root/src/cmd/ld/ldelf.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. valuecmp
  2. ldelf
  3. section
  4. map
  5. readsym
  6. rbyoff
  7. reltype

/*
Derived from Plan 9 from User Space's src/libmach/elf.h, elf.c
http://code.swtch.com/plan9port/src/tip/src/libmach/

        Copyright © 2004 Russ Cox.
        Portions Copyright © 2008-2010 Google Inc.
        Portions Copyright © 2010 The Go Authors.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/

#include        "l.h"
#include        "lib.h"
#include        "../ld/elf.h"

enum
{
        ElfClassNone = 0,
        ElfClass32,
        ElfClass64,

        ElfDataNone = 0,
        ElfDataLsb,
        ElfDataMsb,

        ElfTypeNone = 0,
        ElfTypeRelocatable,
        ElfTypeExecutable,
        ElfTypeSharedObject,
        ElfTypeCore,
        /* 0xFF00 - 0xFFFF reserved for processor-specific types */

        ElfMachNone = 0,
        ElfMach32100,           /* AT&T WE 32100 */
        ElfMachSparc,           /* SPARC */
        ElfMach386,             /* Intel 80386 */
        ElfMach68000,           /* Motorola 68000 */
        ElfMach88000,           /* Motorola 88000 */
        ElfMach486,             /* Intel 80486, no longer used */
        ElfMach860,             /* Intel 80860 */
        ElfMachMips,            /* MIPS RS3000 */
        ElfMachS370,            /* IBM System/370 */
        ElfMachMipsLe,  /* MIPS RS3000 LE */
        ElfMachParisc = 15,             /* HP PA RISC */
        ElfMachVpp500 = 17,     /* Fujitsu VPP500 */
        ElfMachSparc32Plus,     /* SPARC V8+ */
        ElfMach960,             /* Intel 80960 */
        ElfMachPower,           /* PowerPC */
        ElfMachPower64, /* PowerPC 64 */
        ElfMachS390,            /* IBM System/390 */
        ElfMachV800 = 36,       /* NEC V800 */
        ElfMachFr20,            /* Fujitsu FR20 */
        ElfMachRh32,            /* TRW RH-32 */
        ElfMachRce,             /* Motorola RCE */
        ElfMachArm,             /* ARM */
        ElfMachAlpha,           /* Digital Alpha */
        ElfMachSH,              /* Hitachi SH */
        ElfMachSparc9,          /* SPARC V9 */
        ElfMachAmd64 = 62,
        /* and the list goes on... */

        ElfAbiNone = 0,
        ElfAbiSystemV = 0,      /* [sic] */
        ElfAbiHPUX,
        ElfAbiNetBSD,
        ElfAbiLinux,
        ElfAbiSolaris = 6,
        ElfAbiAix,
        ElfAbiIrix,
        ElfAbiFreeBSD,
        ElfAbiTru64,
        ElfAbiModesto,
        ElfAbiOpenBSD,
        ElfAbiARM = 97,
        ElfAbiEmbedded = 255,

        /* some of sections 0xFF00 - 0xFFFF reserved for various things */
        ElfSectNone = 0,
        ElfSectProgbits,
        ElfSectSymtab,
        ElfSectStrtab,
        ElfSectRela,
        ElfSectHash,
        ElfSectDynamic,
        ElfSectNote,
        ElfSectNobits,
        ElfSectRel,
        ElfSectShlib,
        ElfSectDynsym,

        ElfSectFlagWrite = 0x1,
        ElfSectFlagAlloc = 0x2,
        ElfSectFlagExec = 0x4,
        /* 0xF0000000 are reserved for processor specific */

        ElfSymBindLocal = 0,
        ElfSymBindGlobal,
        ElfSymBindWeak,
        /* 13-15 reserved */

        ElfSymTypeNone = 0,
        ElfSymTypeObject,
        ElfSymTypeFunc,
        ElfSymTypeSection,
        ElfSymTypeFile,
        /* 13-15 reserved */

        ElfSymShnNone = 0,
        ElfSymShnAbs = 0xFFF1,
        ElfSymShnCommon = 0xFFF2,
        /* 0xFF00-0xFF1F reserved for processors */
        /* 0xFF20-0xFF3F reserved for operating systems */

