This source file includes following definitions.
- cvAlignLeft
- icvInitMemStorage
- cvCreateMemStorage
- cvCreateChildMemStorage
- icvDestroyMemStorage
- cvReleaseMemStorage
- cvClearMemStorage
- icvGoNextMemBlock
- cvSaveMemStoragePos
- cvRestoreMemStoragePos
- cvMemStorageAlloc
- cvMemStorageAllocString
- cvCreateSeq
- cvSetSeqBlockSize
- cvGetSeqElem
- cvSeqElemIdx
- cvSliceLength
- cvCvtSeqToArray
- cvMakeSeqHeaderForArray
- icvGrowSeq
- icvFreeSeqBlock
- cvStartAppendToSeq
- cvStartWriteSeq
- cvFlushSeqWriter
- cvEndWriteSeq
- cvCreateSeqBlock
- cvStartReadSeq
- cvChangeSeqBlock
- cvGetSeqReaderPos
- cvSetSeqReaderPos
- cvSeqPush
- cvSeqPop
- cvSeqPushFront
- cvSeqPopFront
- cvSeqInsert
- cvSeqRemove
- cvSeqPushMulti
- cvSeqPopMulti
- cvClearSeq
- cvSeqSlice
- cvSeqRemoveSlice
- cvSeqInsertSlice
- icvMed3
- cvSeqSort
- cvSeqSearch
- cvSeqInvert
- cvSeqPartition
- cvCreateSet
- cvSetAdd
- cvSetRemove
- cvClearSet
- cvCreateGraph
- cvClearGraph
- cvGraphAddVtx
- cvGraphRemoveVtxByPtr
- cvGraphRemoveVtx
- cvFindGraphEdgeByPtr
- cvFindGraphEdge
- cvGraphAddEdgeByPtr
- cvGraphAddEdge
- cvGraphRemoveEdgeByPtr
- cvGraphRemoveEdge
- cvGraphVtxDegreeByPtr
- cvGraphVtxDegree
- icvSeqElemsClearFlags
- icvSeqFindNextElem
- cvCreateGraphScanner
- cvReleaseGraphScanner
- cvNextGraphItem
- cvCloneGraph
- cvTreeToNodeSeq
- cvInsertNodeIntoTree
- cvRemoveNodeFromTree
- cvInitTreeNodeIterator
- cvNextTreeNode
- cvPrevTreeNode
- seqPush
- seqPushFront
- seqPop
- seqPopFront
- seqRemove
- clearSeq
- getSeqElem
- seqRemoveSlice
- seqInsertSlice
#include "precomp.hpp"
#define CV_STRUCT_ALIGN ((int)sizeof(double))
#define CV_STORAGE_BLOCK_SIZE ((1<<16) - 128)
#define ICV_FREE_PTR(storage) \
((schar*)(storage)->top + (storage)->block_size - (storage)->free_space)
#define ICV_ALIGNED_SEQ_BLOCK_SIZE \
(int)cvAlign(sizeof(CvSeqBlock), CV_STRUCT_ALIGN)
CV_INLINE int
cvAlignLeft( int size, int align )
{
return size & -align;
}
#define CV_GET_LAST_ELEM( seq, block ) \
((block)->data + ((block)->count - 1)*((seq)->elem_size))
#define CV_SWAP_ELEMS(a,b,elem_size) \
{ \
int k; \
for( k = 0; k < elem_size; k++ ) \
{ \
char t0 = (a)[k]; \
char t1 = (b)[k]; \
(a)[k] = t1; \
(b)[k] = t0; \
} \
}
#define ICV_SHIFT_TAB_MAX 32
static const schar icvPower2ShiftTab[] =
{
0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5
};
static void
icvInitMemStorage( CvMemStorage* storage, int block_size )
{
if( !storage )
CV_Error( CV_StsNullPtr, "" );
if( block_size <= 0 )
block_size = CV_STORAGE_BLOCK_SIZE;
block_size = cvAlign( block_size, CV_STRUCT_ALIGN );
assert( sizeof(CvMemBlock) % CV_STRUCT_ALIGN == 0 );
memset( storage, 0, sizeof( *storage ));
storage->signature = CV_STORAGE_MAGIC_VAL;
storage->block_size = block_size;
}
CV_IMPL CvMemStorage*
cvCreateMemStorage( int block_size )
{
CvMemStorage* storage = (CvMemStorage *)cvAlloc( sizeof( CvMemStorage ));
icvInitMemStorage( storage, block_size );
return storage;
}
CV_IMPL CvMemStorage *
cvCreateChildMemStorage( CvMemStorage * parent )
{
if( !parent )
CV_Error( CV_StsNullPtr, "" );
CvMemStorage* storage = cvCreateMemStorage(parent->block_size);
storage->parent = parent;
return storage;
}
static void
icvDestroyMemStorage( CvMemStorage* storage )
{
int k = 0;
CvMemBlock *block;
CvMemBlock *dst_top = 0;
if( !storage )
CV_Error( CV_StsNullPtr, "" );
if( storage->parent )
dst_top = storage->parent->top;
for( block = storage->bottom; block != 0; k++ )
{
CvMemBlock *temp = block;
block = block->next;
if( storage->parent )
{
if( dst_top )
{
temp->prev = dst_top;
temp->next = dst_top->next;
if( temp->next )
temp->next->prev = temp;
dst_top = dst_top->next = temp;
}
else
{
dst_top = storage->parent->bottom = storage->parent->top = temp;
temp->prev = temp->next = 0;
storage->free_space = storage->block_size - sizeof( *temp );
}
}
else
{
cvFree( &temp );
}
}
storage->top = storage->bottom = 0;
storage->free_space = 0;
}
CV_IMPL void
cvReleaseMemStorage( CvMemStorage** storage )
{
if( !storage )
CV_Error( CV_StsNullPtr, "" );
CvMemStorage* st = *storage;
*storage = 0;
if( st )
{
icvDestroyMemStorage( st );
cvFree( &st );
}
}
CV_IMPL void
