root/src/pkg/runtime/panic.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. newdefer
  2. freedefer
  3. runtime·deferproc
  4. runtime·deferreturn
  5. runtime·testdefersizes
  6. rundefer
  7. printpanics
  8. runtime·panic
  9. abortpanic
  10. recovery
  11. runtime·unwindstack
  12. runtime·recover
  13. runtime·startpanic
  14. runtime·dopanic
  15. runtime·panicindex
  16. runtime·panicslice
  17. runtime·throwreturn
  18. runtime·throwinit
  19. runtime·canpanic
  20. runtime·throw
  21. runtime·panicstring
  22. runtime·Goexit
  23. runtime·panicdivide

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "runtime.h"
#include "arch_GOARCH.h"
#include "stack.h"
#include "malloc.h"
#include "../../cmd/ld/textflag.h"

// Code related to defer, panic and recover.

uint32 runtime·panicking;
static Lock paniclk;

// Each P holds pool for defers with arg sizes 8, 24, 40, 56 and 72 bytes.
// Memory block is 40 (24 for 32 bits) bytes larger due to Defer header.
// This maps exactly to malloc size classes.

// defer size class for arg size sz
#define DEFERCLASS(sz) (((sz)+7)>>4)
// total size of memory block for defer with arg size sz
#define TOTALSIZE(sz) (sizeof(Defer) - sizeof(((Defer*)nil)->args) + ROUND(sz, sizeof(uintptr)))

// Allocate a Defer, usually using per-P pool.
// Each defer must be released with freedefer.
static Defer*
newdefer(int32 siz)
{
        int32 total, sc;
        Defer *d;
        P *p;

        d = nil;
        sc = DEFERCLASS(siz);
        if(sc < nelem(p->deferpool)) {
                p = m->p;
                d = p->deferpool[sc];
                if(d)
                        p->deferpool[sc] = d->link;
        }
        if(d == nil) {
                // deferpool is empty or just a big defer
                total = TOTALSIZE(siz);
                d = runtime·malloc(total);
        }
        d->siz = siz;
        d->special = 0;
        d->link = g->defer;
        g->defer = d;
        return d;
}

// Free the given defer.
// The defer cannot be used after this call.
static void
freedefer(Defer *d)
{
        int32 sc;
        P *p;

        if(d->special)
                return;
        sc = DEFERCLASS(d->siz);
        if(sc < nelem(p->deferpool)) {
                p = m->p;
                d->link = p->deferpool[sc];
                p->deferpool[sc] = d;
                // No need to wipe out pointers in argp/pc/fn/args,
                // because we empty the pool before GC.
        } else
                runtime·free(d);
}

// Create a new deferred function fn with siz bytes of arguments.
// The compiler turns a defer statement into a call to this.
// Cannot split the stack because it assumes that the arguments
// are available sequentially after &fn; they would not be
// copied if a stack split occurred.  It's OK for this to call
// functions that split the stack.
#pragma textflag NOSPLIT
uintptr
runtime·deferproc(int32 siz, FuncVal *fn, ...)
{
        Defer *d;

        d = newdefer(siz);
        d->fn = fn;
        d->pc = runtime·getcallerpc(&siz);
        if(thechar == '5')
                d->argp = (byte*)(&fn+2);  // skip caller's saved link register
        else
                d->argp = (byte*)(&fn+1);
        runtime·memmove(d->args, d->argp, d->siz);

        // deferproc returns 0 normally.
        // a deferred func that stops a panic
        // makes the deferproc return 1.
        // the code the compiler generates always
        // checks the return value and jumps to the
        // end of the function if deferproc returns != 0.
        return 0;
}

// Run a deferred function if there is one.
// The compiler inserts a call to this at the end of any
// function which calls defer.
// If there is a deferred function, this will call runtime·jmpdefer,
// which will jump to the deferred function such that it appears
// to have been called by the caller of deferreturn at the point
// just before deferreturn was called.  The effect is that deferreturn
// is called again and again until there are no more deferred functions.
// Cannot split the stack because we reuse the caller's frame to
// call the deferred function.