        ElfProgNone = 0,
        ElfProgLoad,
        ElfProgDynamic,
        ElfProgInterp,
        ElfProgNote,
        ElfProgShlib,
        ElfProgPhdr,

        ElfProgFlagExec = 0x1,
        ElfProgFlagWrite = 0x2,
        ElfProgFlagRead = 0x4,

        ElfNotePrStatus = 1,
        ElfNotePrFpreg = 2,
        ElfNotePrPsinfo = 3,
        ElfNotePrTaskstruct = 4,
        ElfNotePrAuxv = 6,
        ElfNotePrXfpreg = 0x46e62b7f    /* for gdb/386 */
};

typedef struct ElfHdrBytes ElfHdrBytes;
typedef struct ElfSectBytes ElfSectBytes;
typedef struct ElfProgBytes ElfProgBytes;
typedef struct ElfSymBytes ElfSymBytes;

typedef struct ElfHdrBytes64 ElfHdrBytes64;
typedef struct ElfSectBytes64 ElfSectBytes64;
typedef struct ElfProgBytes64 ElfProgBytes64;
typedef struct ElfSymBytes64 ElfSymBytes64;

struct ElfHdrBytes
{
        uchar   ident[16];
        uchar   type[2];
        uchar   machine[2];
        uchar   version[4];
        uchar   entry[4];
        uchar   phoff[4];
        uchar   shoff[4];
        uchar   flags[4];
        uchar   ehsize[2];
        uchar   phentsize[2];
        uchar   phnum[2];
        uchar   shentsize[2];
        uchar   shnum[2];
        uchar   shstrndx[2];
};

struct ElfHdrBytes64
{
        uchar   ident[16];
        uchar   type[2];
        uchar   machine[2];
        uchar   version[4];
        uchar   entry[8];
        uchar   phoff[8];
        uchar   shoff[8];
        uchar   flags[4];
        uchar   ehsize[2];
        uchar   phentsize[2];
        uchar   phnum[2];
        uchar   shentsize[2];
        uchar   shnum[2];
        uchar   shstrndx[2];
};

struct ElfSectBytes
{
        uchar   name[4];
        uchar   type[4];
        uchar   flags[4];
        uchar   addr[4];
        uchar   off[4];
        uchar   size[4];
        uchar   link[4];
        uchar   info[4];
        uchar   align[4];
        uchar   entsize[4];
};

struct ElfSectBytes64
{
        uchar   name[4];
        uchar   type[4];
        uchar   flags[8];
        uchar   addr[8];
        uchar   off[8];
        uchar   size[8];
        uchar   link[4];
        uchar   info[4];
        uchar   align[8];
        uchar   entsize[8];
};

struct ElfSymBytes
{
        uchar   name[4];
        uchar   value[4];
        uchar   size[4];
        uchar   info;   /* top4: bind, bottom4: type */
        uchar   other;
        uchar   shndx[2];
};

struct ElfSymBytes64
{
        uchar   name[4];
        uchar   info;   /* top4: bind, bottom4: type */
        uchar   other;
        uchar   shndx[2];
        uchar   value[8];
        uchar   size[8];
};

typedef struct ElfSect ElfSect;
typedef struct ElfObj ElfObj;
typedef struct ElfSym ElfSym;

struct ElfSect
{
        char            *name;
        uint32  type;
        uint64  flags;
        uint64  addr;
        uint64  off;
        uint64  size;
        uint32  link;
        uint32  info;
        uint64  align;
        uint64  entsize;
        uchar   *base;
        LSym    *sym;
};

struct ElfObj
{
        Biobuf  *f;
        int64   base;   // offset in f where ELF begins
        int64   len;            // length of ELF
        int     is64;
        char    *name;

