Time::kMicrosecondsPerSecond) {
    seconds = InSeconds();
    microseconds -= seconds * Time::kMicrosecondsPerSecond;
  }
  struct timespec result =
      {seconds,
       static_cast<long>(microseconds * Time::kNanosecondsPerMicrosecond)};
  return result;
}

#if !defined(OS_MACOSX)
// The Time routines in this file use standard POSIX routines, or almost-
// standard routines in the case of timegm.  We need to use a Mach-specific
// function for TimeTicks::Now() on Mac OS X.

// Time -----------------------------------------------------------------------

// Windows uses a Gregorian epoch of 1601.  We need to match this internally
// so that our time representations match across all platforms.  See bug 14734.
//   irb(main):010:0> Time.at(0).getutc()
//   => Thu Jan 01 00:00:00 UTC 1970
//   irb(main):011:0> Time.at(-11644473600).getutc()
//   => Mon Jan 01 00:00:00 UTC 1601
static const int64 kWindowsEpochDeltaSeconds = GG_INT64_C(11644473600);

// static
const int64 Time::kWindowsEpochDeltaMicroseconds =
    kWindowsEpochDeltaSeconds * Time::kMicrosecondsPerSecond;

// Some functions in time.cc use time_t directly, so we provide an offset
// to convert from time_t (Unix epoch) and internal (Windows epoch).
// static
const int64 Time::kTimeTToMicrosecondsOffset = kWindowsEpochDeltaMicroseconds;

// static
Time Time::Now() {
  struct timeval tv;
  struct timezone tz = { 0, 0 };  // UTC
  if (gettimeofday(&tv, &tz) != 0) {
    DCHECK(0) << "Could not determine time of day";
    LOG_ERRNO(ERROR) << "Call to gettimeofday failed.";
    // Return null instead of uninitialized |tv| value, which contains random
    // garbage data. This may result in the crash seen in crbug.com/147570.
    return Time();
  }
  // Combine seconds and microseconds in a 64-bit field containing microseconds
  // since the epoch.  That's enough for nearly 600 centuries.  Adjust from
  // Unix (1970) to Windows (1601) epoch.
  return Time((tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec) +
      kWindowsEpochDeltaMicroseconds);
}

// static
Time Time::NowFromSystemTime() {
  // Just use Now() because Now() returns the system time.
  return Now();
}

void Time::Explode(bool is_local, Exploded* exploded) const {
  // Time stores times with microsecond resolution, but Exploded only carries
  // millisecond resolution, so begin by being lossy.  Adjust from Windows
  // epoch (1601) to Unix epoch (1970);
  int64 microseconds = us_ - kWindowsEpochDeltaMicroseconds;
  // The following values are all rounded towards -infinity.
  int64 milliseconds;  // Milliseconds since epoch.
  SysTime seconds;  // Seconds since epoch.
  int millisecond;  // Exploded millisecond value (0-999).
  if (microseconds >= 0) {
    // Rounding towards -infinity <=> rounding towards 0, in this case.
    milliseconds = microseconds / kMicrosecondsPerMillisecond;
    seconds = milliseconds / kMillisecondsPerSecond;
    millisecond = milliseconds % kMillisecondsPerSecond;
  } else {
    // Round these *down* (towards -infinity).
    milliseconds = (microseconds - kMicrosecondsPerMillisecond + 1) /
                   kMicrosecondsPerMillisecond;
    seconds = (milliseconds - kMillisecondsPerSecond + 1) /
              kMillisecondsPerSecond;
    // Make this nonnegative (and between 0 and 999 inclusive).
    millisecond = milliseconds % kMillisecondsPerSecond;
    if (millisecond < 0)
      millisecond += kMillisecondsPerSecond;
  }

  struct tm timestruct;
  SysTimeToTimeStruct(seconds, &timestruct, is_local);

  exploded->year         = timestruct.tm_year + 1900;
  exploded->month        = timestruct.tm_mon + 1;
  exploded->day_of_week  = timestruct.tm_wday;
  exploded->day_of_month = timestruct.tm_mday;
  exploded->hour         = timestruct.tm_hour;
  exploded->minute       = timestruct.tm_min;
  exploded->second       = timestruct.tm_sec;
  exploded->millisecond  = millisecond;
}

