root/src/pkg/runtime/heapdump.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. write
  2. flush
  3. dumpint
  4. dumpbool
  5. dumpmemrange
  6. dumpstr
  7. dumpcstr
  8. dumptype
  9. scannable
  10. dumpobj
  11. dumpotherroot
  12. dumpfinalizer
  13. dumpbv
  14. dumpframe
  15. dumpgoroutine
  16. dumpgs
  17. finq_callback
  18. dumproots
  19. dumpobjs
  20. dumpparams
  21. itab_callback
  22. dumpitabs
  23. dumpms
  24. dumpmemstats
  25. dumpmemprof_callback
  26. dumpmemprof
  27. mdump
  28. runtime∕debug·WriteHeapDump
  29. playgcprog
  30. dump_callback
  31. dumpfields
  32. dumpeface_callback
  33. dumpefacetypes
  34. dumpbvtypes

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Implementation of runtime/debug.WriteHeapDump.  Writes all
// objects in the heap plus additional info (roots, threads,
// finalizers, etc.) to a file.

// The format of the dumped file is described at
// http://code.google.com/p/go-wiki/wiki/heapdump13

#include "runtime.h"
#include "arch_GOARCH.h"
#include "malloc.h"
#include "mgc0.h"
#include "type.h"
#include "typekind.h"
#include "funcdata.h"
#include "zaexperiment.h"
#include "../../cmd/ld/textflag.h"

extern byte data[];
extern byte edata[];
extern byte bss[];
extern byte ebss[];
extern byte gcdata[];
extern byte gcbss[];

enum {
        FieldKindEol = 0,
        FieldKindPtr = 1,
        FieldKindString = 2,
        FieldKindSlice = 3,
        FieldKindIface = 4,
        FieldKindEface = 5,

        TagEOF = 0,
        TagObject = 1,
        TagOtherRoot = 2,
        TagType = 3,
        TagGoRoutine = 4,
        TagStackFrame = 5,
        TagParams = 6,
        TagFinalizer = 7,
        TagItab = 8,
        TagOSThread = 9,
        TagMemStats = 10,
        TagQueuedFinalizer = 11,
        TagData = 12,
        TagBss = 13,
        TagDefer = 14,
        TagPanic = 15,
        TagMemProf = 16,
        TagAllocSample = 17,

        TypeInfo_Conservative = 127,
};

static uintptr* playgcprog(uintptr offset, uintptr *prog, void (*callback)(void*,uintptr,uintptr), void *arg);
static void dumpfields(uintptr *prog);
static void dumpefacetypes(void *obj, uintptr size, Type *type, uintptr kind);
static void dumpbvtypes(BitVector *bv, byte *base);

// fd to write the dump to.
static uintptr dumpfd;

// buffer of pending write data
enum {
        BufSize = 4096,
};
#pragma dataflag NOPTR
static byte buf[BufSize];
static uintptr nbuf;

static void
write(byte *data, uintptr len)
{
        if(len + nbuf <= BufSize) {
                runtime·memmove(buf + nbuf, data, len);
                nbuf += len;
                return;
        }
        runtime·write(dumpfd, buf, nbuf);
        if(len >= BufSize) {
                runtime·write(dumpfd, data, len);
                nbuf = 0;
        } else {
                runtime·memmove(buf, data, len);
                nbuf = len;
        }
}

static void
flush(void)
{
        runtime·write(dumpfd, buf, nbuf);
        nbuf = 0;
}

// Cache of types that have been serialized already.
// We use a type's hash field to pick a bucket.
// Inside a bucket, we keep a list of types that
// have been serialized so far, most recently used first.
// Note: when a bucket overflows we may end up
// serializing a type more than once.  That's ok.
enum {
        TypeCacheBuckets = 256, // must be a power of 2
        TypeCacheAssoc = 4,
};
typedef struct TypeCacheBucket TypeCacheBucket;
struct TypeCacheBucket {
        Type *t[TypeCacheAssoc];
};
static TypeCacheBucket typecache[TypeCacheBuckets];