        Endian  *e;
        ElfSect *sect;
        uint            nsect;
        char            *shstrtab;
        int             nsymtab;
        ElfSect *symtab;
        ElfSect *symstr;

        uint32  type;
        uint32  machine;
        uint32  version;
        uint64  entry;
        uint64  phoff;
        uint64  shoff;
        uint32  flags;
        uint32  ehsize;
        uint32  phentsize;
        uint32  phnum;
        uint32  shentsize;
        uint32  shnum;
        uint32  shstrndx;
};

struct ElfSym
{
        char*   name;
        uint64  value;
        uint64  size;
        uchar   bind;
        uchar   type;
        uchar   other;
        uint16  shndx;
        LSym*   sym;
};

uchar ElfMagic[4] = { 0x7F, 'E', 'L', 'F' };

static ElfSect* section(ElfObj*, char*);
static int      map(ElfObj*, ElfSect*);
static int      readsym(ElfObj*, int i, ElfSym*, int);
static int      reltype(char*, int, uchar*);

int
valuecmp(LSym *a, LSym *b)
{
        if(a->value < b->value)
                return -1;
        if(a->value > b->value)
                return +1;
        return 0;
}

void
ldelf(Biobuf *f, char *pkg, int64 len, char *pn)
{
        int32 base;
        uint64 add, info;
        char *name;
        int i, j, rela, is64, n;
        uchar hdrbuf[64];
        uchar *p;
        ElfHdrBytes *hdr;
        ElfObj *obj;
        ElfSect *sect, *rsect;
        ElfSym sym;
        Endian *e;
        Reloc *r, *rp;
        LSym *s;
        LSym **symbols;

        symbols = nil;

        if(debug['v'])
                Bprint(&bso, "%5.2f ldelf %s\n", cputime(), pn);

        ctxt->version++;
        base = Boffset(f);

        if(Bread(f, hdrbuf, sizeof hdrbuf) != sizeof hdrbuf)
                goto bad;
        hdr = (ElfHdrBytes*)hdrbuf;
        if(memcmp(hdr->ident, ElfMagic, 4) != 0)
                goto bad;
        switch(hdr->ident[5]) {
        case ElfDataLsb:
                e = &le;
                break;
        case ElfDataMsb:
                e = &be;
                break;
        default:
                goto bad;
        }

        // read header
        obj = mal(sizeof *obj);
        obj->e = e;
        obj->f = f;
        obj->base = base;
        obj->len = len;
        obj->name = pn;
        
        is64 = 0;
        if(hdr->ident[4] == ElfClass64) {
                ElfHdrBytes64* hdr;

                is64 = 1;
                hdr = (ElfHdrBytes64*)hdrbuf;
                obj->type = e->e16(hdr->type);
                obj->machine = e->e16(hdr->machine);
                obj->version = e->e32(hdr->version);
                obj->phoff = e->e64(hdr->phoff);
                obj->shoff = e->e64(hdr->shoff);
                obj->flags = e->e32(hdr->flags);
                obj->ehsize = e->e16(hdr->ehsize);
                obj->phentsize = e->e16(hdr->phentsize);
                obj->phnum = e->e16(hdr->phnum);
                obj->shentsize = e->e16(hdr->shentsize);
                obj->shnum = e->e16(hdr->shnum);
                obj->shstrndx = e->e16(hdr->shstrndx);
        } else {
                obj->type = e->e16(hdr->type);
                obj->machine = e->e16(hdr->machine);
                obj->version = e->e32(hdr->version);
                obj->entry = e->e32(hdr->entry);
                obj->phoff = e->e32(hdr->phoff);
                obj->shoff = e->e32(hdr->shoff);
                obj->flags = e->e32(hdr->flags);
                obj->ehsize = e->e16(hdr->ehsize);
                obj->phentsize = e->e16(hdr->phentsize);
                obj->phnum = e->e16(hdr->phnum);
                obj->shentsize = e->e16(hdr->shentsize);
                obj->shnum = e->e16(hdr->shnum);
                obj->shstrndx = e->e16(hdr->shstrndx);
        }
        obj->is64 = is64;
        
        if(hdr->ident[6] != obj->version)
                goto bad;

        if(e->e16(hdr->type) != ElfTypeRelocatable) {
                diag("%s: elf but not elf relocatable object", pn);
                return;
        }

        switch(thechar) {
        default:
                diag("%s: elf %s unimplemented", pn, thestring);
                return;
        case '5':
                if(e != &le || obj->machine != ElfMachArm || hdr->ident[4] != ElfClass32) {
                        diag("%s: elf object but not arm", pn);
                        return;
                }
                break;
        case '6':
                if(e != &le || obj->machine != ElfMachAmd64 || hdr->ident[4] != ElfClass64) {
                        diag("%s: elf object but not amd64", pn);
                        return;
                }
                break;
        case '8':
                if(e != &le || obj->machine != ElfMach386 || hdr->ident[4] != ElfClass32) {
                        diag("%s: elf object but not 386", pn);
                        return;
                }
                break;
        }