// The single argument isn't actually used - it just has its address
// taken so it can be matched against pending defers.
#pragma textflag NOSPLIT
void
runtime·deferreturn(uintptr arg0)
{
        Defer *d;
        byte *argp;
        FuncVal *fn;

        d = g->defer;
        if(d == nil)
                return;
        argp = (byte*)&arg0;
        if(d->argp != argp)
                return;

        // Moving arguments around.
        // Do not allow preemption here, because the garbage collector
        // won't know the form of the arguments until the jmpdefer can
        // flip the PC over to fn.
        m->locks++;
        runtime·memmove(argp, d->args, d->siz);
        fn = d->fn;
        g->defer = d->link;
        freedefer(d);
        m->locks--;
        if(m->locks == 0 && g->preempt)
                g->stackguard0 = StackPreempt;
        runtime·jmpdefer(fn, argp);
}

// Ensure that defer arg sizes that map to the same defer size class
// also map to the same malloc size class.
void
runtime·testdefersizes(void)
{
        P *p;
        int32 i, siz, defersc, mallocsc;
        int32 map[nelem(p->deferpool)];

        for(i=0; i<nelem(p->deferpool); i++)
                map[i] = -1;
        for(i=0;; i++) {
                defersc = DEFERCLASS(i);
                if(defersc >= nelem(p->deferpool))
                        break;
                siz = TOTALSIZE(i);
                mallocsc = runtime·SizeToClass(siz);
                siz = runtime·class_to_size[mallocsc];
                // runtime·printf("defer class %d: arg size %d, block size %d(%d)\n", defersc, i, siz, mallocsc);
                if(map[defersc] < 0) {
                        map[defersc] = mallocsc;
                        continue;
                }
                if(map[defersc] != mallocsc) {
                        runtime·printf("bad defer size class: i=%d siz=%d mallocsc=%d/%d\n",
                                i, siz, map[defersc], mallocsc);
                        runtime·throw("bad defer size class");
                }
        }
}

// Run all deferred functions for the current goroutine.
static void
rundefer(void)
{
        Defer *d;

        while((d = g->defer) != nil) {
                g->defer = d->link;
                reflect·call(d->fn, (byte*)d->args, d->siz, d->siz);
                freedefer(d);
        }
}

// Print all currently active panics.  Used when crashing.
static void
printpanics(Panic *p)
{
        if(p->link) {
                printpanics(p->link);
                runtime·printf("\t");
        }
        runtime·printf("panic: ");
        runtime·printany(p->arg);
        if(p->recovered)
                runtime·printf(" [recovered]");
        runtime·printf("\n");
}

static void recovery(G*);
static void abortpanic(Panic*);
static FuncVal abortpanicV = { (void(*)(void))abortpanic };

// The implementation of the predeclared function panic.
void
runtime·panic(Eface e)
{
        Defer *d, dabort;
        Panic p;
        void *pc, *argp;

        runtime·memclr((byte*)&p, sizeof p);
        p.arg = e;
        p.link = g->panic;
        p.stackbase = g->stackbase;
        g->panic = &p;

        dabort.fn = &abortpanicV;
        dabort.siz = sizeof(&p);
        dabort.args[0] = &p;
        dabort.argp = NoArgs;
        dabort.special = true;

        for(;;) {
                d = g->defer;
                if(d == nil)
                        break;
                // take defer off list in case of recursive panic
                g->defer = d->link;
                g->ispanic = true;      // rock for runtime·newstack, where runtime·newstackcall ends up
                argp = d->argp;
                pc = d->pc;

                // The deferred function may cause another panic,
                // so newstackcall may not return. Set up a defer
                // to mark this panic aborted if that happens.
                dabort.link = g->defer;
                g->defer = &dabort;
                p.defer = d;

                runtime·newstackcall(d->fn, (byte*)d->args, d->siz);

                // Newstackcall did not panic. Remove dabort.
                if(g->defer != &dabort)
                        runtime·throw("bad defer entry in panic");
                g->defer = dabort.link;

                freedefer(d);
                if(p.recovered) {
                        g->panic = p.link;
                        // Aborted panics are marked but remain on the g->panic list.
                        // Recovery will unwind the stack frames containing their Panic structs.
                        // Remove them from the list and free the associated defers.
                        while(g->panic && g->panic->aborted) {
                                freedefer(g->panic->defer);
                                g->panic = g->panic->link;
                        }
                        if(g->panic == nil)     // must be done with signal
                                g->sig = 0;
                        // Pass information about recovering frame to recovery.
                        g->sigcode0 = (uintptr)argp;
                        g->sigcode1 = (uintptr)pc;
                        runtime·mcall(recovery);
                        runtime·throw("recovery failed"); // mcall should not return
                }
        }