// dump a uint64 in a varint format parseable by encoding/binary
static void
dumpint(uint64 v)
{
        byte buf[10];
        int32 n;
        n = 0;
        while(v >= 0x80) {
                buf[n++] = v | 0x80;
                v >>= 7;
        }
        buf[n++] = v;
        write(buf, n);
}

static void
dumpbool(bool b)
{
        dumpint(b ? 1 : 0);
}

// dump varint uint64 length followed by memory contents
static void
dumpmemrange(byte *data, uintptr len)
{
        dumpint(len);
        write(data, len);
}

static void
dumpstr(String s)
{
        dumpmemrange(s.str, s.len);
}

static void
dumpcstr(int8 *c)
{
        dumpmemrange((byte*)c, runtime·findnull((byte*)c));
}

// dump information for a type
static void
dumptype(Type *t)
{
        TypeCacheBucket *b;
        int32 i, j;

        if(t == nil) {
                return;
        }

        // If we've definitely serialized the type before,
        // no need to do it again.
        b = &typecache[t->hash & (TypeCacheBuckets-1)];
        if(t == b->t[0]) return;
        for(i = 1; i < TypeCacheAssoc; i++) {
                if(t == b->t[i]) {
                        // Move-to-front
                        for(j = i; j > 0; j--) {
                                b->t[j] = b->t[j-1];
                        }
                        b->t[0] = t;
                        return;
                }
        }
        // Might not have been dumped yet.  Dump it and
        // remember we did so.
        for(j = TypeCacheAssoc-1; j > 0; j--) {
                b->t[j] = b->t[j-1];
        }
        b->t[0] = t;
        
        // dump the type
        dumpint(TagType);
        dumpint((uintptr)t);
        dumpint(t->size);
        if(t->x == nil || t->x->pkgPath == nil || t->x->name == nil) {
                dumpstr(*t->string);
        } else {
                dumpint(t->x->pkgPath->len + 1 + t->x->name->len);
                write(t->x->pkgPath->str, t->x->pkgPath->len);
                write((byte*)".", 1);
                write(t->x->name->str, t->x->name->len);
        }
        dumpbool(t->size > PtrSize || (t->kind & KindNoPointers) == 0);
        dumpfields((uintptr*)t->gc + 1);
}

// returns true if object is scannable
static bool
scannable(byte *obj)
{
        uintptr *b, off, shift;

        off = (uintptr*)obj - (uintptr*)runtime·mheap.arena_start;  // word offset
        b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
        shift = off % wordsPerBitmapWord;
        return ((*b >> shift) & bitScan) != 0;
}

// dump an object
static void
dumpobj(byte *obj, uintptr size, Type *type, uintptr kind)
{
        if(type != nil) {
                dumptype(type);
                dumpefacetypes(obj, size, type, kind);
        }

        dumpint(TagObject);
        dumpint((uintptr)obj);
        dumpint((uintptr)type);
        dumpint(kind);
        dumpmemrange(obj, size);
}

static void
dumpotherroot(int8 *description, byte *to)
{
        dumpint(TagOtherRoot);
        dumpcstr(description);
        dumpint((uintptr)to);
}

static void
dumpfinalizer(byte *obj, FuncVal *fn, Type* fint, PtrType *ot)
{
        dumpint(TagFinalizer);
        dumpint((uintptr)obj);
        dumpint((uintptr)fn);
        dumpint((uintptr)fn->fn);
        dumpint((uintptr)fint);
        dumpint((uintptr)ot);
}

typedef struct ChildInfo ChildInfo;
struct ChildInfo {
        // Information passed up from the callee frame about
        // the layout of the outargs region.
        uintptr argoff;     // where the arguments start in the frame
        uintptr arglen;     // size of args region
        BitVector args;    // if args.n >= 0, pointer map of args region

        byte *sp;           // callee sp
        uintptr depth;      // depth in call stack (0 == most recent)
};

// dump kinds & offsets of interesting fields in bv
static void
dumpbv(BitVector *bv, uintptr offset)
{
        uintptr i;

        for(i = 0; i < bv->n; i += BitsPerPointer) {
                switch(bv->data[i/32] >> i%32 & 3) {
                case BitsDead:
                case BitsScalar:
                        break;
                case BitsPointer:
                        dumpint(FieldKindPtr);
                        dumpint(offset + i / BitsPerPointer * PtrSize);
                        break;
                case BitsMultiWord:
                        switch(bv->data[(i+BitsPerPointer)/32] >> (i+BitsPerPointer)%32 & 3) {
                        case BitsString:
                                dumpint(FieldKindString);
                                dumpint(offset + i / BitsPerPointer * PtrSize);
                                i += BitsPerPointer;
                                break;
                        case BitsSlice:
                                dumpint(FieldKindSlice);
                                dumpint(offset + i / BitsPerPointer * PtrSize);
                                i += 2 * BitsPerPointer;
                                break;
                        case BitsIface:
                                dumpint(FieldKindIface);
                                dumpint(offset + i / BitsPerPointer * PtrSize);
                                i += BitsPerPointer;
                                break;
                        case BitsEface:
                                dumpint(FieldKindEface);
                                dumpint(offset + i / BitsPerPointer * PtrSize);
                                i += BitsPerPointer;
                                break;
                        }
                }
        }
}