        // load section list into memory.
        obj->sect = mal(obj->shnum*sizeof obj->sect[0]);
        obj->nsect = obj->shnum;
        for(i=0; i<obj->nsect; i++) {
                if(Bseek(f, base+obj->shoff+i*obj->shentsize, 0) < 0)
                        goto bad;
                sect = &obj->sect[i];
                if(is64) {
                        ElfSectBytes64 b;

                        werrstr("short read");
                        if(Bread(f, &b, sizeof b) != sizeof b)
                                goto bad;

                        sect->name = (char*)(uintptr)e->e32(b.name);
                        sect->type = e->e32(b.type);
                        sect->flags = e->e64(b.flags);
                        sect->addr = e->e64(b.addr);
                        sect->off = e->e64(b.off);
                        sect->size = e->e64(b.size);
                        sect->link = e->e32(b.link);
                        sect->info = e->e32(b.info);
                        sect->align = e->e64(b.align);
                        sect->entsize = e->e64(b.entsize);
                } else {
                        ElfSectBytes b;

                        werrstr("short read");
                        if(Bread(f, &b, sizeof b) != sizeof b)
                                goto bad;
                
                        sect->name = (char*)(uintptr)e->e32(b.name);
                        sect->type = e->e32(b.type);
                        sect->flags = e->e32(b.flags);
                        sect->addr = e->e32(b.addr);
                        sect->off = e->e32(b.off);
                        sect->size = e->e32(b.size);
                        sect->link = e->e32(b.link);
                        sect->info = e->e32(b.info);
                        sect->align = e->e32(b.align);
                        sect->entsize = e->e32(b.entsize);
                }
        }

        // read section string table and translate names
        if(obj->shstrndx >= obj->nsect) {
                werrstr("shstrndx out of range %d >= %d", obj->shstrndx, obj->nsect);
                goto bad;
        }
        sect = &obj->sect[obj->shstrndx];
        if(map(obj, sect) < 0)
                goto bad;
        for(i=0; i<obj->nsect; i++)
                if(obj->sect[i].name != nil)
                        obj->sect[i].name = (char*)sect->base + (uintptr)obj->sect[i].name;
        
        // load string table for symbols into memory.
        obj->symtab = section(obj, ".symtab");
        if(obj->symtab == nil) {
                // our work is done here - no symbols means nothing can refer to this file
                return;
        }
        if(obj->symtab->link <= 0 || obj->symtab->link >= obj->nsect) {
                diag("%s: elf object has symbol table with invalid string table link", pn);
                return;
        }
        obj->symstr = &obj->sect[obj->symtab->link];
        if(is64)
                obj->nsymtab = obj->symtab->size / sizeof(ElfSymBytes64);
        else
                obj->nsymtab = obj->symtab->size / sizeof(ElfSymBytes);
        
        if(map(obj, obj->symtab) < 0)
                goto bad;
        if(map(obj, obj->symstr) < 0)
                goto bad;

        // load text and data segments into memory.
        // they are not as small as the section lists, but we'll need
        // the memory anyway for the symbol images, so we might
        // as well use one large chunk.
        