        // ran out of deferred calls - old-school panic now
        runtime·startpanic();
        printpanics(g->panic);
        runtime·dopanic(0);    // should not return
        runtime·exit(1);       // not reached
}

static void
abortpanic(Panic *p)
{
        p->aborted = true;
}

// Unwind the stack after a deferred function calls recover
// after a panic.  Then arrange to continue running as though
// the caller of the deferred function returned normally.
static void
recovery(G *gp)
{
        void *argp;
        uintptr pc;
        
        // Info about defer passed in G struct.
        argp = (void*)gp->sigcode0;
        pc = (uintptr)gp->sigcode1;

        // Unwind to the stack frame with d's arguments in it.
        runtime·unwindstack(gp, argp);

        // Make the deferproc for this d return again,
        // this time returning 1.  The calling function will
        // jump to the standard return epilogue.
        // The -2*sizeof(uintptr) makes up for the
        // two extra words that are on the stack at
        // each call to deferproc.
        // (The pc we're returning to does pop pop
        // before it tests the return value.)
        // On the arm there are 2 saved LRs mixed in too.
        if(thechar == '5')
                gp->sched.sp = (uintptr)argp - 4*sizeof(uintptr);
        else
                gp->sched.sp = (uintptr)argp - 2*sizeof(uintptr);
        gp->sched.pc = pc;
        gp->sched.lr = 0;
        gp->sched.ret = 1;
        runtime·gogo(&gp->sched);
}

// Free stack frames until we hit the last one
// or until we find the one that contains the sp.
void
runtime·unwindstack(G *gp, byte *sp)
{
        Stktop *top;
        byte *stk;

        // Must be called from a different goroutine, usually m->g0.
        if(g == gp)
                runtime·throw("unwindstack on self");

        while((top = (Stktop*)gp->stackbase) != 0 && top->stackbase != 0) {
                stk = (byte*)gp->stackguard - StackGuard;
                if(stk <= sp && sp < (byte*)gp->stackbase)
                        break;
                gp->stackbase = top->stackbase;
                gp->stackguard = top->stackguard;
                gp->stackguard0 = gp->stackguard;
                runtime·stackfree(gp, stk, top);
        }

        if(sp != nil && (sp < (byte*)gp->stackguard - StackGuard || (byte*)gp->stackbase < sp)) {
                runtime·printf("recover: %p not in [%p, %p]\n", sp, gp->stackguard - StackGuard, gp->stackbase);
                runtime·throw("bad unwindstack");
        }
}

// The implementation of the predeclared function recover.
// Cannot split the stack because it needs to reliably
// find the stack segment of its caller.
#pragma textflag NOSPLIT
void
runtime·recover(byte *argp, GoOutput retbase, ...)
{
        Panic *p;
        Stktop *top;
        Eface *ret;

        // Must be an unrecovered panic in progress.
        // Must be on a stack segment created for a deferred call during a panic.
        // Must be at the top of that segment, meaning the deferred call itself
        // and not something it called. The top frame in the segment will have
        // argument pointer argp == top - top->argsize.
        // The subtraction of g->panicwrap allows wrapper functions that
        // do not count as official calls to adjust what we consider the top frame
        // while they are active on the stack. The linker emits adjustments of
        // g->panicwrap in the prologue and epilogue of functions marked as wrappers.
        ret = (Eface*)&retbase;
        top = (Stktop*)g->stackbase;
        p = g->panic;
        if(p != nil && !p->recovered && top->panic && argp == (byte*)top - top->argsize - g->panicwrap) {
                p->recovered = 1;
                *ret = p->arg;
        } else {
                ret->type = nil;
                ret->data = nil;
        }
}

void
runtime·startpanic(void)
{
        if(runtime·mheap.cachealloc.size == 0) { // very early
                runtime·printf("runtime: panic before malloc heap initialized\n");
                m->mallocing = 1; // tell rest of panic not to try to malloc
        } else if(m->mcache == nil) // can happen if called from signal handler or throw
                m->mcache = runtime·allocmcache();
        switch(m->dying) {
        case 0:
                m->dying = 1;
                if(g != nil)
                        g->writebuf = nil;
                runtime·xadd(&runtime·panicking, 1);
                runtime·lock(&paniclk);
                if(runtime·debug.schedtrace > 0 || runtime·debug.scheddetail > 0)
                        runtime·schedtrace(true);
                runtime·freezetheworld();
                return;
        case 1:
                // Something failed while panicing, probably the print of the
                // argument to panic().  Just print a stack trace and exit.
                m->dying = 2;
                runtime·printf("panic during panic\n");
                runtime·dopanic(0);
                runtime·exit(3);
        case 2:
                // This is a genuine bug in the runtime, we couldn't even
                // print the stack trace successfully.
                m->dying = 3;
                runtime·printf("stack trace unavailable\n");
                runtime·exit(4);
        default:
                // Can't even print!  Just exit.
                runtime·exit(5);
        }
}

