This source file includes following definitions.
- requestMemory
- returnMemory
- mem_
- initialize
- initilizeImpl
- release
- getFreeMemStack
- returnMemStack
- getNullStream
- getMemoryPool
- queryIfComplete
- waitForCompletion
- waitEvent
- cudaStreamCallback
- enqueueHostCallback
- Null
- getStream
- memStack_
- alignUp
- allocate
- free
- setBufferPoolUsage
- setBufferPoolConfig
- getBuffer
- getEvent
- record
- queryIfComplete
- waitForCompletion
- elapsedTime
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#ifdef HAVE_CUDA
namespace
{
class MemoryPool;
class MemoryStack
{
public:
uchar* requestMemory(size_t size);
void returnMemory(uchar* ptr);
uchar* datastart;
uchar* dataend;
uchar* tip;
bool isFree;
MemoryPool* pool;
#if !defined(NDEBUG)
std::vector<size_t> allocations;
#endif
};
uchar* MemoryStack::requestMemory(size_t size)
{
const size_t freeMem = dataend - tip;
if (size > freeMem)
return 0;
uchar* ptr = tip;
tip += size;
#if !defined(NDEBUG)
allocations.push_back(size);
#endif
return ptr;
}
void MemoryStack::returnMemory(uchar* ptr)
{
CV_DbgAssert( ptr >= datastart && ptr < dataend );
#if !defined(NDEBUG)
const size_t allocSize = tip - ptr;
CV_Assert( allocSize == allocations.back() );
allocations.pop_back();
#endif
tip = ptr;
}
}
#endif
#ifdef HAVE_CUDA
namespace
{
class MemoryPool
{
public:
MemoryPool();
void initialize(size_t stackSize, int stackCount);
void release();
MemoryStack* getFreeMemStack();
void returnMemStack(MemoryStack* memStack);
private:
void initilizeImpl();
Mutex mtx_;
bool initialized_;
size_t stackSize_;
int stackCount_;
uchar* mem_;
std::vector<MemoryStack> stacks_;
};
MemoryPool::MemoryPool() : initialized_(false), mem_(0)
{
stackSize_ = 10 * 1024 * 1024;
stackCount_ = 5;
}
void MemoryPool::initialize(size_t stackSize, int stackCount)
{
AutoLock lock(mtx_);
release();
stackSize_ = stackSize;
stackCount_ = stackCount;
initilizeImpl();
}
void MemoryPool::initilizeImpl()
{
const size_t totalSize = stackSize_ * stackCount_;
if (totalSize > 0)
{
cudaError_t err = cudaMalloc(&mem_, totalSize);
if (err != cudaSuccess)
return;
stacks_.resize(stackCount_);
uchar* ptr = mem_;
for (int i = 0; i < stackCount_; ++i)
{
stacks_[i].datastart = ptr;
stacks_[i].dataend = ptr + stackSize_;
stacks_[i].tip = ptr;
stacks_[i].isFree = true;
stacks_[i].pool = this;
ptr += stackSize_;
}
initialized_ = true;
}
}
void MemoryPool::release()
{
if (mem_)
{
#if !defined(NDEBUG)
for (int i = 0; i < stackCount_; ++i)
{
CV_DbgAssert( stacks_[i].isFree );
CV_DbgAssert( stacks_[i].tip == stacks_[i].datastart );
}
#endif
cudaFree(mem_);
mem_ = 0;
initialized_ = false;
}
}
MemoryStack* MemoryPool::getFreeMemStack()
{
AutoLock lock(mtx_);
if (!initialized_)
initilizeImpl();
if (!mem_)
return 0;
for (int i = 0; i < stackCount_; ++i)
{
if (stacks_[i].isFree)
{
stacks_[i].isFree = false;
return &stacks_[i];
}
}
return 0;
}
void MemoryPool::returnMemStack(MemoryStack* memStack)
{