        // create symbols for mapped sections
        for(i=0; i<obj->nsect; i++) {
                sect = &obj->sect[i];
                if((sect->type != ElfSectProgbits && sect->type != ElfSectNobits) || !(sect->flags&ElfSectFlagAlloc))
                        continue;
                if(sect->type != ElfSectNobits && map(obj, sect) < 0)
                        goto bad;
                
                name = smprint("%s(%s)", pkg, sect->name);
                s = linklookup(ctxt, name, ctxt->version);
                free(name);
                switch((int)sect->flags&(ElfSectFlagAlloc|ElfSectFlagWrite|ElfSectFlagExec)) {
                default:
                        werrstr("unexpected flags for ELF section %s", sect->name);
                        goto bad;
                case ElfSectFlagAlloc:
                        s->type = SRODATA;
                        break;
                case ElfSectFlagAlloc + ElfSectFlagWrite:
                        s->type = SDATA;
                        break;
                case ElfSectFlagAlloc + ElfSectFlagExec:
                        s->type = STEXT;
                        break;
                }
                if(sect->type == ElfSectProgbits) {
                        s->p = sect->base;
                        s->np = sect->size;
                }
                s->size = sect->size;
                s->align = sect->align;
                sect->sym = s;
        }

        // enter sub-symbols into symbol table.
        // symbol 0 is the null symbol.
        symbols = malloc(obj->nsymtab * sizeof(symbols[0]));
        if(symbols == nil) {
                diag("out of memory");
                errorexit();
        }
        for(i=1; i<obj->nsymtab; i++) {
                if(readsym(obj, i, &sym, 1) < 0)
                        goto bad;
                symbols[i] = sym.sym;
                if(sym.type != ElfSymTypeFunc && sym.type != ElfSymTypeObject && sym.type != ElfSymTypeNone)
                        continue;
                if(sym.shndx == ElfSymShnCommon) {
                        s = sym.sym;
                        if(s->size < sym.size)
                                s->size = sym.size;
                        if(s->type == 0 || s->type == SXREF)
                                s->type = SBSS;
                        continue;
                }
                if(sym.shndx >= obj->nsect || sym.shndx == 0)
                        continue;
                // even when we pass needSym == 1 to readsym, it might still return nil to skip some unwanted symbols
                if(sym.sym == S)
                        continue;
                sect = obj->sect+sym.shndx;
                if(sect->sym == nil) {
                        diag("%s: sym#%d: ignoring %s in section %d (type %d)", pn, i, sym.name, sym.shndx, sym.type);
                        continue;
                }
                s = sym.sym;
                if(s->outer != S) {
                        if(s->dupok)
                                continue;
                        diag("%s: duplicate symbol reference: %s in both %s and %s", pn, s->name, s->outer->name, sect->sym->name);
                        errorexit();
                }
                s->sub = sect->sym->sub;
                sect->sym->sub = s;
                s->type = sect->sym->type | (s->type&~SMASK) | SSUB;
                if(!(s->cgoexport & CgoExportDynamic))
                        s->dynimplib = nil;  // satisfy dynimport
                s->value = sym.value;
                s->size = sym.size;
                s->outer = sect->sym;
                if(sect->sym->type == STEXT) {
                        if(s->external && !s->dupok)
                                        diag("%s: duplicate definition of %s", pn, s->name);
                        s->external = 1;
                }
        }
        
        // Sort outer lists by address, adding to textp.
        // This keeps textp in increasing address order.
        for(i=0; i<obj->nsect; i++) {
                s = obj->sect[i].sym;
                if(s == S)
                        continue;
                if(s->sub)
                        s->sub = listsort(s->sub, valuecmp, offsetof(LSym, sub));
                if(s->type == STEXT) {
                        if(s->onlist)
                                sysfatal("symbol %s listed multiple times", s->name);
                        s->onlist = 1;
                        if(ctxt->etextp)
                                ctxt->etextp->next = s;
                        else
                                ctxt->textp = s;
                        ctxt->etextp = s;
                        for(s = s->sub; s != S; s = s->sub) {
                                if(s->onlist)
                                        sysfatal("symbol %s listed multiple times", s->name);
                                s->onlist = 1;
                                ctxt->etextp->next = s;
                                ctxt->etextp = s;
                        }
                }
        }