void
runtime·dopanic(int32 unused)
{
        static bool didothers;
        bool crash;
        int32 t;

        if(g->sig != 0)
                runtime·printf("[signal %x code=%p addr=%p pc=%p]\n",
                        g->sig, g->sigcode0, g->sigcode1, g->sigpc);

        if((t = runtime·gotraceback(&crash)) > 0){
                if(g != m->g0) {
                        runtime·printf("\n");
                        runtime·goroutineheader(g);
                        runtime·traceback((uintptr)runtime·getcallerpc(&unused), (uintptr)runtime·getcallersp(&unused), 0, g);
                } else if(t >= 2 || m->throwing > 0) {
                        runtime·printf("\nruntime stack:\n");
                        runtime·traceback((uintptr)runtime·getcallerpc(&unused), (uintptr)runtime·getcallersp(&unused), 0, g);
                }
                if(!didothers) {
                        didothers = true;
                        runtime·tracebackothers(g);
                }
        }
        runtime·unlock(&paniclk);
        if(runtime·xadd(&runtime·panicking, -1) != 0) {
                // Some other m is panicking too.
                // Let it print what it needs to print.
                // Wait forever without chewing up cpu.
                // It will exit when it's done.
                static Lock deadlock;
                runtime·lock(&deadlock);
                runtime·lock(&deadlock);
        }
        
        if(crash)
                runtime·crash();

        runtime·exit(2);
}

void
runtime·panicindex(void)
{
        runtime·panicstring("index out of range");
}

void
runtime·panicslice(void)
{
        runtime·panicstring("slice bounds out of range");
}

void
runtime·throwreturn(void)
{
        // can only happen if compiler is broken
        runtime·throw("no return at end of a typed function - compiler is broken");
}

void
runtime·throwinit(void)
{
        // can only happen with linker skew
        runtime·throw("recursive call during initialization - linker skew");
}

bool
runtime·canpanic(G *gp)
{
        byte g;

        USED(&g);  // don't use global g, it points to gsignal

        // Is it okay for gp to panic instead of crashing the program?
        // Yes, as long as it is running Go code, not runtime code,
        // and not stuck in a system call.
        if(gp == nil || gp != m->curg)
                return false;
        if(m->locks-m->softfloat != 0 || m->mallocing != 0 || m->throwing != 0 || m->gcing != 0 || m->dying != 0)
                return false;
        if(gp->status != Grunning || gp->syscallsp != 0)
                return false;
#ifdef GOOS_windows
        if(m->libcallsp != 0)
                return false;
#endif
        return true;
}

void
runtime·throw(int8 *s)
{
        if(m->throwing == 0)
                m->throwing = 1;
        runtime·startpanic();
        runtime·printf("fatal error: %s\n", s);
        runtime·dopanic(0);
        *(int32*)0 = 0; // not reached
        runtime·exit(1);       // even more not reached
}

void
runtime·panicstring(int8 *s)
{
        Eface err;

        // m->softfloat is set during software floating point,
        // which might cause a fault during a memory load.
        // It increments m->locks to avoid preemption.
        // If we're panicking, the software floating point frames
        // will be unwound, so decrement m->locks as they would.
        if(m->softfloat) {
                m->locks--;
                m->softfloat = 0;
        }

        if(m->mallocing) {
                runtime·printf("panic: %s\n", s);
                runtime·throw("panic during malloc");
        }
        if(m->gcing) {
                runtime·printf("panic: %s\n", s);
                runtime·throw("panic during gc");
        }
        if(m->locks) {
                runtime·printf("panic: %s\n", s);
                runtime·throw("panic holding locks");
        }
        runtime·newErrorCString(s, &err);
        runtime·panic(err);
}

void
runtime·Goexit(void)
{
        rundefer();
        runtime·goexit();
}

void
runtime·panicdivide(void)
{
        runtime·panicstring("integer divide by zero");
}

/* [<][>][^][v][top][bottom][index][help] */