root/modules/calib3d/src/stereobm.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ocl_prefilter_norm
  2. prefilterNorm
  3. ocl_prefilter_xsobel
  4. prefilterXSobel
  5. findStereoCorrespondenceBM_SSE2
  6. findStereoCorrespondenceBM
  7. ocl_prefiltering
  8. ocl_stereobm
  9. compute
  10. getMinDisparity
  11. setMinDisparity
  12. getNumDisparities
  13. setNumDisparities
  14. getBlockSize
  15. setBlockSize
  16. getSpeckleWindowSize
  17. setSpeckleWindowSize
  18. getSpeckleRange
  19. setSpeckleRange
  20. getDisp12MaxDiff
  21. setDisp12MaxDiff
  22. getPreFilterType
  23. setPreFilterType
  24. getPreFilterSize
  25. setPreFilterSize
  26. getPreFilterCap
  27. setPreFilterCap
  28. getTextureThreshold
  29. setTextureThreshold
  30. getUniquenessRatio
  31. setUniquenessRatio
  32. getSmallerBlockSize
  33. setSmallerBlockSize
  34. getROI1
  35. setROI1
  36. getROI2
  37. setROI2
  38. write
  39. read
  40. create

//M*//////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/****************************************************************************************\
*    Very fast SAD-based (Sum-of-Absolute-Diffrences) stereo correspondence algorithm.   *
*    Contributed by Kurt Konolige                                                        *
\****************************************************************************************/

#include "precomp.hpp"
#include <stdio.h>
#include <limits>
#include "opencl_kernels_calib3d.hpp"

namespace cv
{

struct StereoBMParams
{
    StereoBMParams(int _numDisparities=64, int _SADWindowSize=21)
    {
        preFilterType = StereoBM::PREFILTER_XSOBEL;
        preFilterSize = 9;
        preFilterCap = 31;
        SADWindowSize = _SADWindowSize;
        minDisparity = 0;
        numDisparities = _numDisparities > 0 ? _numDisparities : 64;
        textureThreshold = 10;
        uniquenessRatio = 15;
        speckleRange = speckleWindowSize = 0;
        roi1 = roi2 = Rect(0,0,0,0);
        disp12MaxDiff = -1;
        dispType = CV_16S;
    }

    int preFilterType;
    int preFilterSize;
    int preFilterCap;
    int SADWindowSize;
    int minDisparity;
    int numDisparities;
    int textureThreshold;
    int uniquenessRatio;
    int speckleRange;
    int speckleWindowSize;
    Rect roi1, roi2;
    int disp12MaxDiff;
    int dispType;
};

static bool ocl_prefilter_norm(InputArray _input, OutputArray _output, int winsize, int prefilterCap)
{
    ocl::Kernel k("prefilter_norm", ocl::calib3d::stereobm_oclsrc, cv::format("-D WSZ=%d", winsize));
    if(k.empty())
        return false;

    int scale_g = winsize*winsize/8, scale_s = (1024 + scale_g)/(scale_g*2);
    scale_g *= scale_s;

    UMat input = _input.getUMat(), output;
    _output.create(input.size(), input.type());
    output = _output.getUMat();

    size_t globalThreads[3] = { input.cols, input.rows, 1 };

    k.args(ocl::KernelArg::PtrReadOnly(input), ocl::KernelArg::PtrWriteOnly(output), input.rows, input.cols,
        prefilterCap, scale_g, scale_s);

    return k.run(2, globalThreads, NULL, false);
}

static void prefilterNorm( const Mat& src, Mat& dst, int winsize, int ftzero, uchar* buf )
{
    int x, y, wsz2 = winsize/2;
    int* vsum = (int*)alignPtr(buf + (wsz2 + 1)*sizeof(vsum[0]), 32);
    int scale_g = winsize*winsize/8, scale_s = (1024 + scale_g)/(scale_g*2);
    const int OFS = 256*5, TABSZ = OFS*2 + 256;
    uchar tab[TABSZ];
    const uchar* sptr = src.ptr();
    int srcstep = (int)src.step;
    Size size = src.size();

    scale_g *= scale_s;

    for( x = 0; x < TABSZ; x++ )
        tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero*2 : x - OFS + ftzero);

    for( x = 0; x < size.width; x++ )
        vsum[x] = (ushort)(sptr[x]*(wsz2 + 2));

    for( y = 1; y < wsz2; y++ )
    {
        for( x = 0; x < size.width; x++ )
            vsum[x] = (ushort)(vsum[x] + sptr[srcstep*y + x]);
    }

    for( y = 0; y < size.height; y++ )
    {
        const uchar* top = sptr + srcstep*MAX(y-wsz2-1,0);
        const uchar* bottom = sptr + srcstep*MIN(y+wsz2,size.height-1);
        const uchar* prev = sptr + srcstep*MAX(y-1,0);
        const uchar* curr = sptr + srcstep*y;
        const uchar* next = sptr + srcstep*MIN(y+1,size.height-1);
        uchar* dptr = dst.ptr<uchar>(y);

        for( x = 0; x < size.width; x++ )
            vsum[x] = (ushort)(vsum[x] + bottom[x] - top[x]);

        for( x = 0; x <= wsz2; x++ )
        {
            vsum[-x-1] = vsum[0];
            vsum[size.width+x] = vsum[size.width-1];
        }

        int sum = vsum[0]*(wsz2 + 1);
        for( x = 1; x <= wsz2; x++ )
            sum += vsum[x];

        int val = ((curr[0]*5 + curr[1] + prev[0] + next[0])*scale_g - sum*scale_s) >> 10;
        dptr[0] = tab[val + OFS];

        for( x = 1; x < size.width-1; x++ )
        {
            sum += vsum[x+wsz2] - vsum[x-wsz2-1];
            val = ((curr[x]*4 + curr[x-1] + curr[x+1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10;
            dptr[x] = tab[val + OFS];
        }

        sum += vsum[x+wsz2] - vsum[x-wsz2-1];
        val = ((curr[x]*5 + curr[x-1] + prev[x] + next[x])*scale_g - sum*scale_s) >> 10;
        dptr[x] = tab[val + OFS];
    }
}

static bool ocl_prefilter_xsobel(InputArray _input, OutputArray _output, int prefilterCap)
{
    ocl::Kernel k("prefilter_xsobel", ocl::calib3d::stereobm_oclsrc);
    if(k.empty())
        return false;

    UMat input = _input.getUMat(), output;
    _output.create(input.size(), input.type());
    output = _output.getUMat();

    size_t globalThreads[3] = { input.cols, input.rows, 1 };

    k.args(ocl::KernelArg::PtrReadOnly(input), ocl::KernelArg::PtrWriteOnly(output), input.rows, input.cols, prefilterCap);

    return k.run(2, globalThreads, NULL, false);
}

static void
prefilterXSobel( const Mat& src, Mat& dst, int ftzero )
{
    int x, y;
    const int OFS = 256*4, TABSZ = OFS*2 + 256;
    uchar tab[TABSZ];
    Size size = src.size();

    for( x = 0; x < TABSZ; x++ )
        tab[x] = (uchar)(x - OFS < -ftzero ? 0 : x - OFS > ftzero ? ftzero*2 : x - OFS + ftzero);
    uchar val0 = tab[0 + OFS];