AutoLock lock(mtx_);
CV_DbgAssert( !memStack->isFree );
#if !defined(NDEBUG)
bool found = false;
for (int i = 0; i < stackCount_; ++i)
{
if (memStack == &stacks_[i])
{
found = true;
break;
}
}
CV_DbgAssert( found );
#endif
CV_DbgAssert( memStack->tip == memStack->datastart );
memStack->isFree = true;
}
}
#endif
#ifndef HAVE_CUDA
class cv::cuda::Stream::Impl
{
public:
Impl(void* ptr = 0)
{
(void) ptr;
throw_no_cuda();
}
};
#else
namespace
{
class StackAllocator;
}
class cv::cuda::Stream::Impl
{
public:
cudaStream_t stream;
Ptr<StackAllocator> stackAllocator_;
Impl();
Impl(cudaStream_t stream);
~Impl();
};
cv::cuda::Stream::Impl::Impl() : stream(0)
{
cudaSafeCall( cudaStreamCreate(&stream) );
stackAllocator_ = makePtr<StackAllocator>(stream);
}
cv::cuda::Stream::Impl::Impl(cudaStream_t stream_) : stream(stream_)
{
stackAllocator_ = makePtr<StackAllocator>(stream);
}
cv::cuda::Stream::Impl::~Impl()
{
stackAllocator_.release();
if (stream)
cudaStreamDestroy(stream);
}
#endif
#ifdef HAVE_CUDA
namespace cv { namespace cuda
{
class DefaultDeviceInitializer
{
public:
DefaultDeviceInitializer();
~DefaultDeviceInitializer();
Stream& getNullStream(int deviceId);
MemoryPool* getMemoryPool(int deviceId);
private:
void initStreams();
void initPools();
std::vector<Ptr<Stream> > streams_;
Mutex streams_mtx_;
std::vector<MemoryPool> pools_;
Mutex pools_mtx_;
};
DefaultDeviceInitializer::DefaultDeviceInitializer()
{
}
DefaultDeviceInitializer::~DefaultDeviceInitializer()
{
streams_.clear();
for (size_t i = 0; i < pools_.size(); ++i)
{
cudaSetDevice(static_cast<int>(i));
pools_[i].release();
}
pools_.clear();
}
Stream& DefaultDeviceInitializer::getNullStream(int deviceId)
{
AutoLock lock(streams_mtx_);
if (streams_.empty())
{
int deviceCount = getCudaEnabledDeviceCount();
if (deviceCount > 0)
streams_.resize(deviceCount);
}
CV_DbgAssert( deviceId >= 0 && deviceId < static_cast<int>(streams_.size()) );
if (streams_[deviceId].empty())
{
cudaStream_t stream = NULL;
Ptr<Stream::Impl> impl = makePtr<Stream::Impl>(stream);
streams_[deviceId] = Ptr<Stream>(new Stream(impl));
}
return *streams_[deviceId];
}
MemoryPool* DefaultDeviceInitializer::getMemoryPool(int deviceId)
{
AutoLock lock(pools_mtx_);
if (pools_.empty())
{
int deviceCount = getCudaEnabledDeviceCount();
if (deviceCount > 0)
pools_.resize(deviceCount);
}
CV_DbgAssert( deviceId >= 0 && deviceId < static_cast<int>(pools_.size()) );
return &pools_[deviceId];
}
DefaultDeviceInitializer initializer;
}}
#endif
cv::cuda::Stream::Stream()
{
#ifndef HAVE_CUDA
throw_no_cuda();
#else
impl_ = makePtr<Impl>();
#endif
}
bool cv::cuda::Stream::queryIfComplete() const
{
#ifndef HAVE_CUDA
throw_no_cuda();
return false;
#else
cudaError_t err = cudaStreamQuery(impl_->stream);
if (err == cudaErrorNotReady || err == cudaSuccess)
return err == cudaSuccess;
cudaSafeCall(err);
return false;
#endif
}
void cv::cuda::Stream::waitForCompletion()
{
#ifndef HAVE_CUDA
throw_no_cuda();
#else