static bool
dumpframe(Stkframe *s, void *arg)
{
        Func *f;
        ChildInfo *child;
        uintptr pc, off, size;
        int32 pcdata;
        StackMap *stackmap;
        int8 *name;
        BitVector bv;

        child = (ChildInfo*)arg;
        f = s->fn;

        // Figure out what we can about our stack map
        pc = s->pc;
        if(pc != f->entry)
                pc--;
        pcdata = runtime·pcdatavalue(f, PCDATA_StackMapIndex, pc);
        if(pcdata == -1) {
                // We do not have a valid pcdata value but there might be a
                // stackmap for this function.  It is likely that we are looking
                // at the function prologue, assume so and hope for the best.
                pcdata = 0;
        }
        stackmap = runtime·funcdata(f, FUNCDATA_LocalsPointerMaps);

        // Dump any types we will need to resolve Efaces.
        if(child->args.n >= 0)
                dumpbvtypes(&child->args, (byte*)s->sp + child->argoff);
        if(stackmap != nil && stackmap->n > 0) {
                bv = runtime·stackmapdata(stackmap, pcdata);
                dumpbvtypes(&bv, s->varp - bv.n / BitsPerPointer * PtrSize);
        } else {
                bv.n = -1;
        }

        // Dump main body of stack frame.
        dumpint(TagStackFrame);
        dumpint(s->sp); // lowest address in frame
        dumpint(child->depth); // # of frames deep on the stack
        dumpint((uintptr)child->sp); // sp of child, or 0 if bottom of stack
        dumpmemrange((byte*)s->sp, s->fp - s->sp);  // frame contents
        dumpint(f->entry);
        dumpint(s->pc);
        dumpint(s->continpc);
        name = runtime·funcname(f);
        if(name == nil)
                name = "unknown function";
        dumpcstr(name);

        // Dump fields in the outargs section
        if(child->args.n >= 0) {
                dumpbv(&child->args, child->argoff);
        } else {
                // conservative - everything might be a pointer
                for(off = child->argoff; off < child->argoff + child->arglen; off += PtrSize) {
                        dumpint(FieldKindPtr);
                        dumpint(off);
                }
        }

        // Dump fields in the local vars section
        if(stackmap == nil) {
                // No locals information, dump everything.
                for(off = child->arglen; off < s->varp - (byte*)s->sp; off += PtrSize) {
                        dumpint(FieldKindPtr);
                        dumpint(off);
                }
        } else if(stackmap->n < 0) {
                // Locals size information, dump just the locals.
                size = -stackmap->n;
                for(off = s->varp - size - (byte*)s->sp; off < s->varp - (byte*)s->sp; off += PtrSize) {
                        dumpint(FieldKindPtr);
                        dumpint(off);
                }
        } else if(stackmap->n > 0) {
                // Locals bitmap information, scan just the pointers in
                // locals.
                dumpbv(&bv, s->varp - bv.n / BitsPerPointer * PtrSize - (byte*)s->sp);
        }
        dumpint(FieldKindEol);

        // Record arg info for parent.
        child->argoff = s->argp - (byte*)s->fp;
        child->arglen = s->arglen;
        child->sp = (byte*)s->sp;
        child->depth++;
        stackmap = runtime·funcdata(f, FUNCDATA_ArgsPointerMaps);
        if(stackmap != nil)
                child->args = runtime·stackmapdata(stackmap, pcdata);
        else
                child->args.n = -1;
        return true;
}

static void
dumpgoroutine(G *gp)
{
        uintptr sp, pc, lr;
        ChildInfo child;
        Defer *d;
        Panic *p;