#if CV_SSE2
    volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif

    for( y = 0; y < size.height-1; y += 2 )
    {
        const uchar* srow1 = src.ptr<uchar>(y);
        const uchar* srow0 = y > 0 ? srow1 - src.step : size.height > 1 ? srow1 + src.step : srow1;
        const uchar* srow2 = y < size.height-1 ? srow1 + src.step : size.height > 1 ? srow1 - src.step : srow1;
        const uchar* srow3 = y < size.height-2 ? srow1 + src.step*2 : srow1;
        uchar* dptr0 = dst.ptr<uchar>(y);
        uchar* dptr1 = dptr0 + dst.step;

        dptr0[0] = dptr0[size.width-1] = dptr1[0] = dptr1[size.width-1] = val0;
        x = 1;

#if CV_NEON
        int16x8_t ftz = vdupq_n_s16 ((short) ftzero);
        uint8x8_t ftz2 = vdup_n_u8 (cv::saturate_cast<uchar>(ftzero*2));

        for(; x <=size.width-9; x += 8 )
        {
            uint8x8_t c0 = vld1_u8 (srow0 + x - 1);
            uint8x8_t c1 = vld1_u8 (srow1 + x - 1);
            uint8x8_t d0 = vld1_u8 (srow0 + x + 1);
            uint8x8_t d1 = vld1_u8 (srow1 + x + 1);

            int16x8_t t0 = vreinterpretq_s16_u16 (vsubl_u8 (d0, c0));
            int16x8_t t1 = vreinterpretq_s16_u16 (vsubl_u8 (d1, c1));

            uint8x8_t c2 = vld1_u8 (srow2 + x - 1);
            uint8x8_t c3 = vld1_u8 (srow3 + x - 1);
            uint8x8_t d2 = vld1_u8 (srow2 + x + 1);
            uint8x8_t d3 = vld1_u8 (srow3 + x + 1);

            int16x8_t t2 = vreinterpretq_s16_u16 (vsubl_u8 (d2, c2));
            int16x8_t t3 = vreinterpretq_s16_u16 (vsubl_u8 (d3, c3));

            int16x8_t v0 = vaddq_s16 (vaddq_s16 (t2, t0), vaddq_s16 (t1, t1));
            int16x8_t v1 = vaddq_s16 (vaddq_s16 (t3, t1), vaddq_s16 (t2, t2));


            uint8x8_t v0_u8 = vqmovun_s16 (vaddq_s16 (v0, ftz));
            uint8x8_t v1_u8 = vqmovun_s16 (vaddq_s16 (v1, ftz));
            v0_u8 =  vmin_u8 (v0_u8, ftz2);
            v1_u8 =  vmin_u8 (v1_u8, ftz2);
            vqmovun_s16 (vaddq_s16 (v1, ftz));

            vst1_u8 (dptr0 + x, v0_u8);
            vst1_u8 (dptr1 + x, v1_u8);
        }
#elif CV_SSE2
        if( useSIMD )
        {
            __m128i z = _mm_setzero_si128(), ftz = _mm_set1_epi16((short)ftzero),
            ftz2 = _mm_set1_epi8(cv::saturate_cast<uchar>(ftzero*2));
            for( ; x <= size.width-9; x += 8 )
            {
                __m128i c0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow0 + x - 1)), z);
                __m128i c1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow1 + x - 1)), z);
                __m128i d0 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow0 + x + 1)), z);
                __m128i d1 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow1 + x + 1)), z);

                d0 = _mm_sub_epi16(d0, c0);
                d1 = _mm_sub_epi16(d1, c1);

                __m128i c2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow2 + x - 1)), z);
                __m128i c3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow3 + x - 1)), z);
                __m128i d2 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow2 + x + 1)), z);
                __m128i d3 = _mm_unpacklo_epi8(_mm_loadl_epi64((__m128i*)(srow3 + x + 1)), z);

                d2 = _mm_sub_epi16(d2, c2);
                d3 = _mm_sub_epi16(d3, c3);

                __m128i v0 = _mm_add_epi16(d0, _mm_add_epi16(d2, _mm_add_epi16(d1, d1)));
                __m128i v1 = _mm_add_epi16(d1, _mm_add_epi16(d3, _mm_add_epi16(d2, d2)));
                v0 = _mm_packus_epi16(_mm_add_epi16(v0, ftz), _mm_add_epi16(v1, ftz));
                v0 = _mm_min_epu8(v0, ftz2);

                _mm_storel_epi64((__m128i*)(dptr0 + x), v0);
                _mm_storel_epi64((__m128i*)(dptr1 + x), _mm_unpackhi_epi64(v0, v0));
            }
        }
#endif

        for( ; x < size.width-1; x++ )
        {
            int d0 = srow0[x+1] - srow0[x-1], d1 = srow1[x+1] - srow1[x-1],
            d2 = srow2[x+1] - srow2[x-1], d3 = srow3[x+1] - srow3[x-1];
            int v0 = tab[d0 + d1*2 + d2 + OFS];
            int v1 = tab[d1 + d2*2 + d3 + OFS];
            dptr0[x] = (uchar)v0;
            dptr1[x] = (uchar)v1;
        }
    }

#if CV_NEON
    uint8x16_t val0_16 = vdupq_n_u8 (val0);
#endif

    for( ; y < size.height; y++ )
    {
        uchar* dptr = dst.ptr<uchar>(y);
        x = 0;
    #if CV_NEON
        for(; x <= size.width-16; x+=16 )
            vst1q_u8 (dptr + x, val0_16);
    #endif
        for(; x < size.width; x++ )
            dptr[x] = val0;
    }
}


static const int DISPARITY_SHIFT = 4;

#if CV_SSE2
static void findStereoCorrespondenceBM_SSE2( const Mat& left, const Mat& right,
                                            Mat& disp, Mat& cost, StereoBMParams& state,
                                            uchar* buf, int _dy0, int _dy1 )
{
    const int ALIGN = 16;
    int x, y, d;
    int wsz = state.SADWindowSize, wsz2 = wsz/2;
    int dy0 = MIN(_dy0, wsz2+1), dy1 = MIN(_dy1, wsz2+1);
    int ndisp = state.numDisparities;
    int mindisp = state.minDisparity;
    int lofs = MAX(ndisp - 1 + mindisp, 0);
    int rofs = -MIN(ndisp - 1 + mindisp, 0);
    int width = left.cols, height = left.rows;
    int width1 = width - rofs - ndisp + 1;
    int ftzero = state.preFilterCap;
    int textureThreshold = state.textureThreshold;
    int uniquenessRatio = state.uniquenessRatio;
    short FILTERED = (short)((mindisp - 1) << DISPARITY_SHIFT);