// static
Time Time::FromExploded(bool is_local, const Exploded& exploded) {
  struct tm timestruct;
  timestruct.tm_sec    = exploded.second;
  timestruct.tm_min    = exploded.minute;
  timestruct.tm_hour   = exploded.hour;
  timestruct.tm_mday   = exploded.day_of_month;
  timestruct.tm_mon    = exploded.month - 1;
  timestruct.tm_year   = exploded.year - 1900;
  timestruct.tm_wday   = exploded.day_of_week;  // mktime/timegm ignore this
  timestruct.tm_yday   = 0;     // mktime/timegm ignore this
  timestruct.tm_isdst  = -1;    // attempt to figure it out
#if !defined(OS_NACL) && !defined(OS_SOLARIS)
  timestruct.tm_gmtoff = 0;     // not a POSIX field, so mktime/timegm ignore
  timestruct.tm_zone   = NULL;  // not a POSIX field, so mktime/timegm ignore
#endif


  int64 milliseconds;
  SysTime seconds;

  // Certain exploded dates do not really exist due to daylight saving times,
  // and this causes mktime() to return implementation-defined values when
  // tm_isdst is set to -1. On Android, the function will return -1, while the
  // C libraries of other platforms typically return a liberally-chosen value.
  // Handling this requires the special code below.

  // SysTimeFromTimeStruct() modifies the input structure, save current value.
  struct tm timestruct0 = timestruct;

  seconds = SysTimeFromTimeStruct(&timestruct, is_local);
  if (seconds == -1) {
    // Get the time values with tm_isdst == 0 and 1, then select the closest one
    // to UTC 00:00:00 that isn't -1.
    timestruct = timestruct0;
    timestruct.tm_isdst = 0;
    int64 seconds_isdst0 = SysTimeFromTimeStruct(&timestruct, is_local);

    timestruct = timestruct0;
    timestruct.tm_isdst = 1;
    int64 seconds_isdst1 = SysTimeFromTimeStruct(&timestruct, is_local);

    // seconds_isdst0 or seconds_isdst1 can be -1 for some timezones.
    // E.g. "CLST" (Chile Summer Time) returns -1 for 'tm_isdt == 1'.
    if (seconds_isdst0 < 0)
      seconds = seconds_isdst1;
    else if (seconds_isdst1 < 0)
      seconds = seconds_isdst0;
    else
      seconds = std::min(seconds_isdst0, seconds_isdst1);
  }

  // Handle overflow.  Clamping the range to what mktime and timegm might
  // return is the best that can be done here.  It's not ideal, but it's better
  // than failing here or ignoring the overflow case and treating each time
  // overflow as one second prior to the epoch.
  if (seconds == -1 &&
      (exploded.year < 1969 || exploded.year > 1970)) {
    // If exploded.year is 1969 or 1970, take -1 as correct, with the
    // time indicating 1 second prior to the epoch.  (1970 is allowed to handle
    // time zone and DST offsets.)  Otherwise, return the most future or past
    // time representable.  Assumes the time_t epoch is 1970-01-01 00:00:00 UTC.
    //
    // The minimum and maximum representible times that mktime and timegm could
    // return are used here instead of values outside that range to allow for
    // proper round-tripping between exploded and counter-type time
    // representations in the presence of possible truncation to time_t by
    // division and use with other functions that accept time_t.
    //
    // When representing the most distant time in the future, add in an extra
    // 999ms to avoid the time being less than any other possible value that
    // this function can return.