cvClearMemStorage( CvMemStorage * storage )
{
if( !storage )
CV_Error( CV_StsNullPtr, "" );
if( storage->parent )
icvDestroyMemStorage( storage );
else
{
storage->top = storage->bottom;
storage->free_space = storage->bottom ? storage->block_size - sizeof(CvMemBlock) : 0;
}
}
static void
icvGoNextMemBlock( CvMemStorage * storage )
{
if( !storage )
CV_Error( CV_StsNullPtr, "" );
if( !storage->top || !storage->top->next )
{
CvMemBlock *block;
if( !(storage->parent) )
{
block = (CvMemBlock *)cvAlloc( storage->block_size );
}
else
{
CvMemStorage *parent = storage->parent;
CvMemStoragePos parent_pos;
cvSaveMemStoragePos( parent, &parent_pos );
icvGoNextMemBlock( parent );
block = parent->top;
cvRestoreMemStoragePos( parent, &parent_pos );
if( block == parent->top )
{
assert( parent->bottom == block );
parent->top = parent->bottom = 0;
parent->free_space = 0;
}
else
{
parent->top->next = block->next;
if( block->next )
block->next->prev = parent->top;
}
}
block->next = 0;
block->prev = storage->top;
if( storage->top )
storage->top->next = block;
else
storage->top = storage->bottom = block;
}
if( storage->top->next )
storage->top = storage->top->next;
storage->free_space = storage->block_size - sizeof(CvMemBlock);
assert( storage->free_space % CV_STRUCT_ALIGN == 0 );
}
CV_IMPL void
cvSaveMemStoragePos( const CvMemStorage * storage, CvMemStoragePos * pos )
{
if( !storage || !pos )
CV_Error( CV_StsNullPtr, "" );
pos->top = storage->top;
pos->free_space = storage->free_space;
}
CV_IMPL void
cvRestoreMemStoragePos( CvMemStorage * storage, CvMemStoragePos * pos )
{
if( !storage || !pos )
CV_Error( CV_StsNullPtr, "" );
if( pos->free_space > storage->block_size )
CV_Error( CV_StsBadSize, "" );
storage->top = pos->top;
storage->free_space = pos->free_space;
if( !storage->top )
{
storage->top = storage->bottom;
storage->free_space = storage->top ? storage->block_size - sizeof(CvMemBlock) : 0;
}
}
CV_IMPL void*
cvMemStorageAlloc( CvMemStorage* storage, size_t size )
{
schar *ptr = 0;
if( !storage )
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
if( size > INT_MAX )
CV_Error( CV_StsOutOfRange, "Too large memory block is requested" );
assert( storage->free_space % CV_STRUCT_ALIGN == 0 );
if( (size_t)storage->free_space < size )
{
size_t max_free_space = cvAlignLeft(storage->block_size - sizeof(CvMemBlock), CV_STRUCT_ALIGN);
if( max_free_space < size )
CV_Error( CV_StsOutOfRange, "requested size is negative or too big" );
icvGoNextMemBlock( storage );
}
ptr = ICV_FREE_PTR(storage);
assert( (size_t)ptr % CV_STRUCT_ALIGN == 0 );
storage->free_space = cvAlignLeft(storage->free_space - (int)size, CV_STRUCT_ALIGN );
return ptr;
}
CV_IMPL CvString
cvMemStorageAllocString( CvMemStorage* storage, const char* ptr, int len )
{
CvString str;
str.len = len >= 0 ? len : (int)strlen(ptr);
str.ptr = (char*)cvMemStorageAlloc( storage, str.len + 1 );
memcpy( str.ptr, ptr, str.len );
str.ptr[str.len] = '\0';
return str;
}
CV_IMPL CvSeq *
cvCreateSeq( int seq_flags, size_t header_size, size_t elem_size, CvMemStorage* storage )
{
CvSeq *seq = 0;
if( !storage )
CV_Error( CV_StsNullPtr, "" );
if( header_size < sizeof( CvSeq ) || elem_size <= 0 )
CV_Error( CV_StsBadSize, "" );
seq = (CvSeq*)cvMemStorageAlloc( storage, header_size );
memset( seq, 0, header_size );
seq->header_size = (int)header_size;
seq->flags = (seq_flags & ~CV_MAGIC_MASK) | CV_SEQ_MAGIC_VAL;
{
int elemtype = CV_MAT_TYPE(seq_flags);
int typesize = CV_ELEM_SIZE(elemtype);
if( elemtype != CV_SEQ_ELTYPE_GENERIC && elemtype != CV_USRTYPE1 &&
typesize != 0 && typesize != (int)elem_size )
CV_Error( CV_StsBadSize,
"Specified element size doesn't match to the size of the specified element type "
"(try to use 0 for element type)" );
}
seq->elem_size = (int)elem_size;
seq->storage = storage;
cvSetSeqBlockSize( seq, (int)((1 << 10)/elem_size) );
return seq;
}
CV_IMPL void
cvSetSeqBlockSize( CvSeq *seq, int delta_elements )
{
int elem_size;
int useful_block_size;
if( !seq || !seq->storage )
CV_Error( CV_StsNullPtr, "" );
if( delta_elements < 0 )
CV_Error( CV_StsOutOfRange, "" );
useful_block_size = cvAlignLeft(seq->storage->block_size - sizeof(CvMemBlock) -
