This source file includes following definitions.
- dnn_load_layer_conv2d
- dnn_execute_layer_conv2d
#include "libavutil/avassert.h"
#include "dnn_backend_native_layer_conv2d.h"
#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x)))
int dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num)
{
ConvolutionalParams *conv_params;
int kernel_size;
int dnn_size = 0;
conv_params = av_malloc(sizeof(*conv_params));
if (!conv_params)
return 0;
conv_params->dilation = (int32_t)avio_rl32(model_file_context);
conv_params->padding_method = (int32_t)avio_rl32(model_file_context);
conv_params->activation = (int32_t)avio_rl32(model_file_context);
conv_params->input_num = (int32_t)avio_rl32(model_file_context);
conv_params->output_num = (int32_t)avio_rl32(model_file_context);
conv_params->kernel_size = (int32_t)avio_rl32(model_file_context);
conv_params->has_bias = (int32_t)avio_rl32(model_file_context);
dnn_size += 28;
kernel_size = conv_params->input_num * conv_params->output_num *
conv_params->kernel_size * conv_params->kernel_size;
dnn_size += kernel_size * 4;
if (conv_params->has_bias)
dnn_size += conv_params->output_num * 4;
if (dnn_size > file_size || conv_params->input_num <= 0 ||
conv_params->output_num <= 0 || conv_params->kernel_size <= 0){
av_freep(&conv_params);
return 0;
}
conv_params->kernel = av_malloc(kernel_size * sizeof(float));
if (!conv_params->kernel) {
av_freep(&conv_params);
return 0;
}
for (int i = 0; i < kernel_size; ++i) {
conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context));
}
conv_params->biases = NULL;
if (conv_params->has_bias) {
conv_params->biases = av_malloc(conv_params->output_num * sizeof(float));
if (!conv_params->biases){
av_freep(&conv_params->kernel);
av_freep(&conv_params);
return 0;
}
for (int i = 0; i < conv_params->output_num; ++i){
conv_params->biases[i] = av_int2float(avio_rl32(model_file_context));
}
}
layer->params = conv_params;
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context);
layer->output_operand_index = (int32_t)avio_rl32(model_file_context);
dnn_size += 8;
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) {
return 0;
}
return dnn_size;
}
int dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes,
int32_t output_operand_index, const void *parameters)
{
float *output;
int32_t input_operand_index = input_operand_indexes[0];
int number = operands[input_operand_index].dims[0];
int height = operands[input_operand_index].dims[1];
int width = operands[input_operand_index].dims[2];
int channel = operands[input_operand_index].dims[3];
const float *input = operands[input_operand_index].data;
const ConvolutionalParams *conv_params = (const ConvolutionalParams *)parameters;
int radius = conv_params->kernel_size >> 1;
int src_linesize = width * conv_params->input_num;
int filter_linesize = conv_params->kernel_size * conv_params->input_num;
int filter_size = conv_params->kernel_size * filter_linesize;
int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
DnnOperand *output_operand = &operands[output_operand_index];
output_operand->dims[0] = number;
output_operand->dims[1] = height - pad_size * 2;
output_operand->dims[2] = width - pad_size * 2;
output_operand->dims[3] = conv_params->output_num;
output_operand->data_type = operands[input_operand_index].data_type;
output_operand->length = calculate_operand_data_length(output_operand);
if (output_operand->length <= 0)
return -1;
output_operand->data = av_realloc(output_operand->data, output_operand->length);
if (!output_operand->data)
return -1;
output = output_operand->data;
av_assert0(channel == conv_params->input_num);
for (int y = pad_size; y < height - pad_size; ++y) {
for (int x = pad_size; x < width - pad_size; ++x) {
for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) {
if (conv_params->has_bias)
output[n_filter] = conv_params->biases[n_filter];
else
output[n_filter] = 0.f;
for (int ch = 0; ch < conv_params->input_num; ++ch) {
for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) {
for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) {
float input_pel;
if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) {
int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height);
int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width);
input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
} else {
int y_pos = y + (kernel_y - radius) * conv_params->dilation;
int x_pos = x + (kernel_x - radius) * conv_params->dilation;
input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 :
input[y_pos * src_linesize + x_pos * conv_params->input_num + ch];
}
output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
kernel_x * conv_params->input_num + ch];
}
}
}
switch (conv_params->activation){
case RELU:
output[n_filter] = FFMAX(output[n_filter], 0.0);
break;
case TANH:
output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f;
break;
case SIGMOID:
output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter]));
break;
case NONE:
break;
case LEAKY_RELU:
output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0);
}
}
output += conv_params->output_num;
}
}
return 0;
}