    ushort *sad, *hsad0, *hsad, *hsad_sub;
    int *htext;
    uchar *cbuf0, *cbuf;
    const uchar* lptr0 = left.ptr() + lofs;
    const uchar* rptr0 = right.ptr() + rofs;
    const uchar *lptr, *lptr_sub, *rptr;
    short* dptr = disp.ptr<short>();
    int sstep = (int)left.step;
    int dstep = (int)(disp.step/sizeof(dptr[0]));
    int cstep = (height + dy0 + dy1)*ndisp;
    short costbuf = 0;
    int coststep = cost.data ? (int)(cost.step/sizeof(costbuf)) : 0;
    const int TABSZ = 256;
    uchar tab[TABSZ];
    const __m128i d0_8 = _mm_setr_epi16(0,1,2,3,4,5,6,7), dd_8 = _mm_set1_epi16(8);

    sad = (ushort*)alignPtr(buf + sizeof(sad[0]), ALIGN);
    hsad0 = (ushort*)alignPtr(sad + ndisp + 1 + dy0*ndisp, ALIGN);
    htext = (int*)alignPtr((int*)(hsad0 + (height+dy1)*ndisp) + wsz2 + 2, ALIGN);
    cbuf0 = (uchar*)alignPtr((uchar*)(htext + height + wsz2 + 2) + dy0*ndisp, ALIGN);

    for( x = 0; x < TABSZ; x++ )
        tab[x] = (uchar)std::abs(x - ftzero);

    // initialize buffers
    memset( hsad0 - dy0*ndisp, 0, (height + dy0 + dy1)*ndisp*sizeof(hsad0[0]) );
    memset( htext - wsz2 - 1, 0, (height + wsz + 1)*sizeof(htext[0]) );

    for( x = -wsz2-1; x < wsz2; x++ )
    {
        hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp;
        lptr = lptr0 + MIN(MAX(x, -lofs), width-lofs-1) - dy0*sstep;
        rptr = rptr0 + MIN(MAX(x, -rofs), width-rofs-1) - dy0*sstep;

        for( y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep )
        {
            int lval = lptr[0];
            __m128i lv = _mm_set1_epi8((char)lval), z = _mm_setzero_si128();
            for( d = 0; d < ndisp; d += 16 )
            {
                __m128i rv = _mm_loadu_si128((const __m128i*)(rptr + d));
                __m128i hsad_l = _mm_load_si128((__m128i*)(hsad + d));
                __m128i hsad_h = _mm_load_si128((__m128i*)(hsad + d + 8));
                __m128i diff = _mm_adds_epu8(_mm_subs_epu8(lv, rv), _mm_subs_epu8(rv, lv));
                _mm_store_si128((__m128i*)(cbuf + d), diff);
                hsad_l = _mm_add_epi16(hsad_l, _mm_unpacklo_epi8(diff,z));
                hsad_h = _mm_add_epi16(hsad_h, _mm_unpackhi_epi8(diff,z));
                _mm_store_si128((__m128i*)(hsad + d), hsad_l);
                _mm_store_si128((__m128i*)(hsad + d + 8), hsad_h);
            }
            htext[y] += tab[lval];
        }
    }

    // initialize the left and right borders of the disparity map
    for( y = 0; y < height; y++ )
    {
        for( x = 0; x < lofs; x++ )
            dptr[y*dstep + x] = FILTERED;
        for( x = lofs + width1; x < width; x++ )
            dptr[y*dstep + x] = FILTERED;
    }
    dptr += lofs;

    for( x = 0; x < width1; x++, dptr++ )
    {
        short* costptr = cost.data ? cost.ptr<short>() + lofs + x : &costbuf;
        int x0 = x - wsz2 - 1, x1 = x + wsz2;
        const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
        cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
        hsad = hsad0 - dy0*ndisp;
        lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width-1-lofs) - dy0*sstep;
        lptr = lptr0 + MIN(MAX(x1, -lofs), width-1-lofs) - dy0*sstep;
        rptr = rptr0 + MIN(MAX(x1, -rofs), width-1-rofs) - dy0*sstep;

        for( y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp,
            hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep )
        {
            int lval = lptr[0];
            __m128i lv = _mm_set1_epi8((char)lval), z = _mm_setzero_si128();
            for( d = 0; d < ndisp; d += 16 )
            {
                __m128i rv = _mm_loadu_si128((const __m128i*)(rptr + d));
                __m128i hsad_l = _mm_load_si128((__m128i*)(hsad + d));
                __m128i hsad_h = _mm_load_si128((__m128i*)(hsad + d + 8));
                __m128i cbs = _mm_load_si128((const __m128i*)(cbuf_sub + d));
                __m128i diff = _mm_adds_epu8(_mm_subs_epu8(lv, rv), _mm_subs_epu8(rv, lv));
                __m128i diff_h = _mm_sub_epi16(_mm_unpackhi_epi8(diff, z), _mm_unpackhi_epi8(cbs, z));
                _mm_store_si128((__m128i*)(cbuf + d), diff);
                diff = _mm_sub_epi16(_mm_unpacklo_epi8(diff, z), _mm_unpacklo_epi8(cbs, z));
                hsad_h = _mm_add_epi16(hsad_h, diff_h);
                hsad_l = _mm_add_epi16(hsad_l, diff);
                _mm_store_si128((__m128i*)(hsad + d), hsad_l);
                _mm_store_si128((__m128i*)(hsad + d + 8), hsad_h);
            }
            htext[y] += tab[lval] - tab[lptr_sub[0]];
        }

        // fill borders
        for( y = dy1; y <= wsz2; y++ )
            htext[height+y] = htext[height+dy1-1];
        for( y = -wsz2-1; y < -dy0; y++ )
            htext[y] = htext[-dy0];

        // initialize sums
        for( d = 0; d < ndisp; d++ )
            sad[d] = (ushort)(hsad0[d-ndisp*dy0]*(wsz2 + 2 - dy0));

        hsad = hsad0 + (1 - dy0)*ndisp;
        for( y = 1 - dy0; y < wsz2; y++, hsad += ndisp )
            for( d = 0; d < ndisp; d += 16 )
            {
                __m128i s0 = _mm_load_si128((__m128i*)(sad + d));
                __m128i s1 = _mm_load_si128((__m128i*)(sad + d + 8));
                __m128i t0 = _mm_load_si128((__m128i*)(hsad + d));
                __m128i t1 = _mm_load_si128((__m128i*)(hsad + d + 8));
                s0 = _mm_add_epi16(s0, t0);
                s1 = _mm_add_epi16(s1, t1);
                _mm_store_si128((__m128i*)(sad + d), s0);
                _mm_store_si128((__m128i*)(sad + d + 8), s1);
            }
        int tsum = 0;
        for( y = -wsz2-1; y < wsz2; y++ )
            tsum += htext[y];

        // finally, start the real processing
        for( y = 0; y < height; y++ )
        {
            int minsad = INT_MAX, mind = -1;
            hsad = hsad0 + MIN(y + wsz2, height+dy1-1)*ndisp;
            hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp;
            __m128i minsad8 = _mm_set1_epi16(SHRT_MAX);
            __m128i mind8 = _mm_set1_epi16(0), d8 = d0_8, mask;

            for( d = 0; d < ndisp; d += 16 )
            {
                __m128i u0 = _mm_load_si128((__m128i*)(hsad_sub + d));
                __m128i u1 = _mm_load_si128((__m128i*)(hsad + d));