sizeof(CvSeqBlock), CV_STRUCT_ALIGN);
elem_size = seq->elem_size;
if( delta_elements == 0 )
{
delta_elements = (1 << 10) / elem_size;
delta_elements = MAX( delta_elements, 1 );
}
if( delta_elements * elem_size > useful_block_size )
{
delta_elements = useful_block_size / elem_size;
if( delta_elements == 0 )
CV_Error( CV_StsOutOfRange, "Storage block size is too small "
"to fit the sequence elements" );
}
seq->delta_elems = delta_elements;
}
CV_IMPL schar*
cvGetSeqElem( const CvSeq *seq, int index )
{
CvSeqBlock *block;
int count, total = seq->total;
if( (unsigned)index >= (unsigned)total )
{
index += index < 0 ? total : 0;
index -= index >= total ? total : 0;
if( (unsigned)index >= (unsigned)total )
return 0;
}
block = seq->first;
if( index + index <= total )
{
while( index >= (count = block->count) )
{
block = block->next;
index -= count;
}
}
else
{
do
{
block = block->prev;
total -= block->count;
}
while( index < total );
index -= total;
}
return block->data + index * seq->elem_size;
}
CV_IMPL int
cvSeqElemIdx( const CvSeq* seq, const void* _element, CvSeqBlock** _block )
{
const schar *element = (const schar *)_element;
int elem_size;
int id = -1;
CvSeqBlock *first_block;
CvSeqBlock *block;
if( !seq || !element )
CV_Error( CV_StsNullPtr, "" );
block = first_block = seq->first;
elem_size = seq->elem_size;
for( ;; )
{
if( (unsigned)(element - block->data) < (unsigned) (block->count * elem_size) )
{
if( _block )
*_block = block;
if( elem_size <= ICV_SHIFT_TAB_MAX && (id = icvPower2ShiftTab[elem_size - 1]) >= 0 )
id = (int)((size_t)(element - block->data) >> id);
else
id = (int)((size_t)(element - block->data) / elem_size);
id += block->start_index - seq->first->start_index;
break;
}
block = block->next;
if( block == first_block )
break;
}
return id;
}
CV_IMPL int
cvSliceLength( CvSlice slice, const CvSeq* seq )
{
int total = seq->total;
int length = slice.end_index - slice.start_index;
if( length != 0 )
{
if( slice.start_index < 0 )
slice.start_index += total;
if( slice.end_index <= 0 )
slice.end_index += total;
length = slice.end_index - slice.start_index;
}
while( length < 0 )
length += total;
if( length > total )
length = total;
return length;
}
CV_IMPL void*
cvCvtSeqToArray( const CvSeq *seq, void *array, CvSlice slice )
{
int elem_size, total;
CvSeqReader reader;
char *dst = (char*)array;
if( !seq || !array )
CV_Error( CV_StsNullPtr, "" );
elem_size = seq->elem_size;
total = cvSliceLength( slice, seq )*elem_size;
if( total == 0 )
return 0;
cvStartReadSeq( seq, &reader, 0 );
cvSetSeqReaderPos( &reader, slice.start_index, 0 );
do
{
int count = (int)(reader.block_max - reader.ptr);
if( count > total )
count = total;
memcpy( dst, reader.ptr, count );
dst += count;
reader.block = reader.block->next;
reader.ptr = reader.block->data;
reader.block_max = reader.ptr + reader.block->count*elem_size;
total -= count;
}
while( total > 0 );
return array;
}
CV_IMPL CvSeq*
cvMakeSeqHeaderForArray( int seq_flags, int header_size, int elem_size,
void *array, int total, CvSeq *seq, CvSeqBlock * block )
{
CvSeq* result = 0;
if( elem_size <= 0 || header_size < (int)sizeof( CvSeq ) || total < 0 )
CV_Error( CV_StsBadSize, "" );
if( !seq || ((!array || !block) && total > 0) )
CV_Error( CV_StsNullPtr, "" );
memset( seq, 0, header_size );
seq->header_size = header_size;
seq->flags = (seq_flags & ~CV_MAGIC_MASK) | CV_SEQ_MAGIC_VAL;
{
int elemtype = CV_MAT_TYPE(seq_flags);
int typesize = CV_ELEM_SIZE(elemtype);
if( elemtype != CV_SEQ_ELTYPE_GENERIC &&
typesize != 0 && typesize != elem_size )
CV_Error( CV_StsBadSize,
"Element size doesn't match to the size of predefined element type "
"(try to use 0 for sequence element type)" );
}
seq->elem_size = elem_size;
seq->total = total;
seq->block_max = seq->ptr = (schar *) array + total * elem_size;
if( total > 0 )
{
seq->first = block;
block->prev = block->next = block;
block->start_index = 0;
block->count = total;
block->data = (schar *) array;
}
result = seq;
return result;
}
static void
icvGrowSeq( CvSeq *seq, int in_front_of )
{
CvSeqBlock *block;
if( !seq )
CV_Error( CV_StsNullPtr, "" );
block = seq->free_blocks;
if( !block )
{