        // load relocations
        for(i=0; i<obj->nsect; i++) {
                rsect = &obj->sect[i];
                if(rsect->type != ElfSectRela && rsect->type != ElfSectRel)
                        continue;
                if(rsect->info >= obj->nsect || obj->sect[rsect->info].base == nil)
                        continue;
                sect = &obj->sect[rsect->info];
                if(map(obj, rsect) < 0)
                        goto bad;
                rela = rsect->type == ElfSectRela;
                n = rsect->size/(4+4*is64)/(2+rela);
                r = mal(n*sizeof r[0]);
                p = rsect->base;
                for(j=0; j<n; j++) {
                        add = 0;
                        rp = &r[j];
                        if(is64) {
                                // 64-bit rel/rela
                                rp->off = e->e64(p);
                                p += 8;
                                info = e->e64(p);
                                p += 8;
                                if(rela) {
                                        add = e->e64(p);
                                        p += 8;
                                }
                        } else {
                                // 32-bit rel/rela
                                rp->off = e->e32(p);
                                p += 4;
                                info = e->e32(p);
                                info = info>>8<<32 | (info&0xff);       // convert to 64-bit info
                                p += 4;
                                if(rela) {
                                        add = e->e32(p);
                                        p += 4;
                                }
                        }
                        if((info & 0xffffffff) == 0) { // skip R_*_NONE relocation
                                j--;
                                n--;
                                continue;
                        }
                        if((info >> 32) == 0) { // absolute relocation, don't bother reading the null symbol
                                rp->sym = S;
                        } else {
                                if(readsym(obj, info>>32, &sym, 0) < 0)
                                        goto bad;
                                sym.sym = symbols[info>>32];
                                if(sym.sym == nil) {
                                        werrstr("%s#%d: reloc of invalid sym #%d %s shndx=%d type=%d",
                                                sect->sym->name, j, (int)(info>>32), sym.name, sym.shndx, sym.type);
                                        goto bad;
                                }
                                rp->sym = sym.sym;
                        }
                        rp->type = reltype(pn, (uint32)info, &rp->siz);
                        if(rela)
                                rp->add = add;
                        else {
                                // load addend from image
                                if(rp->siz == 4)
                                        rp->add = e->e32(sect->base+rp->off);
                                else if(rp->siz == 8)
                                        rp->add = e->e64(sect->base+rp->off);
                                else
                                        diag("invalid rela size %d", rp->siz);
                        }
                        if(rp->siz == 4)
                                rp->add = (int32)rp->add;
                        //print("rel %s %d %d %s %#llx\n", sect->sym->name, rp->type, rp->siz, rp->sym->name, rp->add);
                }
                qsort(r, n, sizeof r[0], rbyoff);       // just in case
                
                s = sect->sym;
                s->r = r;
                s->nr = n;
        }
        free(symbols);

        return;

bad:
        diag("%s: malformed elf file: %r", pn);
        free(symbols);
}

static ElfSect*
section(ElfObj *obj, char *name)
{
        int i;
        
        for(i=0; i<obj->nsect; i++)
                if(obj->sect[i].name && name && strcmp(obj->sect[i].name, name) == 0)
                        return &obj->sect[i];
        return nil;
}

static int
map(ElfObj *obj, ElfSect *sect)
{
        if(sect->base != nil)
                return 0;

        if(sect->off+sect->size > obj->len) {
                werrstr("elf section past end of file");
                return -1;
        }

        sect->base = mal(sect->size);
        werrstr("short read");
        if(Bseek(obj->f, obj->base+sect->off, 0) < 0 || Bread(obj->f, sect->base, sect->size) != sect->size)
                return -1;
        
        return 0;
}

static int
readsym(ElfObj *obj, int i, ElfSym *sym, int needSym)
{
        LSym *s;

        if(i >= obj->nsymtab || i < 0) {
                werrstr("invalid elf symbol index");
                return -1;
        }
        if(i == 0) {
                diag("readym: read null symbol!");
        }

        if(obj->is64) {
                ElfSymBytes64 *b;
                
                b = (ElfSymBytes64*)(obj->symtab->base + i*sizeof *b);
                sym->name = (char*)obj->symstr->base + obj->e->e32(b->name);
                sym->value = obj->e->e64(b->value);
                sym->size = obj->e->e64(b->size);
                sym->shndx = obj->e->e16(b->shndx);
                sym->bind = b->info>>4;
                sym->type = b->info&0xf;
                sym->other = b->other;
        } else {
                ElfSymBytes *b;
                