                __m128i v0 = _mm_load_si128((__m128i*)(hsad_sub + d + 8));
                __m128i v1 = _mm_load_si128((__m128i*)(hsad + d + 8));

                __m128i usad8 = _mm_load_si128((__m128i*)(sad + d));
                __m128i vsad8 = _mm_load_si128((__m128i*)(sad + d + 8));

                u1 = _mm_sub_epi16(u1, u0);
                v1 = _mm_sub_epi16(v1, v0);
                usad8 = _mm_add_epi16(usad8, u1);
                vsad8 = _mm_add_epi16(vsad8, v1);

                mask = _mm_cmpgt_epi16(minsad8, usad8);
                minsad8 = _mm_min_epi16(minsad8, usad8);
                mind8 = _mm_max_epi16(mind8, _mm_and_si128(mask, d8));

                _mm_store_si128((__m128i*)(sad + d), usad8);
                _mm_store_si128((__m128i*)(sad + d + 8), vsad8);

                mask = _mm_cmpgt_epi16(minsad8, vsad8);
                minsad8 = _mm_min_epi16(minsad8, vsad8);

                d8 = _mm_add_epi16(d8, dd_8);
                mind8 = _mm_max_epi16(mind8, _mm_and_si128(mask, d8));
                d8 = _mm_add_epi16(d8, dd_8);
            }

            tsum += htext[y + wsz2] - htext[y - wsz2 - 1];
            if( tsum < textureThreshold )
            {
                dptr[y*dstep] = FILTERED;
                continue;
            }

            ushort CV_DECL_ALIGNED(16) minsad_buf[8], mind_buf[8];
            _mm_store_si128((__m128i*)minsad_buf, minsad8);
            _mm_store_si128((__m128i*)mind_buf, mind8);
            for( d = 0; d < 8; d++ )
                if(minsad > (int)minsad_buf[d] || (minsad == (int)minsad_buf[d] && mind > mind_buf[d]))
                {
                    minsad = minsad_buf[d];
                    mind = mind_buf[d];
                }

            if( uniquenessRatio > 0 )
            {
                int thresh = minsad + (minsad * uniquenessRatio/100);
                __m128i thresh8 = _mm_set1_epi16((short)(thresh + 1));
                __m128i d1 = _mm_set1_epi16((short)(mind-1)), d2 = _mm_set1_epi16((short)(mind+1));
                __m128i dd_16 = _mm_add_epi16(dd_8, dd_8);
                d8 = _mm_sub_epi16(d0_8, dd_16);

                for( d = 0; d < ndisp; d += 16 )
                {
                    __m128i usad8 = _mm_load_si128((__m128i*)(sad + d));
                    __m128i vsad8 = _mm_load_si128((__m128i*)(sad + d + 8));
                    mask = _mm_cmpgt_epi16( thresh8, _mm_min_epi16(usad8,vsad8));
                    d8 = _mm_add_epi16(d8, dd_16);
                    if( !_mm_movemask_epi8(mask) )
                        continue;
                    mask = _mm_cmpgt_epi16( thresh8, usad8);
                    mask = _mm_and_si128(mask, _mm_or_si128(_mm_cmpgt_epi16(d1,d8), _mm_cmpgt_epi16(d8,d2)));
                    if( _mm_movemask_epi8(mask) )
                        break;
                    __m128i t8 = _mm_add_epi16(d8, dd_8);
                    mask = _mm_cmpgt_epi16( thresh8, vsad8);
                    mask = _mm_and_si128(mask, _mm_or_si128(_mm_cmpgt_epi16(d1,t8), _mm_cmpgt_epi16(t8,d2)));
                    if( _mm_movemask_epi8(mask) )
                        break;
                }
                if( d < ndisp )
                {
                    dptr[y*dstep] = FILTERED;
                    continue;
                }
            }

            if( 0 < mind && mind < ndisp - 1 )
            {
                int p = sad[mind+1], n = sad[mind-1];
                d = p + n - 2*sad[mind] + std::abs(p - n);
                dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp)*256 + (d != 0 ? (p-n)*256/d : 0) + 15) >> 4);
            }
            else
                dptr[y*dstep] = (short)((ndisp - mind - 1 + mindisp)*16);
            costptr[y*coststep] = sad[mind];
        }
    }
}
#endif

static void
findStereoCorrespondenceBM( const Mat& left, const Mat& right,
                           Mat& disp, Mat& cost, const StereoBMParams& state,
                           uchar* buf, int _dy0, int _dy1 )
{

    const int ALIGN = 16;
    int x, y, d;
    int wsz = state.SADWindowSize, wsz2 = wsz/2;
    int dy0 = MIN(_dy0, wsz2+1), dy1 = MIN(_dy1, wsz2+1);
    int ndisp = state.numDisparities;
    int mindisp = state.minDisparity;
    int lofs = MAX(ndisp - 1 + mindisp, 0);
    int rofs = -MIN(ndisp - 1 + mindisp, 0);
    int width = left.cols, height = left.rows;
    int width1 = width - rofs - ndisp + 1;
    int ftzero = state.preFilterCap;
    int textureThreshold = state.textureThreshold;
    int uniquenessRatio = state.uniquenessRatio;
    short FILTERED = (short)((mindisp - 1) << DISPARITY_SHIFT);

#if CV_NEON
    CV_Assert (ndisp % 8 == 0);
    int32_t d0_4_temp [4];
    for (int i = 0; i < 4; i ++)
        d0_4_temp[i] = i;
    int32x4_t d0_4 = vld1q_s32 (d0_4_temp);
    int32x4_t dd_4 = vdupq_n_s32 (4);
#endif

    int *sad, *hsad0, *hsad, *hsad_sub, *htext;
    uchar *cbuf0, *cbuf;
    const uchar* lptr0 = left.ptr() + lofs;
    const uchar* rptr0 = right.ptr() + rofs;
    const uchar *lptr, *lptr_sub, *rptr;
    short* dptr = disp.ptr<short>();
    int sstep = (int)left.step;
    int dstep = (int)(disp.step/sizeof(dptr[0]));
    int cstep = (height+dy0+dy1)*ndisp;
    int costbuf = 0;
    int coststep = cost.data ? (int)(cost.step/sizeof(costbuf)) : 0;
    const int TABSZ = 256;
    uchar tab[TABSZ];

    sad = (int*)alignPtr(buf + sizeof(sad[0]), ALIGN);
    hsad0 = (int*)alignPtr(sad + ndisp + 1 + dy0*ndisp, ALIGN);
    htext = (int*)alignPtr((int*)(hsad0 + (height+dy1)*ndisp) + wsz2 + 2, ALIGN);
    cbuf0 = (uchar*)alignPtr((uchar*)(htext + height + wsz2 + 2) + dy0*ndisp, ALIGN);

    for( x = 0; x < TABSZ; x++ )
        tab[x] = (uchar)std::abs(x - ftzero);