        if(gp->syscallstack != (uintptr)nil) {
                sp = gp->syscallsp;
                pc = gp->syscallpc;
                lr = 0;
        } else {
                sp = gp->sched.sp;
                pc = gp->sched.pc;
                lr = gp->sched.lr;
        }

        dumpint(TagGoRoutine);
        dumpint((uintptr)gp);
        dumpint((uintptr)sp);
        dumpint(gp->goid);
        dumpint(gp->gopc);
        dumpint(gp->status);
        dumpbool(gp->issystem);
        dumpbool(gp->isbackground);
        dumpint(gp->waitsince);
        dumpcstr(gp->waitreason);
        dumpint((uintptr)gp->sched.ctxt);
        dumpint((uintptr)gp->m);
        dumpint((uintptr)gp->defer);
        dumpint((uintptr)gp->panic);

        // dump stack
        child.args.n = -1;
        child.arglen = 0;
        child.sp = nil;
        child.depth = 0;
        if(!ScanStackByFrames)
                runtime·throw("need frame info to dump stacks");
        runtime·gentraceback(pc, sp, lr, gp, 0, nil, 0x7fffffff, dumpframe, &child, false);

        // dump defer & panic records
        for(d = gp->defer; d != nil; d = d->link) {
                dumpint(TagDefer);
                dumpint((uintptr)d);
                dumpint((uintptr)gp);
                dumpint((uintptr)d->argp);
                dumpint((uintptr)d->pc);
                dumpint((uintptr)d->fn);
                dumpint((uintptr)d->fn->fn);
                dumpint((uintptr)d->link);
        }
        for (p = gp->panic; p != nil; p = p->link) {
                dumpint(TagPanic);
                dumpint((uintptr)p);
                dumpint((uintptr)gp);
                dumpint((uintptr)p->arg.type);
                dumpint((uintptr)p->arg.data);
                dumpint((uintptr)p->defer);
                dumpint((uintptr)p->link);
        }
}

static void
dumpgs(void)
{
        G *gp;
        uint32 i;

        // goroutines & stacks
        for(i = 0; i < runtime·allglen; i++) {
                gp = runtime·allg[i];
                switch(gp->status){
                default:
                        runtime·printf("unexpected G.status %d\n", gp->status);
                        runtime·throw("mark - bad status");
                case Gdead:
                        break;
                case Grunnable:
                case Gsyscall:
                case Gwaiting:
                        dumpgoroutine(gp);
                        break;
                }
        }
}

static void
finq_callback(FuncVal *fn, byte *obj, uintptr nret, Type *fint, PtrType *ot)
{
        dumpint(TagQueuedFinalizer);
        dumpint((uintptr)obj);
        dumpint((uintptr)fn);
        dumpint((uintptr)fn->fn);
        dumpint((uintptr)fint);
        dumpint((uintptr)ot);
        USED(&nret);
}


static void
dumproots(void)
{
        MSpan *s, **allspans;
        uint32 spanidx;
        Special *sp;
        SpecialFinalizer *spf;
        byte *p;

        // data segment
        dumpint(TagData);
        dumpint((uintptr)data);
        dumpmemrange(data, edata - data);
        dumpfields((uintptr*)gcdata + 1);

        // bss segment
        dumpint(TagBss);
        dumpint((uintptr)bss);
        dumpmemrange(bss, ebss - bss);
        dumpfields((uintptr*)gcbss + 1);
        
        // MSpan.types
        allspans = runtime·mheap.allspans;
        for(spanidx=0; spanidx<runtime·mheap.nspan; spanidx++) {
                s = allspans[spanidx];
                if(s->state == MSpanInUse) {
                        // The garbage collector ignores type pointers stored in MSpan.types:
                        //  - Compiler-generated types are stored outside of heap.
                        //  - The reflect package has runtime-generated types cached in its data structures.
                        //    The garbage collector relies on finding the references via that cache.
                        switch(s->types.compression) {
                        case MTypes_Empty:
                        case MTypes_Single:
                                break;
                        case MTypes_Words:
                        case MTypes_Bytes:
                                dumpotherroot("runtime type info", (byte*)s->types.data);
                                break;
                        }

                        // Finalizers
                        for(sp = s->specials; sp != nil; sp = sp->next) {
                                if(sp->kind != KindSpecialFinalizer)
                                        continue;
                                spf = (SpecialFinalizer*)sp;
                                p = (byte*)((s->start << PageShift) + spf->offset);
                                dumpfinalizer(p, spf->fn, spf->fint, spf->ot);
                        }
                }
        }