int elem_size = seq->elem_size;
int delta_elems = seq->delta_elems;
CvMemStorage *storage = seq->storage;
if( seq->total >= delta_elems*4 )
cvSetSeqBlockSize( seq, delta_elems*2 );
if( !storage )
CV_Error( CV_StsNullPtr, "The sequence has NULL storage pointer" );
if( (size_t)(ICV_FREE_PTR(storage) - seq->block_max) < CV_STRUCT_ALIGN &&
storage->free_space >= seq->elem_size && !in_front_of )
{
int delta = storage->free_space / elem_size;
delta = MIN( delta, delta_elems ) * elem_size;
seq->block_max += delta;
storage->free_space = cvAlignLeft((int)(((schar*)storage->top + storage->block_size) -
seq->block_max), CV_STRUCT_ALIGN );
return;
}
else
{
int delta = elem_size * delta_elems + ICV_ALIGNED_SEQ_BLOCK_SIZE;
if( storage->free_space < delta )
{
int small_block_size = MAX(1, delta_elems/3)*elem_size +
ICV_ALIGNED_SEQ_BLOCK_SIZE;
if( storage->free_space >= small_block_size + CV_STRUCT_ALIGN )
{
delta = (storage->free_space - ICV_ALIGNED_SEQ_BLOCK_SIZE)/seq->elem_size;
delta = delta*seq->elem_size + ICV_ALIGNED_SEQ_BLOCK_SIZE;
}
else
{
icvGoNextMemBlock( storage );
assert( storage->free_space >= delta );
}
}
block = (CvSeqBlock*)cvMemStorageAlloc( storage, delta );
block->data = (schar*)cvAlignPtr( block + 1, CV_STRUCT_ALIGN );
block->count = delta - ICV_ALIGNED_SEQ_BLOCK_SIZE;
block->prev = block->next = 0;
}
}
else
{
seq->free_blocks = block->next;
}
if( !(seq->first) )
{
seq->first = block;
block->prev = block->next = block;
}
else
{
block->prev = seq->first->prev;
block->next = seq->first;
block->prev->next = block->next->prev = block;
}
assert( block->count % seq->elem_size == 0 && block->count > 0 );
if( !in_front_of )
{
seq->ptr = block->data;
seq->block_max = block->data + block->count;
block->start_index = block == block->prev ? 0 :
block->prev->start_index + block->prev->count;
}
else
{
int delta = block->count / seq->elem_size;
block->data += block->count;
if( block != block->prev )
{
assert( seq->first->start_index == 0 );
seq->first = block;
}
else
{
seq->block_max = seq->ptr = block->data;
}
block->start_index = 0;
for( ;; )
{
block->start_index += delta;
block = block->next;
if( block == seq->first )
break;
}
}
block->count = 0;
}
static void
icvFreeSeqBlock( CvSeq *seq, int in_front_of )
{
CvSeqBlock *block = seq->first;
assert( (in_front_of ? block : block->prev)->count == 0 );
if( block == block->prev )
{
block->count = (int)(seq->block_max - block->data) + block->start_index * seq->elem_size;
block->data = seq->block_max - block->count;
seq->first = 0;
seq->ptr = seq->block_max = 0;
seq->total = 0;
}
else
{
if( !in_front_of )
{
block = block->prev;
assert( seq->ptr == block->data );
block->count = (int)(seq->block_max - seq->ptr);
seq->block_max = seq->ptr = block->prev->data +
block->prev->count * seq->elem_size;
}
else
{
int delta = block->start_index;
block->count = delta * seq->elem_size;
block->data -= block->count;
for( ;; )
{
block->start_index -= delta;
block = block->next;
if( block == seq->first )
break;
}
seq->first = block->next;
}
block->prev->next = block->next;
block->next->prev = block->prev;
}
assert( block->count > 0 && block->count % seq->elem_size == 0 );
block->next = seq->free_blocks;
seq->free_blocks = block;
}
CV_IMPL void
cvStartAppendToSeq( CvSeq *seq, CvSeqWriter * writer )
{
if( !seq || !writer )
CV_Error( CV_StsNullPtr, "" );
memset( writer, 0, sizeof( *writer ));
writer->header_size = sizeof( CvSeqWriter );
writer->seq = seq;
writer->block = seq->first ? seq->first->prev : 0;
writer->ptr = seq->ptr;
writer->block_max = seq->block_max;
}
CV_IMPL void
cvStartWriteSeq( int seq_flags, int header_size,
int elem_size, CvMemStorage * storage, CvSeqWriter * writer )
{
if( !storage || !writer )
CV_Error( CV_StsNullPtr, "" );
CvSeq* seq = cvCreateSeq( seq_flags, header_size, elem_size, storage );
cvStartAppendToSeq( seq, writer );
}
CV_IMPL void
cvFlushSeqWriter( CvSeqWriter * writer )
{
if( !writer )
CV_Error( CV_StsNullPtr, "" );
CvSeq* seq = writer->seq;
seq->ptr = writer->ptr;
if( writer->block )
{
int total = 0;
CvSeqBlock *first_block = writer->seq->first;
CvSeqBlock *block = first_block;