    // initialize buffers
    memset( hsad0 - dy0*ndisp, 0, (height + dy0 + dy1)*ndisp*sizeof(hsad0[0]) );
    memset( htext - wsz2 - 1, 0, (height + wsz + 1)*sizeof(htext[0]) );

    for( x = -wsz2-1; x < wsz2; x++ )
    {
        hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp;
        lptr = lptr0 + std::min(std::max(x, -lofs), width-lofs-1) - dy0*sstep;
        rptr = rptr0 + std::min(std::max(x, -rofs), width-rofs-1) - dy0*sstep;
        for( y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep )
        {
            int lval = lptr[0];
        #if CV_NEON
            int16x8_t lv = vdupq_n_s16 ((int16_t)lval);

            for( d = 0; d < ndisp; d += 8 )
            {
                int16x8_t rv = vreinterpretq_s16_u16 (vmovl_u8 (vld1_u8 (rptr + d)));
                int32x4_t hsad_l = vld1q_s32 (hsad + d);
                int32x4_t hsad_h = vld1q_s32 (hsad + d + 4);
                int16x8_t diff = vabdq_s16 (lv, rv);
                vst1_u8 (cbuf + d, vmovn_u16(vreinterpretq_u16_s16(diff)));
                hsad_l = vaddq_s32 (hsad_l, vmovl_s16(vget_low_s16 (diff)));
                hsad_h = vaddq_s32 (hsad_h, vmovl_s16(vget_high_s16 (diff)));
                vst1q_s32 ((hsad + d), hsad_l);
                vst1q_s32 ((hsad + d + 4), hsad_h);
            }
        #else
            for( d = 0; d < ndisp; d++ )
            {
                int diff = std::abs(lval - rptr[d]);
                cbuf[d] = (uchar)diff;
                hsad[d] = (int)(hsad[d] + diff);
            }
        #endif
            htext[y] += tab[lval];
        }
    }

    // initialize the left and right borders of the disparity map
    for( y = 0; y < height; y++ )
    {
        for( x = 0; x < lofs; x++ )
            dptr[y*dstep + x] = FILTERED;
        for( x = lofs + width1; x < width; x++ )
            dptr[y*dstep + x] = FILTERED;
    }
    dptr += lofs;

    for( x = 0; x < width1; x++, dptr++ )
    {
        int* costptr = cost.data ? cost.ptr<int>() + lofs + x : &costbuf;
        int x0 = x - wsz2 - 1, x1 = x + wsz2;
        const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
        cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
        hsad = hsad0 - dy0*ndisp;
        lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width-1-lofs) - dy0*sstep;
        lptr = lptr0 + MIN(MAX(x1, -lofs), width-1-lofs) - dy0*sstep;
        rptr = rptr0 + MIN(MAX(x1, -rofs), width-1-rofs) - dy0*sstep;

        for( y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp,
            hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep )
        {
            int lval = lptr[0];
        #if CV_NEON
            int16x8_t lv = vdupq_n_s16 ((int16_t)lval);
            for( d = 0; d < ndisp; d += 8 )
            {
                int16x8_t rv = vreinterpretq_s16_u16 (vmovl_u8 (vld1_u8 (rptr + d)));
                int32x4_t hsad_l = vld1q_s32 (hsad + d);
                int32x4_t hsad_h = vld1q_s32 (hsad + d + 4);
                int16x8_t cbs = vreinterpretq_s16_u16 (vmovl_u8 (vld1_u8 (cbuf_sub + d)));
                int16x8_t diff = vabdq_s16 (lv, rv);
                int32x4_t diff_h = vsubl_s16 (vget_high_s16 (diff), vget_high_s16 (cbs));
                int32x4_t diff_l = vsubl_s16 (vget_low_s16 (diff), vget_low_s16 (cbs));
                vst1_u8 (cbuf + d, vmovn_u16(vreinterpretq_u16_s16(diff)));
                hsad_h = vaddq_s32 (hsad_h, diff_h);
                hsad_l = vaddq_s32 (hsad_l, diff_l);
                vst1q_s32 ((hsad + d), hsad_l);
                vst1q_s32 ((hsad + d + 4), hsad_h);
            }
        #else
            for( d = 0; d < ndisp; d++ )
            {
                int diff = std::abs(lval - rptr[d]);
                cbuf[d] = (uchar)diff;
                hsad[d] = hsad[d] + diff - cbuf_sub[d];
            }
        #endif
            htext[y] += tab[lval] - tab[lptr_sub[0]];
        }

        // fill borders
        for( y = dy1; y <= wsz2; y++ )
            htext[height+y] = htext[height+dy1-1];
        for( y = -wsz2-1; y < -dy0; y++ )
            htext[y] = htext[-dy0];

        // initialize sums
        for( d = 0; d < ndisp; d++ )
            sad[d] = (int)(hsad0[d-ndisp*dy0]*(wsz2 + 2 - dy0));

        hsad = hsad0 + (1 - dy0)*ndisp;
        for( y = 1 - dy0; y < wsz2; y++, hsad += ndisp )
        {
        #if CV_NEON
            for( d = 0; d <= ndisp-8; d += 8 )
            {
                int32x4_t s0 = vld1q_s32 (sad + d);
                int32x4_t s1 = vld1q_s32 (sad + d + 4);
                int32x4_t t0 = vld1q_s32 (hsad + d);
                int32x4_t t1 = vld1q_s32 (hsad + d + 4);
                s0 = vaddq_s32 (s0, t0);
                s1 = vaddq_s32 (s1, t1);
                vst1q_s32 (sad + d, s0);
                vst1q_s32 (sad + d + 4, s1);
            }
        #else
            for( d = 0; d < ndisp; d++ )
                sad[d] = (int)(sad[d] + hsad[d]);
        #endif
        }
        int tsum = 0;
        for( y = -wsz2-1; y < wsz2; y++ )
            tsum += htext[y];

        // finally, start the real processing
        for( y = 0; y < height; y++ )
        {
            int minsad = INT_MAX, mind = -1;
            hsad = hsad0 + MIN(y + wsz2, height+dy1-1)*ndisp;
            hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp;
        #if CV_NEON
            int32x4_t minsad4 = vdupq_n_s32 (INT_MAX);
            int32x4_t mind4 = vdupq_n_s32(0), d4 = d0_4;

            for( d = 0; d <= ndisp-8; d += 8 )
            {
                int32x4_t u0 = vld1q_s32 (hsad_sub + d);
                int32x4_t u1 = vld1q_s32 (hsad + d);

                int32x4_t v0 = vld1q_s32 (hsad_sub + d + 4);
                int32x4_t v1 = vld1q_s32 (hsad + d + 4);

                int32x4_t usad4 = vld1q_s32(sad + d);
                int32x4_t vsad4 = vld1q_s32(sad + d + 4);

                u1 = vsubq_s32 (u1, u0);
                v1 = vsubq_s32 (v1, v0);
                usad4 = vaddq_s32 (usad4, u1);
                vsad4 = vaddq_s32 (vsad4, v1);

                uint32x4_t mask = vcgtq_s32 (minsad4, usad4);
                minsad4 = vminq_s32 (minsad4, usad4);
                mind4 = vbslq_s32(mask, d4, mind4);

                vst1q_s32 (sad + d, usad4);
                vst1q_s32 (sad + d + 4, vsad4);
                d4 = vaddq_s32 (d4, dd_4);

                mask = vcgtq_s32 (minsad4, vsad4);
                minsad4 = vminq_s32 (minsad4, vsad4);
                mind4 = vbslq_s32(mask, d4, mind4);

                d4 = vaddq_s32 (d4, dd_4);