cudaSafeCall( cudaStreamSynchronize(impl_->stream) );
#endif
}
void cv::cuda::Stream::waitEvent(const Event& event)
{
#ifndef HAVE_CUDA
(void) event;
throw_no_cuda();
#else
cudaSafeCall( cudaStreamWaitEvent(impl_->stream, EventAccessor::getEvent(event), 0) );
#endif
}
#if defined(HAVE_CUDA) && (CUDART_VERSION >= 5000)
namespace
{
struct CallbackData
{
Stream::StreamCallback callback;
void* userData;
CallbackData(Stream::StreamCallback callback_, void* userData_) : callback(callback_), userData(userData_) {}
};
void CUDART_CB cudaStreamCallback(cudaStream_t, cudaError_t status, void* userData)
{
CallbackData* data = reinterpret_cast<CallbackData*>(userData);
data->callback(static_cast<int>(status), data->userData);
delete data;
}
}
#endif
void cv::cuda::Stream::enqueueHostCallback(StreamCallback callback, void* userData)
{
#ifndef HAVE_CUDA
(void) callback;
(void) userData;
throw_no_cuda();
#else
#if CUDART_VERSION < 5000
(void) callback;
(void) userData;
CV_Error(cv::Error::StsNotImplemented, "This function requires CUDA >= 5.0");
#else
CallbackData* data = new CallbackData(callback, userData);
cudaSafeCall( cudaStreamAddCallback(impl_->stream, cudaStreamCallback, data, 0) );
#endif
#endif
}
Stream& cv::cuda::Stream::Null()
{
#ifndef HAVE_CUDA
throw_no_cuda();
static Stream stream;
return stream;
#else
const int deviceId = getDevice();
return initializer.getNullStream(deviceId);
#endif
}
cv::cuda::Stream::operator bool_type() const
{
#ifndef HAVE_CUDA
return 0;
#else
return (impl_->stream != 0) ? &Stream::this_type_does_not_support_comparisons : 0;
#endif
}
#ifdef HAVE_CUDA
cudaStream_t cv::cuda::StreamAccessor::getStream(const Stream& stream)
{
return stream.impl_->stream;
}
#endif
#ifdef HAVE_CUDA
namespace
{
bool enableMemoryPool = true;
class StackAllocator : public GpuMat::Allocator
{
public:
explicit StackAllocator(cudaStream_t stream);
~StackAllocator();
bool allocate(GpuMat* mat, int rows, int cols, size_t elemSize);
void free(GpuMat* mat);
private:
StackAllocator(const StackAllocator&);
StackAllocator& operator =(const StackAllocator&);
cudaStream_t stream_;
MemoryStack* memStack_;
size_t alignment_;
};
StackAllocator::StackAllocator(cudaStream_t stream) : stream_(stream), memStack_(0)
{
if (enableMemoryPool)
{
const int deviceId = getDevice();
memStack_ = initializer.getMemoryPool(deviceId)->getFreeMemStack();
DeviceInfo devInfo(deviceId);
alignment_ = devInfo.textureAlignment();
}
}
StackAllocator::~StackAllocator()
{
cudaStreamSynchronize(stream_);
if (memStack_ != 0)
memStack_->pool->returnMemStack(memStack_);
}
size_t alignUp(size_t what, size_t alignment)
{
size_t alignMask = alignment-1;
size_t inverseAlignMask = ~alignMask;
size_t res = (what + alignMask) & inverseAlignMask;
return res;
}
bool StackAllocator::allocate(GpuMat* mat, int rows, int cols, size_t elemSize)
{
if (memStack_ == 0)
return false;
size_t pitch, memSize;
if (rows > 1 && cols > 1)
{