    // On Android, SysTime is int64, special care must be taken to avoid
    // overflows.
    const int64 min_seconds = (sizeof(SysTime) < sizeof(int64))
                                  ? std::numeric_limits<SysTime>::min()
                                  : std::numeric_limits<int32_t>::min();
    const int64 max_seconds = (sizeof(SysTime) < sizeof(int64))
                                  ? std::numeric_limits<SysTime>::max()
                                  : std::numeric_limits<int32_t>::max();
    if (exploded.year < 1969) {
      milliseconds = min_seconds * kMillisecondsPerSecond;
    } else {
      milliseconds = max_seconds * kMillisecondsPerSecond;
      milliseconds += (kMillisecondsPerSecond - 1);
    }
  } else {
    milliseconds = seconds * kMillisecondsPerSecond + exploded.millisecond;
  }

  // Adjust from Unix (1970) to Windows (1601) epoch.
  return Time((milliseconds * kMicrosecondsPerMillisecond) +
      kWindowsEpochDeltaMicroseconds);
}

// TimeTicks ------------------------------------------------------------------
// static
TimeTicks TimeTicks::Now() {
  return ClockNow(CLOCK_MONOTONIC);
}

// static
TimeTicks TimeTicks::HighResNow() {
  return Now();
}

// static
bool TimeTicks::IsHighResNowFastAndReliable() {
  return true;
}

// static
TimeTicks TimeTicks::ThreadNow() {
#if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \
    defined(OS_ANDROID)
  return ClockNow(CLOCK_THREAD_CPUTIME_ID);
#else
  NOTREACHED();
  return TimeTicks();
#endif
}

#if defined(OS_CHROMEOS)
// Force definition of the system trace clock; it is a chromeos-only api
// at the moment and surfacing it in the right place requires mucking
// with glibc et al.
#define CLOCK_SYSTEM_TRACE 11

// static
TimeTicks TimeTicks::NowFromSystemTraceTime() {
  uint64_t absolute_micro;

  struct timespec ts;
  if (clock_gettime(CLOCK_SYSTEM_TRACE, &ts) != 0) {
    // NB: fall-back for a chrome os build running on linux
    return HighResNow();
  }

  absolute_micro =
      (static_cast<int64>(ts.tv_sec) * Time::kMicrosecondsPerSecond) +
      (static_cast<int64>(ts.tv_nsec) / Time::kNanosecondsPerMicrosecond);

  return TimeTicks(absolute_micro);
}

#else // !defined(OS_CHROMEOS)

// static
TimeTicks TimeTicks::NowFromSystemTraceTime() {
  return HighResNow();
}

#endif // defined(OS_CHROMEOS)

#endif  // !OS_MACOSX

// static
Time Time::FromTimeVal(struct timeval t) {
  DCHECK_LT(t.tv_usec, static_cast<int>(Time::kMicrosecondsPerSecond));
  DCHECK_GE(t.tv_usec, 0);
  if (t.tv_usec == 0 && t.tv_sec == 0)
    return Time();
  if (t.tv_usec == static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1 &&
      t.tv_sec == std::numeric_limits<time_t>::max())
    return Max();
  return Time(
      (static_cast<int64>(t.tv_sec) * Time::kMicrosecondsPerSecond) +
      t.tv_usec +
      kTimeTToMicrosecondsOffset);
}

struct timeval Time::ToTimeVal() const {
  struct timeval result;
  if (is_null()) {
    result.tv_sec = 0;
    result.tv_usec = 0;
    return result;
  }
  if (is_max()) {
    result.tv_sec = std::numeric_limits<time_t>::max();
    result.tv_usec = static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1;
    return result;
  }
  int64 us = us_ - kTimeTToMicrosecondsOffset;
  result.tv_sec = us / Time::kMicrosecondsPerSecond;
  result.tv_usec = us % Time::kMicrosecondsPerSecond;
  return result;
}

}  // namespace base

/* [<][>][^][v][top][bottom][index][help] */