                b = (ElfSymBytes*)(obj->symtab->base + i*sizeof *b);
                sym->name = (char*)obj->symstr->base + obj->e->e32(b->name);
                sym->value = obj->e->e32(b->value);
                sym->size = obj->e->e32(b->size);
                sym->shndx = obj->e->e16(b->shndx);
                sym->bind = b->info>>4;
                sym->type = b->info&0xf;
                sym->other = b->other;
        }

        s = nil;
        if(strcmp(sym->name, "_GLOBAL_OFFSET_TABLE_") == 0)
                sym->name = ".got";
        switch(sym->type) {
        case ElfSymTypeSection:
                s = obj->sect[sym->shndx].sym;
                break;
        case ElfSymTypeObject:
        case ElfSymTypeFunc:
        case ElfSymTypeNone:
                switch(sym->bind) {
                case ElfSymBindGlobal:
                        if(needSym) {
                                s = linklookup(ctxt, sym->name, 0);
                                // for global scoped hidden symbols we should insert it into
                                // symbol hash table, but mark them as hidden.
                                // __i686.get_pc_thunk.bx is allowed to be duplicated, to
                                // workaround that we set dupok.
                                // TODO(minux): correctly handle __i686.get_pc_thunk.bx without
                                // set dupok generally. See http://codereview.appspot.com/5823055/
                                // comment #5 for details.
                                if(s && sym->other == 2) {
                                        s->type |= SHIDDEN;
                                        s->dupok = 1;
                                }
                        }
                        break;
                case ElfSymBindLocal:
                        if(!(thechar == '5' && (strcmp(sym->name, "$a") == 0 || strcmp(sym->name, "$d") == 0))) // binutils for arm generate these mapping symbols, ignore these
                                if(needSym) {
                                        // local names and hidden visiblity global names are unique
                                        // and should only reference by its index, not name, so we
                                        // don't bother to add them into hash table
                                        s = linknewsym(ctxt, sym->name, ctxt->version);
                                        s->type |= SHIDDEN;
                                }
                        break;
                case ElfSymBindWeak:
                        if(needSym) {
                                s = linknewsym(ctxt, sym->name, 0);
                                if(sym->other == 2)
                                        s->type |= SHIDDEN;
                        }
                        break;
                default:
                        werrstr("%s: invalid symbol binding %d", sym->name, sym->bind);
                        return -1;
                }
                break;
        }
        if(s != nil && s->type == 0 && sym->type != ElfSymTypeSection)
                s->type = SXREF;
        sym->sym = s;

        return 0;
}

int
rbyoff(const void *va, const void *vb)
{
        Reloc *a, *b;
        
        a = (Reloc*)va;
        b = (Reloc*)vb;
        if(a->off < b->off)
                return -1;
        if(a->off > b->off)
                return +1;
        return 0;
}

#define R(x, y) ((x)|((y)<<24))

static int
reltype(char *pn, int elftype, uchar *siz)
{
        switch(R(thechar, elftype)) {
        default:
                diag("%s: unknown relocation type %d; compiled without -fpic?", pn, elftype);
        case R('5', R_ARM_ABS32):
        case R('5', R_ARM_GOT32):
        case R('5', R_ARM_PLT32):
        case R('5', R_ARM_GOTOFF):
        case R('5', R_ARM_GOTPC):
        case R('5', R_ARM_THM_PC22):
        case R('5', R_ARM_REL32):
        case R('5', R_ARM_CALL):
        case R('5', R_ARM_V4BX):
        case R('5', R_ARM_GOT_PREL):
        case R('5', R_ARM_PC24):
        case R('5', R_ARM_JUMP24):
        case R('6', R_X86_64_PC32):
        case R('6', R_X86_64_PLT32):
        case R('6', R_X86_64_GOTPCREL):
        case R('8', R_386_32):
        case R('8', R_386_PC32):
        case R('8', R_386_GOT32):
        case R('8', R_386_PLT32):
        case R('8', R_386_GOTOFF):
        case R('8', R_386_GOTPC):
                *siz = 4;
                break;
        case R('6', R_X86_64_64):
                *siz = 8;
                break;
        }

        return 256+elftype;
}

/* [<][>][^][v][top][bottom][index][help] */