            }
            int32x2_t mind4_h = vget_high_s32 (mind4);
            int32x2_t mind4_l = vget_low_s32 (mind4);
            int32x2_t minsad4_h = vget_high_s32 (minsad4);
            int32x2_t minsad4_l = vget_low_s32 (minsad4);

            uint32x2_t mask = vorr_u32 (vclt_s32 (minsad4_h, minsad4_l), vand_u32 (vceq_s32 (minsad4_h, minsad4_l), vclt_s32 (mind4_h, mind4_l)));
            mind4_h = vbsl_s32 (mask, mind4_h, mind4_l);
            minsad4_h = vbsl_s32 (mask, minsad4_h, minsad4_l);

            mind4_l = vext_s32 (mind4_h,mind4_h,1);
            minsad4_l = vext_s32 (minsad4_h,minsad4_h,1);

            mask = vorr_u32 (vclt_s32 (minsad4_h, minsad4_l), vand_u32 (vceq_s32 (minsad4_h, minsad4_l), vclt_s32 (mind4_h, mind4_l)));
            mind4_h = vbsl_s32 (mask, mind4_h, mind4_l);
            minsad4_h = vbsl_s32 (mask, minsad4_h, minsad4_l);

            mind = (int) vget_lane_s32 (mind4_h, 0);
            minsad = sad[mind];

        #else
            for( d = 0; d < ndisp; d++ )
            {
                int currsad = sad[d] + hsad[d] - hsad_sub[d];
                sad[d] = currsad;
                if( currsad < minsad )
                {
                    minsad = currsad;
                    mind = d;
                }
            }
        #endif

            tsum += htext[y + wsz2] - htext[y - wsz2 - 1];
            if( tsum < textureThreshold )
            {
                dptr[y*dstep] = FILTERED;
                continue;
            }

            if( uniquenessRatio > 0 )
            {
                int thresh = minsad + (minsad * uniquenessRatio/100);
                for( d = 0; d < ndisp; d++ )
                {
                    if( (d < mind-1 || d > mind+1) && sad[d] <= thresh)
                        break;
                }
                if( d < ndisp )
                {
                    dptr[y*dstep] = FILTERED;
                    continue;
                }
            }

            {
                sad[-1] = sad[1];
                sad[ndisp] = sad[ndisp-2];
                int p = sad[mind+1], n = sad[mind-1];
                d = p + n - 2*sad[mind] + std::abs(p - n);
                dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp)*256 + (d != 0 ? (p-n)*256/d : 0) + 15) >> 4);
                costptr[y*coststep] = sad[mind];
            }
        }
    }
}

static bool ocl_prefiltering(InputArray left0, InputArray right0, OutputArray left, OutputArray right, StereoBMParams* state)
{
    if( state->preFilterType == StereoBM::PREFILTER_NORMALIZED_RESPONSE )
    {
        if(!ocl_prefilter_norm( left0, left, state->preFilterSize, state->preFilterCap))
            return false;
        if(!ocl_prefilter_norm( right0, right, state->preFilterSize, state->preFilterCap))
            return false;
    }
    else
    {
        if(!ocl_prefilter_xsobel( left0, left, state->preFilterCap ))
            return false;
        if(!ocl_prefilter_xsobel( right0, right, state->preFilterCap))
            return false;
    }
    return true;
}

struct PrefilterInvoker : public ParallelLoopBody
{
    PrefilterInvoker(const Mat& left0, const Mat& right0, Mat& left, Mat& right,
                     uchar* buf0, uchar* buf1, StereoBMParams* _state)
    {
        imgs0[0] = &left0; imgs0[1] = &right0;
        imgs[0] = &left; imgs[1] = &right;
        buf[0] = buf0; buf[1] = buf1;
        state = _state;
    }

    void operator()( const Range& range ) const
    {
        for( int i = range.start; i < range.end; i++ )
        {
            if( state->preFilterType == StereoBM::PREFILTER_NORMALIZED_RESPONSE )
                prefilterNorm( *imgs0[i], *imgs[i], state->preFilterSize, state->preFilterCap, buf[i] );
            else
                prefilterXSobel( *imgs0[i], *imgs[i], state->preFilterCap );
        }
    }

    const Mat* imgs0[2];
    Mat* imgs[2];
    uchar* buf[2];
    StereoBMParams* state;
};

static bool ocl_stereobm( InputArray _left, InputArray _right,
                       OutputArray _disp, StereoBMParams* state)
{
    int ndisp = state->numDisparities;
    int mindisp = state->minDisparity;
    int wsz = state->SADWindowSize;
    int wsz2 = wsz/2;

    ocl::Device devDef = ocl::Device::getDefault();
    int sizeX = devDef.isIntel() ? 32 : std::max(11, 27 - devDef.maxComputeUnits()),
        sizeY = sizeX - 1,
        N = ndisp * 2;

    cv::String opt = cv::format("-D DEFINE_KERNEL_STEREOBM -D MIN_DISP=%d -D NUM_DISP=%d"
                                " -D BLOCK_SIZE_X=%d -D BLOCK_SIZE_Y=%d -D WSZ=%d",
                                mindisp, ndisp,
                                sizeX, sizeY, wsz);
    ocl::Kernel k("stereoBM", ocl::calib3d::stereobm_oclsrc, opt);
    if(k.empty())
        return false;

    UMat left = _left.getUMat(), right = _right.getUMat();
    int cols = left.cols, rows = left.rows;

    _disp.create(_left.size(), CV_16S);
    _disp.setTo((mindisp - 1) << 4);
    Rect roi = Rect(Point(wsz2 + mindisp + ndisp - 1, wsz2), Point(cols-wsz2-mindisp, rows-wsz2) );
    UMat disp = (_disp.getUMat())(roi);

    int globalX = (disp.cols + sizeX - 1) / sizeX,
        globalY = (disp.rows + sizeY - 1) / sizeY;
    size_t globalThreads[3] = {N, globalX, globalY};
    size_t localThreads[3]  = {N, 1, 1};

    int idx = 0;
    idx = k.set(idx, ocl::KernelArg::PtrReadOnly(left));
    idx = k.set(idx, ocl::KernelArg::PtrReadOnly(right));
    idx = k.set(idx, ocl::KernelArg::WriteOnlyNoSize(disp));
    idx = k.set(idx, rows);
    idx = k.set(idx, cols);
    idx = k.set(idx, state->textureThreshold);
    idx = k.set(idx, state->uniquenessRatio);
    return k.run(3, globalThreads, localThreads, false);
}

struct FindStereoCorrespInvoker : public ParallelLoopBody
{
    FindStereoCorrespInvoker( const Mat& _left, const Mat& _right,
                             Mat& _disp, StereoBMParams* _state,
                             int _nstripes, size_t _stripeBufSize,
                             bool _useShorts, Rect _validDisparityRect,
                             Mat& _slidingSumBuf, Mat& _cost )
    {
        left = &_left; right = &_right;
        disp = &_disp; state = _state;
        nstripes = _nstripes; stripeBufSize = _stripeBufSize;
        useShorts = _useShorts;
        validDisparityRect = _validDisparityRect;
        slidingSumBuf = &_slidingSumBuf;
        cost = &_cost;
    }

    void operator()( const Range& range ) const
    {
        int cols = left->cols, rows = left->rows;
        int _row0 = std::min(cvRound(range.start * rows / nstripes), rows);
        int _row1 = std::min(cvRound(range.end * rows / nstripes), rows);
        uchar *ptr = slidingSumBuf->ptr() + range.start * stripeBufSize;
        int FILTERED = (state->minDisparity - 1)*16;