pitch = alignUp(cols * elemSize, alignment_);
memSize = pitch * rows;
}
else
{
pitch = elemSize * cols;
memSize = alignUp(elemSize * cols * rows, 64);
}
uchar* ptr = memStack_->requestMemory(memSize);
if (ptr == 0)
return false;
mat->data = ptr;
mat->step = pitch;
mat->refcount = (int*) fastMalloc(sizeof(int));
return true;
}
void StackAllocator::free(GpuMat* mat)
{
if (memStack_ == 0)
return;
memStack_->returnMemory(mat->datastart);
fastFree(mat->refcount);
}
}
#endif
void cv::cuda::setBufferPoolUsage(bool on)
{
#ifndef HAVE_CUDA
(void)on;
throw_no_cuda();
#else
enableMemoryPool = on;
#endif
}
void cv::cuda::setBufferPoolConfig(int deviceId, size_t stackSize, int stackCount)
{
#ifndef HAVE_CUDA
(void)deviceId;
(void)stackSize;
(void)stackCount;
throw_no_cuda();
#else
const int currentDevice = getDevice();
if (deviceId >= 0)
{
setDevice(deviceId);
initializer.getMemoryPool(deviceId)->initialize(stackSize, stackCount);
}
else
{
const int deviceCount = getCudaEnabledDeviceCount();
for (deviceId = 0; deviceId < deviceCount; ++deviceId)
{
setDevice(deviceId);
initializer.getMemoryPool(deviceId)->initialize(stackSize, stackCount);
}
}
setDevice(currentDevice);
#endif
}
#ifdef HAVE_CUDA
cv::cuda::BufferPool::BufferPool(Stream& stream) : allocator_(stream.impl_->stackAllocator_.get())
{
}
GpuMat cv::cuda::BufferPool::getBuffer(int rows, int cols, int type)
{
GpuMat buf(allocator_);
buf.create(rows, cols, type);
return buf;
}
#endif
#ifndef HAVE_CUDA
class cv::cuda::Event::Impl
{
public:
Impl(unsigned int)
{
throw_no_cuda();
}
};
#else
class cv::cuda::Event::Impl
{
public:
cudaEvent_t event;
Impl(unsigned int flags);
~Impl();
};
cv::cuda::Event::Impl::Impl(unsigned int flags) : event(0)
{
cudaSafeCall( cudaEventCreateWithFlags(&event, flags) );
}
cv::cuda::Event::Impl::~Impl()
{
if (event)
cudaEventDestroy(event);
}
cudaEvent_t cv::cuda::EventAccessor::getEvent(const Event& event)
{
return event.impl_->event;
}
#endif
cv::cuda::Event::Event(CreateFlags flags)
{
#ifndef HAVE_CUDA
(void) flags;
throw_no_cuda();
#else
impl_ = makePtr<Impl>(flags);
#endif
}
void cv::cuda::Event::record(Stream& stream)
{
#ifndef HAVE_CUDA
(void) stream;
throw_no_cuda();
#else
cudaSafeCall( cudaEventRecord(impl_->event, StreamAccessor::getStream(stream)) );
#endif
}
bool cv::cuda::Event::queryIfComplete() const
{
#ifndef HAVE_CUDA
throw_no_cuda();
return false;
#else
cudaError_t err = cudaEventQuery(impl_->event);
if (err == cudaErrorNotReady || err == cudaSuccess)
return err == cudaSuccess;
cudaSafeCall(err);
return false;
#endif
}
void cv::cuda::Event::waitForCompletion()
{
#ifndef HAVE_CUDA
throw_no_cuda();
#else
cudaSafeCall( cudaEventSynchronize(impl_->event) );
#endif
}
float cv::cuda::Event::elapsedTime(const Event& start, const Event& end)
{
#ifndef HAVE_CUDA
(void) start;
(void) end;
throw_no_cuda();
return 0.0f;
#else
float ms;
cudaSafeCall( cudaEventElapsedTime(&ms, start.impl_->event, end.impl_->event) );
return ms;
#endif
}