        // Finalizer queue
        runtime·iterate_finq(finq_callback);
}

// Bit vector of free marks.
// Needs to be as big as the largest number of objects per span.
static byte free[PageSize/8];

static void
dumpobjs(void)
{
        uintptr i, j, size, n, off, shift, *bitp, bits, ti, kind;
        MSpan *s;
        MLink *l;
        byte *p;
        Type *t;

        for(i = 0; i < runtime·mheap.nspan; i++) {
                s = runtime·mheap.allspans[i];
                if(s->state != MSpanInUse)
                        continue;
                p = (byte*)(s->start << PageShift);
                size = s->elemsize;
                n = (s->npages << PageShift) / size;
                if(n > PageSize/8)
                        runtime·throw("free array doesn't have enough entries");
                for(l = s->freelist; l != nil; l = l->next) {
                        free[((byte*)l - p) / size] = true;
                }
                for(j = 0; j < n; j++, p += size) {
                        if(free[j]) {
                                free[j] = false;
                                continue;
                        }
                        off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start;
                        bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
                        shift = off % wordsPerBitmapWord;
                        bits = *bitp >> shift;

                        // Skip FlagNoGC allocations (stacks)
                        if((bits & bitAllocated) == 0)
                                continue;

                        // extract type and kind
                        ti = runtime·gettype(p);
                        t = (Type*)(ti & ~(uintptr)(PtrSize-1));
                        kind = ti & (PtrSize-1);
                        
                        // dump it
                        if(kind == TypeInfo_Chan)
                                t = ((ChanType*)t)->elem; // use element type for chan encoding
                        if(t == nil && scannable(p))
                                kind = TypeInfo_Conservative; // special kind for conservatively scanned objects
                        dumpobj(p, size, t, kind);
                }
        }
}

static void
dumpparams(void)
{
        byte *x;

        dumpint(TagParams);
        x = (byte*)1;
        if(*(byte*)&x == 1)
                dumpbool(false); // little-endian ptrs
        else
                dumpbool(true); // big-endian ptrs
        dumpint(PtrSize);
        dumpint(runtime·Hchansize);
        dumpint((uintptr)runtime·mheap.arena_start);
        dumpint((uintptr)runtime·mheap.arena_used);
        dumpint(thechar);
        dumpcstr(GOEXPERIMENT);
        dumpint(runtime·ncpu);
}

static void
itab_callback(Itab *tab)
{
        Type *t;

        dumpint(TagItab);
        dumpint((uintptr)tab);
        t = tab->type;
        dumpbool(t->size > PtrSize || (t->kind & KindNoPointers) == 0);
}

static void
dumpitabs(void)
{
        runtime·iterate_itabs(itab_callback);
}

static void
dumpms(void)
{
        M *mp;

        for(mp = runtime·allm; mp != nil; mp = mp->alllink) {
                dumpint(TagOSThread);
                dumpint((uintptr)mp);
                dumpint(mp->id);
                dumpint(mp->procid);
        }
}

static void
dumpmemstats(void)
{
        int32 i;

        dumpint(TagMemStats);
        dumpint(mstats.alloc);
        dumpint(mstats.total_alloc);
        dumpint(mstats.sys);
        dumpint(mstats.nlookup);
        dumpint(mstats.nmalloc);
        dumpint(mstats.nfree);
        dumpint(mstats.heap_alloc);
        dumpint(mstats.heap_sys);
        dumpint(mstats.heap_idle);
        dumpint(mstats.heap_inuse);
        dumpint(mstats.heap_released);
        dumpint(mstats.heap_objects);
        dumpint(mstats.stacks_inuse);
        dumpint(mstats.stacks_sys);
        dumpint(mstats.mspan_inuse);
        dumpint(mstats.mspan_sys);
        dumpint(mstats.mcache_inuse);
        dumpint(mstats.mcache_sys);
        dumpint(mstats.buckhash_sys);
        dumpint(mstats.gc_sys);
        dumpint(mstats.other_sys);
        dumpint(mstats.next_gc);
        dumpint(mstats.last_gc);
        dumpint(mstats.pause_total_ns);
        for(i = 0; i < 256; i++)
                dumpint(mstats.pause_ns[i]);
        dumpint(mstats.numgc);
}