writer->block->count = (int)((writer->ptr - writer->block->data) / seq->elem_size);
assert( writer->block->count > 0 );
do
{
total += block->count;
block = block->next;
}
while( block != first_block );
writer->seq->total = total;
}
}
CV_IMPL CvSeq *
cvEndWriteSeq( CvSeqWriter * writer )
{
if( !writer )
CV_Error( CV_StsNullPtr, "" );
cvFlushSeqWriter( writer );
CvSeq* seq = writer->seq;
if( writer->block && writer->seq->storage )
{
CvMemStorage *storage = seq->storage;
schar *storage_block_max = (schar *) storage->top + storage->block_size;
assert( writer->block->count > 0 );
if( (unsigned)((storage_block_max - storage->free_space)
- seq->block_max) < CV_STRUCT_ALIGN )
{
storage->free_space = cvAlignLeft((int)(storage_block_max - seq->ptr), CV_STRUCT_ALIGN);
seq->block_max = seq->ptr;
}
}
writer->ptr = 0;
return seq;
}
CV_IMPL void
cvCreateSeqBlock( CvSeqWriter * writer )
{
if( !writer || !writer->seq )
CV_Error( CV_StsNullPtr, "" );
CvSeq* seq = writer->seq;
cvFlushSeqWriter( writer );
icvGrowSeq( seq, 0 );
writer->block = seq->first->prev;
writer->ptr = seq->ptr;
writer->block_max = seq->block_max;
}
CV_IMPL void
cvStartReadSeq( const CvSeq *seq, CvSeqReader * reader, int reverse )
{
CvSeqBlock *first_block;
CvSeqBlock *last_block;
if( reader )
{
reader->seq = 0;
reader->block = 0;
reader->ptr = reader->block_max = reader->block_min = 0;
}
if( !seq || !reader )
CV_Error( CV_StsNullPtr, "" );
reader->header_size = sizeof( CvSeqReader );
reader->seq = (CvSeq*)seq;
first_block = seq->first;
if( first_block )
{
last_block = first_block->prev;
reader->ptr = first_block->data;
reader->prev_elem = CV_GET_LAST_ELEM( seq, last_block );
reader->delta_index = seq->first->start_index;
if( reverse )
{
schar *temp = reader->ptr;
reader->ptr = reader->prev_elem;
reader->prev_elem = temp;
reader->block = last_block;
}
else
{
reader->block = first_block;
}
reader->block_min = reader->block->data;
reader->block_max = reader->block_min + reader->block->count * seq->elem_size;
}
else
{
reader->delta_index = 0;
reader->block = 0;
reader->ptr = reader->prev_elem = reader->block_min = reader->block_max = 0;
}
}
CV_IMPL void
cvChangeSeqBlock( void* _reader, int direction )
{
CvSeqReader* reader = (CvSeqReader*)_reader;
if( !reader )
CV_Error( CV_StsNullPtr, "" );
if( direction > 0 )
{
reader->block = reader->block->next;
reader->ptr = reader->block->data;
}
else
{
reader->block = reader->block->prev;
reader->ptr = CV_GET_LAST_ELEM( reader->seq, reader->block );
}
reader->block_min = reader->block->data;
reader->block_max = reader->block_min + reader->block->count * reader->seq->elem_size;
}
CV_IMPL int
cvGetSeqReaderPos( CvSeqReader* reader )
{
int elem_size;
int index = -1;
if( !reader || !reader->ptr )
CV_Error( CV_StsNullPtr, "" );
elem_size = reader->seq->elem_size;
if( elem_size <= ICV_SHIFT_TAB_MAX && (index = icvPower2ShiftTab[elem_size - 1]) >= 0 )
index = (int)((reader->ptr - reader->block_min) >> index);
else
index = (int)((reader->ptr - reader->block_min) / elem_size);
index += reader->block->start_index - reader->delta_index;
return index;
}
CV_IMPL void
cvSetSeqReaderPos( CvSeqReader* reader, int index, int is_relative )
{
CvSeqBlock *block;
int elem_size, count, total;
if( !reader || !reader->seq )
CV_Error( CV_StsNullPtr, "" );
total = reader->seq->total;
elem_size = reader->seq->elem_size;
if( !is_relative )
{
if( index < 0 )
{
if( index < -total )
CV_Error( CV_StsOutOfRange, "" );
index += total;
}
else if( index >= total )
{
index -= total;
if( index >= total )
CV_Error( CV_StsOutOfRange, "" );
}
block = reader->seq->first;
if( index >= (count = block->count) )
{
if( index + index <= total )
{
do
{
block = block->next;
index -= count;
}
while( index >= (count = block->count) );
}
else
{
do
{
block = block->prev;
total -= block->count;
}
while( index < total );
index -= total;
}
}
reader->ptr = block->data + index * elem_size;
if( reader->block != block )
{
reader->block = block;
reader->block_min = block->data;
reader->block_max = block->data + block->count * elem_size;
}
}
else
{
schar* ptr = reader->ptr;
index *= elem_size;
block = reader->block;
if( index > 0 )
{
while( ptr + index >= reader->block_max )