        Rect roi = validDisparityRect & Rect(0, _row0, cols, _row1 - _row0);
        if( roi.height == 0 )
            return;
        int row0 = roi.y;
        int row1 = roi.y + roi.height;

        Mat part;
        if( row0 > _row0 )
        {
            part = disp->rowRange(_row0, row0);
            part = Scalar::all(FILTERED);
        }
        if( _row1 > row1 )
        {
            part = disp->rowRange(row1, _row1);
            part = Scalar::all(FILTERED);
        }

        Mat left_i = left->rowRange(row0, row1);
        Mat right_i = right->rowRange(row0, row1);
        Mat disp_i = disp->rowRange(row0, row1);
        Mat cost_i = state->disp12MaxDiff >= 0 ? cost->rowRange(row0, row1) : Mat();

#if CV_SSE2
        if( useShorts )
            findStereoCorrespondenceBM_SSE2( left_i, right_i, disp_i, cost_i, *state, ptr, row0, rows - row1 );
        else
#endif
            findStereoCorrespondenceBM( left_i, right_i, disp_i, cost_i, *state, ptr, row0, rows - row1 );

        if( state->disp12MaxDiff >= 0 )
            validateDisparity( disp_i, cost_i, state->minDisparity, state->numDisparities, state->disp12MaxDiff );

        if( roi.x > 0 )
        {
            part = disp_i.colRange(0, roi.x);
            part = Scalar::all(FILTERED);
        }
        if( roi.x + roi.width < cols )
        {
            part = disp_i.colRange(roi.x + roi.width, cols);
            part = Scalar::all(FILTERED);
        }
    }

protected:
    const Mat *left, *right;
    Mat* disp, *slidingSumBuf, *cost;
    StereoBMParams *state;

    int nstripes;
    size_t stripeBufSize;
    bool useShorts;
    Rect validDisparityRect;
};

class StereoBMImpl : public StereoBM
{
public:
    StereoBMImpl()
    {
        params = StereoBMParams();
    }

    StereoBMImpl( int _numDisparities, int _SADWindowSize )
    {
        params = StereoBMParams(_numDisparities, _SADWindowSize);
    }

    void compute( InputArray leftarr, InputArray rightarr, OutputArray disparr )
    {
        int dtype = disparr.fixedType() ? disparr.type() : params.dispType;
        Size leftsize = leftarr.size();

        if (leftarr.size() != rightarr.size())
            CV_Error( Error::StsUnmatchedSizes, "All the images must have the same size" );

        if (leftarr.type() != CV_8UC1 || rightarr.type() != CV_8UC1)
            CV_Error( Error::StsUnsupportedFormat, "Both input images must have CV_8UC1" );

        if (dtype != CV_16SC1 && dtype != CV_32FC1)
            CV_Error( Error::StsUnsupportedFormat, "Disparity image must have CV_16SC1 or CV_32FC1 format" );

        if( params.preFilterType != PREFILTER_NORMALIZED_RESPONSE &&
            params.preFilterType != PREFILTER_XSOBEL )
            CV_Error( Error::StsOutOfRange, "preFilterType must be = CV_STEREO_BM_NORMALIZED_RESPONSE" );

        if( params.preFilterSize < 5 || params.preFilterSize > 255 || params.preFilterSize % 2 == 0 )
            CV_Error( Error::StsOutOfRange, "preFilterSize must be odd and be within 5..255" );

        if( params.preFilterCap < 1 || params.preFilterCap > 63 )
            CV_Error( Error::StsOutOfRange, "preFilterCap must be within 1..63" );

        if( params.SADWindowSize < 5 || params.SADWindowSize > 255 || params.SADWindowSize % 2 == 0 ||
            params.SADWindowSize >= std::min(leftsize.width, leftsize.height) )
            CV_Error( Error::StsOutOfRange, "SADWindowSize must be odd, be within 5..255 and be not larger than image width or height" );

        if( params.numDisparities <= 0 || params.numDisparities % 16 != 0 )
            CV_Error( Error::StsOutOfRange, "numDisparities must be positive and divisble by 16" );

        if( params.textureThreshold < 0 )
            CV_Error( Error::StsOutOfRange, "texture threshold must be non-negative" );

        if( params.uniquenessRatio < 0 )
            CV_Error( Error::StsOutOfRange, "uniqueness ratio must be non-negative" );

        int FILTERED = (params.minDisparity - 1) << DISPARITY_SHIFT;

        if(ocl::useOpenCL() && disparr.isUMat() && params.textureThreshold == 0)
        {
            UMat left, right;
            if(ocl_prefiltering(leftarr, rightarr, left, right, &params))
            {
                if(ocl_stereobm(left, right, disparr, &params))
                {
                    if( params.speckleRange >= 0 && params.speckleWindowSize > 0 )
                        filterSpeckles(disparr.getMat(), FILTERED, params.speckleWindowSize, params.speckleRange, slidingSumBuf);
                    if (dtype == CV_32F)
                        disparr.getUMat().convertTo(disparr, CV_32FC1, 1./(1 << DISPARITY_SHIFT), 0);
                    CV_IMPL_ADD(CV_IMPL_OCL);
                    return;
                }
            }
        }

        Mat left0 = leftarr.getMat(), right0 = rightarr.getMat();
        disparr.create(left0.size(), dtype);
        Mat disp0 = disparr.getMat();

        preFilteredImg0.create( left0.size(), CV_8U );
        preFilteredImg1.create( left0.size(), CV_8U );
        cost.create( left0.size(), CV_16S );

        Mat left = preFilteredImg0, right = preFilteredImg1;

        int mindisp = params.minDisparity;
        int ndisp = params.numDisparities;

        int width = left0.cols;
        int height = left0.rows;
        int lofs = std::max(ndisp - 1 + mindisp, 0);
        int rofs = -std::min(ndisp - 1 + mindisp, 0);
        int width1 = width - rofs - ndisp + 1;

        if( lofs >= width || rofs >= width || width1 < 1 )
        {
            disp0 = Scalar::all( FILTERED * ( disp0.type() < CV_32F ? 1 : 1./(1 << DISPARITY_SHIFT) ) );
            return;
        }