static void
dumpmemprof_callback(Bucket *b, uintptr nstk, uintptr *stk, uintptr size, uintptr allocs, uintptr frees)
{
        uintptr i, pc;
        Func *f;
        byte buf[20];
        String file;
        int32 line;

        dumpint(TagMemProf);
        dumpint((uintptr)b);
        dumpint(size);
        dumpint(nstk);
        for(i = 0; i < nstk; i++) {
                pc = stk[i];
                f = runtime·findfunc(pc);
                if(f == nil) {
                        runtime·snprintf(buf, sizeof(buf), "%X", (uint64)pc);
                        dumpcstr((int8*)buf);
                        dumpcstr("?");
                        dumpint(0);
                } else {
                        dumpcstr(runtime·funcname(f));
                        // TODO: Why do we need to back up to a call instruction here?
                        // Maybe profiler should do this.
                        if(i > 0 && pc > f->entry) {
                                if(thechar == '6' || thechar == '8')
                                        pc--;
                                else
                                        pc -= 4; // arm, etc
                        }
                        line = runtime·funcline(f, pc, &file);
                        dumpstr(file);
                        dumpint(line);
                }
        }
        dumpint(allocs);
        dumpint(frees);
}

static void
dumpmemprof(void)
{
        MSpan *s, **allspans;
        uint32 spanidx;
        Special *sp;
        SpecialProfile *spp;
        byte *p;

        runtime·iterate_memprof(dumpmemprof_callback);

        allspans = runtime·mheap.allspans;
        for(spanidx=0; spanidx<runtime·mheap.nspan; spanidx++) {
                s = allspans[spanidx];
                if(s->state != MSpanInUse)
                        continue;
                for(sp = s->specials; sp != nil; sp = sp->next) {
                        if(sp->kind != KindSpecialProfile)
                                continue;
                        spp = (SpecialProfile*)sp;
                        p = (byte*)((s->start << PageShift) + spp->offset);
                        dumpint(TagAllocSample);
                        dumpint((uintptr)p);
                        dumpint((uintptr)spp->b);
                }
        }
}

static void
mdump(G *gp)
{
        byte *hdr;
        uintptr i;
        MSpan *s;

        // make sure we're done sweeping
        for(i = 0; i < runtime·mheap.nspan; i++) {
                s = runtime·mheap.allspans[i];
                if(s->state == MSpanInUse)
                        runtime·MSpan_EnsureSwept(s);
        }

        runtime·memclr((byte*)&typecache[0], sizeof(typecache));
        hdr = (byte*)"go1.3 heap dump\n";
        write(hdr, runtime·findnull(hdr));
        dumpparams();
        dumpitabs();
        dumpobjs();
        dumpgs();
        dumpms();
        dumproots();
        dumpmemstats();
        dumpmemprof();
        dumpint(TagEOF);
        flush();

        gp->param = nil;
        gp->status = Grunning;
        runtime·gogo(&gp->sched);
}

void
runtime∕debug·WriteHeapDump(uintptr fd)
{
        // Stop the world.
        runtime·semacquire(&runtime·worldsema, false);
        m->gcing = 1;
        m->locks++;
        runtime·stoptheworld();

        // Update stats so we can dump them.
        // As a side effect, flushes all the MCaches so the MSpan.freelist
        // lists contain all the free objects.
        runtime·updatememstats(nil);

        // Set dump file.
        dumpfd = fd;

        // Call dump routine on M stack.
        g->status = Gwaiting;
        g->waitreason = "dumping heap";
        runtime·mcall(mdump);

        // Reset dump file.
        dumpfd = 0;

        // Start up the world again.
        m->gcing = 0;
        runtime·semrelease(&runtime·worldsema);
        runtime·starttheworld();
        m->locks--;
}