{
int delta = (int)(reader->block_max - ptr);
index -= delta;
reader->block = block = block->next;
reader->block_min = ptr = block->data;
reader->block_max = block->data + block->count*elem_size;
}
reader->ptr = ptr + index;
}
else
{
while( ptr + index < reader->block_min )
{
int delta = (int)(ptr - reader->block_min);
index += delta;
reader->block = block = block->prev;
reader->block_min = block->data;
reader->block_max = ptr = block->data + block->count*elem_size;
}
reader->ptr = ptr + index;
}
}
}
CV_IMPL schar*
cvSeqPush( CvSeq *seq, const void *element )
{
schar *ptr = 0;
size_t elem_size;
if( !seq )
CV_Error( CV_StsNullPtr, "" );
elem_size = seq->elem_size;
ptr = seq->ptr;
if( ptr >= seq->block_max )
{
icvGrowSeq( seq, 0 );
ptr = seq->ptr;
assert( ptr + elem_size <= seq->block_max );
}
if( element )
memcpy( ptr, element, elem_size );
seq->first->prev->count++;
seq->total++;
seq->ptr = ptr + elem_size;
return ptr;
}
CV_IMPL void
cvSeqPop( CvSeq *seq, void *element )
{
schar *ptr;
int elem_size;
if( !seq )
CV_Error( CV_StsNullPtr, "" );
if( seq->total <= 0 )
CV_Error( CV_StsBadSize, "" );
elem_size = seq->elem_size;
seq->ptr = ptr = seq->ptr - elem_size;
if( element )
memcpy( element, ptr, elem_size );
seq->ptr = ptr;
seq->total--;
if( --(seq->first->prev->count) == 0 )
{
icvFreeSeqBlock( seq, 0 );
assert( seq->ptr == seq->block_max );
}
}
CV_IMPL schar*
cvSeqPushFront( CvSeq *seq, const void *element )
{
schar* ptr = 0;
int elem_size;
CvSeqBlock *block;
if( !seq )
CV_Error( CV_StsNullPtr, "" );
elem_size = seq->elem_size;
block = seq->first;
if( !block || block->start_index == 0 )
{
icvGrowSeq( seq, 1 );
block = seq->first;
assert( block->start_index > 0 );
}
ptr = block->data -= elem_size;
if( element )
memcpy( ptr, element, elem_size );
block->count++;
block->start_index--;
seq->total++;
return ptr;
}
CV_IMPL void
cvSeqPopFront( CvSeq *seq, void *element )
{
int elem_size;
CvSeqBlock *block;
if( !seq )
CV_Error( CV_StsNullPtr, "" );
if( seq->total <= 0 )
CV_Error( CV_StsBadSize, "" );
elem_size = seq->elem_size;
block = seq->first;
if( element )
memcpy( element, block->data, elem_size );
block->data += elem_size;
block->start_index++;
seq->total--;
if( --(block->count) == 0 )
icvFreeSeqBlock( seq, 1 );
}
CV_IMPL schar*
cvSeqInsert( CvSeq *seq, int before_index, const void *element )
{
int elem_size;
int block_size;
CvSeqBlock *block;
int delta_index;
int total;
schar* ret_ptr = 0;
if( !seq )
CV_Error( CV_StsNullPtr, "" );
total = seq->total;
before_index += before_index < 0 ? total : 0;
before_index -= before_index > total ? total : 0;
if( (unsigned)before_index > (unsigned)total )
CV_Error( CV_StsOutOfRange, "" );
if( before_index == total )
{
ret_ptr = cvSeqPush( seq, element );
}
else if( before_index == 0 )
{
ret_ptr = cvSeqPushFront( seq, element );
}
else
{
elem_size = seq->elem_size;
if( before_index >= total >> 1 )
{
schar *ptr = seq->ptr + elem_size;
if( ptr > seq->block_max )
{
icvGrowSeq( seq, 0 );
ptr = seq->ptr + elem_size;
assert( ptr <= seq->block_max );
}
delta_index = seq->first->start_index;
block = seq->first->prev;
block->count++;
block_size = (int)(ptr - block->data);
while( before_index < block->start_index - delta_index )
{
CvSeqBlock *prev_block = block->prev;
memmove( block->data + elem_size, block->data, block_size - elem_size );
block_size = prev_block->count * elem_size;
memcpy( block->data, prev_block->data + block_size - elem_size, elem_size );
block = prev_block;
assert( block != seq->first->prev );
}
before_index = (before_index - block->start_index + delta_index) * elem_size;
memmove( block->data + before_index + elem_size, block->data + before_index,
block_size - before_index - elem_size );
ret_ptr = block->data + before_index;
if( element )
memcpy( ret_ptr, element, elem_size );
seq->ptr = ptr;
}
else
{
block = seq->first;
if( block->start_index == 0 )
{
icvGrowSeq( seq, 1 );
block = seq->first;
}
delta_index = block->start_index;
block->count++;
block->start_index--;
block->data -= elem_size;
while( before_index > block->start_index - delta_index + block->count )
{
CvSeqBlock *next_block = block->next;
