root/src/pkg/runtime/msize.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. runtime·SizeToClass
  2. runtime·InitSizes
  3. runtime·roundupsize

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Malloc small size classes.
//
// See malloc.h for overview.
//
// The size classes are chosen so that rounding an allocation
// request up to the next size class wastes at most 12.5% (1.125x).
//
// Each size class has its own page count that gets allocated
// and chopped up when new objects of the size class are needed.
// That page count is chosen so that chopping up the run of
// pages into objects of the given size wastes at most 12.5% (1.125x)
// of the memory.  It is not necessary that the cutoff here be
// the same as above.
//
// The two sources of waste multiply, so the worst possible case
// for the above constraints would be that allocations of some
// size might have a 26.6% (1.266x) overhead.
// In practice, only one of the wastes comes into play for a
// given size (sizes < 512 waste mainly on the round-up,
// sizes > 512 waste mainly on the page chopping).
//
// TODO(rsc): Compute max waste for any given size.

#include "runtime.h"
#include "arch_GOARCH.h"
#include "malloc.h"
#include "../../cmd/ld/textflag.h"

#pragma dataflag NOPTR
int32 runtime·class_to_size[NumSizeClasses];
#pragma dataflag NOPTR
int32 runtime·class_to_allocnpages[NumSizeClasses];

// The SizeToClass lookup is implemented using two arrays,
// one mapping sizes <= 1024 to their class and one mapping
// sizes >= 1024 and <= MaxSmallSize to their class.
// All objects are 8-aligned, so the first array is indexed by
// the size divided by 8 (rounded up).  Objects >= 1024 bytes
// are 128-aligned, so the second array is indexed by the
// size divided by 128 (rounded up).  The arrays are filled in
// by InitSizes.

#pragma dataflag NOPTR
int8 runtime·size_to_class8[1024/8 + 1];
#pragma dataflag NOPTR
int8 runtime·size_to_class128[(MaxSmallSize-1024)/128 + 1];

void runtime·testdefersizes(void);

int32
runtime·SizeToClass(int32 size)
{
        if(size > MaxSmallSize)
                runtime·throw("SizeToClass - invalid size");
        if(size > 1024-8)
                return runtime·size_to_class128[(size-1024+127) >> 7];
        return runtime·size_to_class8[(size+7)>>3];
}

void
runtime·InitSizes(void)
{
        int32 align, sizeclass, size, nextsize, n;
        uint32 i;
        uintptr allocsize, npages;

        // Initialize the runtime·class_to_size table (and choose class sizes in the process).
        runtime·class_to_size[0] = 0;
        sizeclass = 1;  // 0 means no class
        align = 8;
        for(size = align; size <= MaxSmallSize; size += align) {
                if((size&(size-1)) == 0) {      // bump alignment once in a while
                        if(size >= 2048)
                                align = 256;
                        else if(size >= 128)
                                align = size / 8;
                        else if(size >= 16)
                                align = 16;     // required for x86 SSE instructions, if we want to use them
                }
                if((align&(align-1)) != 0)
                        runtime·throw("InitSizes - bug");

                // Make the allocnpages big enough that
                // the leftover is less than 1/8 of the total,
                // so wasted space is at most 12.5%.
                allocsize = PageSize;
                while(allocsize%size > allocsize/8)
                        allocsize += PageSize;
                npages = allocsize >> PageShift;

                // If the previous sizeclass chose the same
                // allocation size and fit the same number of
                // objects into the page, we might as well
                // use just this size instead of having two
                // different sizes.
                if(sizeclass > 1 &&
                        npages == runtime·class_to_allocnpages[sizeclass-1] &&
                        allocsize/size == allocsize/runtime·class_to_size[sizeclass-1]) {
                        runtime·class_to_size[sizeclass-1] = size;
                        continue;
                }

                runtime·class_to_allocnpages[sizeclass] = npages;
                runtime·class_to_size[sizeclass] = size;
                sizeclass++;
        }
        if(sizeclass != NumSizeClasses) {
                runtime·printf("sizeclass=%d NumSizeClasses=%d\n", sizeclass, NumSizeClasses);
                runtime·throw("InitSizes - bad NumSizeClasses");
        }

        // Initialize the size_to_class tables.
        nextsize = 0;
        for (sizeclass = 1; sizeclass < NumSizeClasses; sizeclass++) {
                for(; nextsize < 1024 && nextsize <= runtime·class_to_size[sizeclass]; nextsize+=8)
                        runtime·size_to_class8[nextsize/8] = sizeclass;
                if(nextsize >= 1024)
                        for(; nextsize <= runtime·class_to_size[sizeclass]; nextsize += 128)
                                runtime·size_to_class128[(nextsize-1024)/128] = sizeclass;
        }

        // Double-check SizeToClass.
        if(0) {
                for(n=0; n < MaxSmallSize; n++) {
                        sizeclass = runtime·SizeToClass(n);
                        if(sizeclass < 1 || sizeclass >= NumSizeClasses || runtime·class_to_size[sizeclass] < n) {
                                runtime·printf("size=%d sizeclass=%d runtime·class_to_size=%d\n", n, sizeclass, runtime·class_to_size[sizeclass]);
                                runtime·printf("incorrect SizeToClass");
                                goto dump;
                        }
                        if(sizeclass > 1 && runtime·class_to_size[sizeclass-1] >= n) {
                                runtime·printf("size=%d sizeclass=%d runtime·class_to_size=%d\n", n, sizeclass, runtime·class_to_size[sizeclass]);
                                runtime·printf("SizeToClass too big");
                                goto dump;
                        }
                }
        }

        runtime·testdefersizes();

        // Copy out for statistics table.
        for(i=0; i<nelem(runtime·class_to_size); i++)
                mstats.by_size[i].size = runtime·class_to_size[i];
        return;

dump:
        if(1){
                runtime·printf("NumSizeClasses=%d\n", NumSizeClasses);
                runtime·printf("runtime·class_to_size:");
                for(sizeclass=0; sizeclass<NumSizeClasses; sizeclass++)
                        runtime·printf(" %d", runtime·class_to_size[sizeclass]);
                runtime·printf("\n\n");
                runtime·printf("size_to_class8:");
                for(i=0; i<nelem(runtime·size_to_class8); i++)
                        runtime·printf(" %d=>%d(%d)\n", i*8, runtime·size_to_class8[i],
                                runtime·class_to_size[runtime·size_to_class8[i]]);
                runtime·printf("\n");
                runtime·printf("size_to_class128:");
                for(i=0; i<nelem(runtime·size_to_class128); i++)
                        runtime·printf(" %d=>%d(%d)\n", i*128, runtime·size_to_class128[i],
                                runtime·class_to_size[runtime·size_to_class128[i]]);
                runtime·printf("\n");
        }
        runtime·throw("InitSizes failed");
}

// Returns size of the memory block that mallocgc will allocate if you ask for the size.
uintptr
runtime·roundupsize(uintptr size)
{
        if(size < MaxSmallSize) {
                if(size <= 1024-8)
                        return runtime·class_to_size[runtime·size_to_class8[(size+7)>>3]];
                else
                        return runtime·class_to_size[runtime·size_to_class128[(size-1024+127) >> 7]];
        }
        if(size + PageSize < size)
                return size;
        return ROUND(size, PageSize);
}

/* [<][>][^][v][top][bottom][index][help] */