// Runs the specified gc program.  Calls the callback for every
// pointer-like field specified by the program and passes to the
// callback the kind and offset of that field within the object.
// offset is the offset in the object of the start of the program.
// Returns a pointer to the opcode that ended the gc program (either
// GC_END or GC_ARRAY_NEXT).
static uintptr*
playgcprog(uintptr offset, uintptr *prog, void (*callback)(void*,uintptr,uintptr), void *arg)
{
        uintptr len, elemsize, i, *end;

        for(;;) {
                switch(prog[0]) {
                case GC_END:
                        return prog;
                case GC_PTR:
                        callback(arg, FieldKindPtr, offset + prog[1]);
                        prog += 3;
                        break;
                case GC_APTR:
                        callback(arg, FieldKindPtr, offset + prog[1]);
                        prog += 2;
                        break;
                case GC_ARRAY_START:
                        len = prog[2];
                        elemsize = prog[3];
                        end = nil;
                        for(i = 0; i < len; i++) {
                                end = playgcprog(offset + prog[1] + i * elemsize, prog + 4, callback, arg);
                                if(end[0] != GC_ARRAY_NEXT)
                                        runtime·throw("GC_ARRAY_START did not have matching GC_ARRAY_NEXT");
                        }
                        prog = end + 1;
                        break;
                case GC_ARRAY_NEXT:
                        return prog;
                case GC_CALL:
                        playgcprog(offset + prog[1], (uintptr*)((byte*)prog + *(int32*)&prog[2]), callback, arg);
                        prog += 3;
                        break;
                case GC_CHAN_PTR:
                        callback(arg, FieldKindPtr, offset + prog[1]);
                        prog += 3;
                        break;
                case GC_STRING:
                        callback(arg, FieldKindString, offset + prog[1]);
                        prog += 2;
                        break;
                case GC_EFACE:
                        callback(arg, FieldKindEface, offset + prog[1]);
                        prog += 2;
                        break;
                case GC_IFACE:
                        callback(arg, FieldKindIface, offset + prog[1]);
                        prog += 2;
                        break;
                case GC_SLICE:
                        callback(arg, FieldKindSlice, offset + prog[1]);
                        prog += 3;
                        break;
                case GC_REGION:
                        playgcprog(offset + prog[1], (uintptr*)prog[3] + 1, callback, arg);
                        prog += 4;
                        break;
                default:
                        runtime·printf("%D\n", (uint64)prog[0]);
                        runtime·throw("bad gc op");
                }
        }
}

static void
dump_callback(void *p, uintptr kind, uintptr offset)
{
        USED(&p);
        dumpint(kind);
        dumpint(offset);
}

// dumpint() the kind & offset of each field in an object.
static void
dumpfields(uintptr *prog)
{
        playgcprog(0, prog, dump_callback, nil);
        dumpint(FieldKindEol);
}

static void
dumpeface_callback(void *p, uintptr kind, uintptr offset)
{
        Eface *e;

        if(kind != FieldKindEface)
                return;
        e = (Eface*)((byte*)p + offset);
        dumptype(e->type);
}

// The heap dump reader needs to be able to disambiguate
// Eface entries.  So it needs to know every type that might
// appear in such an entry.  The following two routines accomplish
// that.

// Dump all the types that appear in the type field of
// any Eface contained in obj.
static void
dumpefacetypes(void *obj, uintptr size, Type *type, uintptr kind)
{
        uintptr i;

        switch(kind) {
        case TypeInfo_SingleObject:
                playgcprog(0, (uintptr*)type->gc + 1, dumpeface_callback, obj);
                break;
        case TypeInfo_Array:
                for(i = 0; i <= size - type->size; i += type->size)
                        playgcprog(i, (uintptr*)type->gc + 1, dumpeface_callback, obj);
                break;
        case TypeInfo_Chan:
                if(type->size == 0) // channels may have zero-sized objects in them
                        break;
                for(i = runtime·Hchansize; i <= size - type->size; i += type->size)
                        playgcprog(i, (uintptr*)type->gc + 1, dumpeface_callback, obj);
                break;
        }
}

// Dump all the types that appear in the type field of
// any Eface described by this bit vector.
static void
dumpbvtypes(BitVector *bv, byte *base)
{
        uintptr i;

        for(i = 0; i < bv->n; i += BitsPerPointer) {
                if((bv->data[i/32] >> i%32 & 3) != BitsMultiWord)
                        continue;
                switch(bv->data[(i+BitsPerPointer)/32] >> (i+BitsPerPointer)%32 & 3) {
                case BitsString:
                case BitsIface:
                        i += BitsPerPointer;
                        break;
                case BitsSlice:
                        i += 2 * BitsPerPointer;
                        break;
                case BitsEface:
                        dumptype(*(Type**)(base + i / BitsPerPointer * PtrSize));
                        i += BitsPerPointer;
                        break;
                }
        }
}

/* [<][>][^][v][top][bottom][index][help] */