block_size = block->count * elem_size;
memmove( block->data, block->data + elem_size, block_size - elem_size );
memcpy( block->data + block_size - elem_size, next_block->data, elem_size );
block = next_block;
assert( block != seq->first );
}
before_index = (before_index - block->start_index + delta_index) * elem_size;
memmove( block->data, block->data + elem_size, before_index - elem_size );
ret_ptr = block->data + before_index - elem_size;
if( element )
memcpy( ret_ptr, element, elem_size );
}
seq->total = total + 1;
}
return ret_ptr;
}
CV_IMPL void
cvSeqRemove( CvSeq *seq, int index )
{
schar *ptr;
int elem_size;
int block_size;
CvSeqBlock *block;
int delta_index;
int total, front = 0;
if( !seq )
CV_Error( CV_StsNullPtr, "" );
total = seq->total;
index += index < 0 ? total : 0;
index -= index >= total ? total : 0;
if( (unsigned) index >= (unsigned) total )
CV_Error( CV_StsOutOfRange, "Invalid index" );
if( index == total - 1 )
{
cvSeqPop( seq, 0 );
}
else if( index == 0 )
{
cvSeqPopFront( seq, 0 );
}
else
{
block = seq->first;
elem_size = seq->elem_size;
delta_index = block->start_index;
while( block->start_index - delta_index + block->count <= index )
block = block->next;
ptr = block->data + (index - block->start_index + delta_index) * elem_size;
front = index < total >> 1;
if( !front )
{
block_size = block->count * elem_size - (int)(ptr - block->data);
while( block != seq->first->prev )
{
CvSeqBlock *next_block = block->next;
memmove( ptr, ptr + elem_size, block_size - elem_size );
memcpy( ptr + block_size - elem_size, next_block->data, elem_size );
block = next_block;
ptr = block->data;
block_size = block->count * elem_size;
}
memmove( ptr, ptr + elem_size, block_size - elem_size );
seq->ptr -= elem_size;
}
else
{
ptr += elem_size;
block_size = (int)(ptr - block->data);
while( block != seq->first )
{
CvSeqBlock *prev_block = block->prev;
memmove( block->data + elem_size, block->data, block_size - elem_size );
block_size = prev_block->count * elem_size;
memcpy( block->data, prev_block->data + block_size - elem_size, elem_size );
block = prev_block;
}
memmove( block->data + elem_size, block->data, block_size - elem_size );
block->data += elem_size;
block->start_index++;
}
seq->total = total - 1;
if( --block->count == 0 )
icvFreeSeqBlock( seq, front );
}
}
CV_IMPL void
cvSeqPushMulti( CvSeq *seq, const void *_elements, int count, int front )
{
char *elements = (char *) _elements;
if( !seq )
CV_Error( CV_StsNullPtr, "NULL sequence pointer" );
if( count < 0 )
CV_Error( CV_StsBadSize, "number of removed elements is negative" );
int elem_size = seq->elem_size;
if( !front )
{
while( count > 0 )
{
int delta = (int)((seq->block_max - seq->ptr) / elem_size);
delta = MIN( delta, count );
if( delta > 0 )
{
seq->first->prev->count += delta;
seq->total += delta;
count -= delta;
delta *= elem_size;
if( elements )
{
memcpy( seq->ptr, elements, delta );
elements += delta;
}
seq->ptr += delta;
}
if( count > 0 )
icvGrowSeq( seq, 0 );
}
}
else
{
CvSeqBlock* block = seq->first;
while( count > 0 )
{
int delta;
if( !block || block->start_index == 0 )
{
icvGrowSeq( seq, 1 );
block = seq->first;
assert( block->start_index > 0 );
}
delta = MIN( block->start_index, count );
count -= delta;
block->start_index -= delta;
block->count += delta;
seq->total += delta;
delta *= elem_size;
block->data -= delta;
if( elements )
memcpy( block->data, elements + count*elem_size, delta );
}
}
}
CV_IMPL void
cvSeqPopMulti( CvSeq *seq, void *_elements, int count, int front )
{
char *elements = (char *) _elements;
if( !seq )
CV_Error( CV_StsNullPtr, "NULL sequence pointer" );
if( count < 0 )
CV_Error( CV_StsBadSize, "number of removed elements is negative" );
count = MIN( count, seq->total );
if( !front )
{
if( elements )
elements += count * seq->elem_size;
while( count > 0 )
{
int delta = seq->first->prev->count;
delta = MIN( delta, count );
assert( delta > 0 );
seq->first->prev->count -= delta;
seq->total -= delta;
count -= delta;
delta *= seq->elem_size;
seq->ptr -= delta;
if( elements )
{
elements -= delta;
memcpy( elements, seq->ptr, delta );
}
if( seq->first->prev->count == 0 )
icvFreeSeqBlock( seq, 0 );