        Mat disp = disp0;
        if( dtype == CV_32F )
        {
            dispbuf.create(disp0.size(), CV_16S);
            disp = dispbuf;
        }

        int wsz = params.SADWindowSize;
        int bufSize0 = (int)((ndisp + 2)*sizeof(int));
        bufSize0 += (int)((height+wsz+2)*ndisp*sizeof(int));
        bufSize0 += (int)((height + wsz + 2)*sizeof(int));
        bufSize0 += (int)((height+wsz+2)*ndisp*(wsz+2)*sizeof(uchar) + 256);

        int bufSize1 = (int)((width + params.preFilterSize + 2) * sizeof(int) + 256);
        int bufSize2 = 0;
        if( params.speckleRange >= 0 && params.speckleWindowSize > 0 )
            bufSize2 = width*height*(sizeof(Point_<short>) + sizeof(int) + sizeof(uchar));

#if CV_SSE2
        bool useShorts = params.preFilterCap <= 31 && params.SADWindowSize <= 21 && checkHardwareSupport(CV_CPU_SSE2);
#else
        const bool useShorts = false;
#endif

        const double SAD_overhead_coeff = 10.0;
        double N0 = 8000000 / (useShorts ? 1 : 4);  // approx tbb's min number instructions reasonable for one thread
        double maxStripeSize = std::min(std::max(N0 / (width * ndisp), (wsz-1) * SAD_overhead_coeff), (double)height);
        int nstripes = cvCeil(height / maxStripeSize);
        int bufSize = std::max(bufSize0 * nstripes, std::max(bufSize1 * 2, bufSize2));

        if( slidingSumBuf.cols < bufSize )
            slidingSumBuf.create( 1, bufSize, CV_8U );

        uchar *_buf = slidingSumBuf.ptr();

        parallel_for_(Range(0, 2), PrefilterInvoker(left0, right0, left, right, _buf, _buf + bufSize1, &params), 1);

        Rect validDisparityRect(0, 0, width, height), R1 = params.roi1, R2 = params.roi2;
        validDisparityRect = getValidDisparityROI(R1.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect,
                                                  R2.area() > 0 ? Rect(0, 0, width, height) : validDisparityRect,
                                                  params.minDisparity, params.numDisparities,
                                                  params.SADWindowSize);

        parallel_for_(Range(0, nstripes),
                      FindStereoCorrespInvoker(left, right, disp, &params, nstripes,
                                               bufSize0, useShorts, validDisparityRect,
                                               slidingSumBuf, cost));

        if( params.speckleRange >= 0 && params.speckleWindowSize > 0 )
            filterSpeckles(disp, FILTERED, params.speckleWindowSize, params.speckleRange, slidingSumBuf);

        if (disp0.data != disp.data)
            disp.convertTo(disp0, disp0.type(), 1./(1 << DISPARITY_SHIFT), 0);
    }

    int getMinDisparity() const { return params.minDisparity; }
    void setMinDisparity(int minDisparity) { params.minDisparity = minDisparity; }

    int getNumDisparities() const { return params.numDisparities; }
    void setNumDisparities(int numDisparities) { params.numDisparities = numDisparities; }

    int getBlockSize() const { return params.SADWindowSize; }
    void setBlockSize(int blockSize) { params.SADWindowSize = blockSize; }

    int getSpeckleWindowSize() const { return params.speckleWindowSize; }
    void setSpeckleWindowSize(int speckleWindowSize) { params.speckleWindowSize = speckleWindowSize; }

    int getSpeckleRange() const { return params.speckleRange; }
    void setSpeckleRange(int speckleRange) { params.speckleRange = speckleRange; }

    int getDisp12MaxDiff() const { return params.disp12MaxDiff; }
    void setDisp12MaxDiff(int disp12MaxDiff) { params.disp12MaxDiff = disp12MaxDiff; }

    int getPreFilterType() const { return params.preFilterType; }
    void setPreFilterType(int preFilterType) { params.preFilterType = preFilterType; }

    int getPreFilterSize() const { return params.preFilterSize; }
    void setPreFilterSize(int preFilterSize) { params.preFilterSize = preFilterSize; }

    int getPreFilterCap() const { return params.preFilterCap; }
    void setPreFilterCap(int preFilterCap) { params.preFilterCap = preFilterCap; }

    int getTextureThreshold() const { return params.textureThreshold; }
    void setTextureThreshold(int textureThreshold) { params.textureThreshold = textureThreshold; }

    int getUniquenessRatio() const { return params.uniquenessRatio; }
    void setUniquenessRatio(int uniquenessRatio) { params.uniquenessRatio = uniquenessRatio; }

    int getSmallerBlockSize() const { return 0; }
    void setSmallerBlockSize(int) {}

    Rect getROI1() const { return params.roi1; }
    void setROI1(Rect roi1) { params.roi1 = roi1; }

    Rect getROI2() const { return params.roi2; }
    void setROI2(Rect roi2) { params.roi2 = roi2; }

    void write(FileStorage& fs) const
    {
        fs << "name" << name_
        << "minDisparity" << params.minDisparity
        << "numDisparities" << params.numDisparities
        << "blockSize" << params.SADWindowSize
        << "speckleWindowSize" << params.speckleWindowSize
        << "speckleRange" << params.speckleRange
        << "disp12MaxDiff" << params.disp12MaxDiff
        << "preFilterType" << params.preFilterType
        << "preFilterSize" << params.preFilterSize
        << "preFilterCap" << params.preFilterCap
        << "textureThreshold" << params.textureThreshold
        << "uniquenessRatio" << params.uniquenessRatio;
    }

    void read(const FileNode& fn)
    {
        FileNode n = fn["name"];
        CV_Assert( n.isString() && String(n) == name_ );
        params.minDisparity = (int)fn["minDisparity"];
        params.numDisparities = (int)fn["numDisparities"];
        params.SADWindowSize = (int)fn["blockSize"];
        params.speckleWindowSize = (int)fn["speckleWindowSize"];
        params.speckleRange = (int)fn["speckleRange"];
        params.disp12MaxDiff = (int)fn["disp12MaxDiff"];
        params.preFilterType = (int)fn["preFilterType"];
        params.preFilterSize = (int)fn["preFilterSize"];
        params.preFilterCap = (int)fn["preFilterCap"];
        params.textureThreshold = (int)fn["textureThreshold"];
        params.uniquenessRatio = (int)fn["uniquenessRatio"];
        params.roi1 = params.roi2 = Rect();
    }

    StereoBMParams params;
    Mat preFilteredImg0, preFilteredImg1, cost, dispbuf;
    Mat slidingSumBuf;

    static const char* name_;
};

const char* StereoBMImpl::name_ = "StereoMatcher.BM";

Ptr<StereoBM> StereoBM::create(int _numDisparities, int _SADWindowSize)
{
    return makePtr<StereoBMImpl>(_numDisparities, _SADWindowSize);
}

}

/* End of file. */

/* [<][>][^][v][top][bottom][index][help] */