}
}
else
{
while( count > 0 )
{
int delta = seq->first->count;
delta = MIN( delta, count );
assert( delta > 0 );
seq->first->count -= delta;
seq->total -= delta;
count -= delta;
seq->first->start_index += delta;
delta *= seq->elem_size;
if( elements )
{
memcpy( elements, seq->first->data, delta );
elements += delta;
}
seq->first->data += delta;
if( seq->first->count == 0 )
icvFreeSeqBlock( seq, 1 );
}
}
}
CV_IMPL void
cvClearSeq( CvSeq *seq )
{
if( !seq )
CV_Error( CV_StsNullPtr, "" );
cvSeqPopMulti( seq, 0, seq->total );
}
CV_IMPL CvSeq*
cvSeqSlice( const CvSeq* seq, CvSlice slice, CvMemStorage* storage, int copy_data )
{
CvSeq* subseq = 0;
int elem_size, count, length;
CvSeqReader reader;
CvSeqBlock *block, *first_block = 0, *last_block = 0;
if( !CV_IS_SEQ(seq) )
CV_Error( CV_StsBadArg, "Invalid sequence header" );
if( !storage )
{
storage = seq->storage;
if( !storage )
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
}
elem_size = seq->elem_size;
length = cvSliceLength( slice, seq );
if( slice.start_index < 0 )
slice.start_index += seq->total;
else if( slice.start_index >= seq->total )
slice.start_index -= seq->total;
if( (unsigned)length > (unsigned)seq->total ||
((unsigned)slice.start_index >= (unsigned)seq->total && length != 0) )
CV_Error( CV_StsOutOfRange, "Bad sequence slice" );
subseq = cvCreateSeq( seq->flags, seq->header_size, elem_size, storage );
if( length > 0 )
{
cvStartReadSeq( seq, &reader, 0 );
cvSetSeqReaderPos( &reader, slice.start_index, 0 );
count = (int)((reader.block_max - reader.ptr)/elem_size);
do
{
int bl = MIN( count, length );
if( !copy_data )
{
block = (CvSeqBlock*)cvMemStorageAlloc( storage, sizeof(*block) );
if( !first_block )
{
first_block = subseq->first = block->prev = block->next = block;
block->start_index = 0;
}
else
{
block->prev = last_block;
block->next = first_block;
last_block->next = first_block->prev = block;
block->start_index = last_block->start_index + last_block->count;
}
last_block = block;
block->data = reader.ptr;
block->count = bl;
subseq->total += bl;
}
else
cvSeqPushMulti( subseq, reader.ptr, bl, 0 );
length -= bl;
reader.block = reader.block->next;
reader.ptr = reader.block->data;
count = reader.block->count;
}
while( length > 0 );
}
return subseq;
}
CV_IMPL void
cvSeqRemoveSlice( CvSeq* seq, CvSlice slice )
{
int total, length;
if( !CV_IS_SEQ(seq) )
CV_Error( CV_StsBadArg, "Invalid sequence header" );
length = cvSliceLength( slice, seq );
total = seq->total;
if( slice.start_index < 0 )
slice.start_index += total;
else if( slice.start_index >= total )
slice.start_index -= total;
if( (unsigned)slice.start_index >= (unsigned)total )
CV_Error( CV_StsOutOfRange, "start slice index is out of range" );
slice.end_index = slice.start_index + length;
if( slice.end_index < total )
{
CvSeqReader reader_to, reader_from;
int elem_size = seq->elem_size;
cvStartReadSeq( seq, &reader_to );
cvStartReadSeq( seq, &reader_from );
if( slice.start_index > total - slice.end_index )
{
int i, count = seq->total - slice.end_index;
cvSetSeqReaderPos( &reader_to, slice.start_index );
cvSetSeqReaderPos( &reader_from, slice.end_index );
for( i = 0; i < count; i++ )
{
memcpy( reader_to.ptr, reader_from.ptr, elem_size );
CV_NEXT_SEQ_ELEM( elem_size, reader_to );
CV_NEXT_SEQ_ELEM( elem_size, reader_from );
}
cvSeqPopMulti( seq, 0, slice.end_index - slice.start_index );
}
else
{
int i, count = slice.start_index;
cvSetSeqReaderPos( &reader_to, slice.end_index );
cvSetSeqReaderPos( &reader_from, slice.start_index );
for( i = 0; i < count; i++ )
{
CV_PREV_SEQ_ELEM( elem_size, reader_to );
CV_PREV_SEQ_ELEM( elem_size, reader_from );
memcpy( reader_to.ptr, reader_from.ptr, elem_size );
}
cvSeqPopMulti( seq, 0, slice.end_index - slice.start_index, 1 );
}
}
else
{
cvSeqPopMulti( seq, 0, total - slice.start_index );
cvSeqPopMulti( seq, 0, slice.end_index - total, 1 );
}
}
CV_IMPL void
cvSeqInsertSlice( CvSeq* seq, int index, const CvArr* from_arr )
{
CvSeqReader reader_to, reader_from;
int i, elem_size, total, from_total;
CvSeq from_header, *from = (CvSeq*)from_arr;
CvSeqBlock block;
if( !CV_IS_SEQ(seq) )
CV_Error( CV_StsBadArg, "Invalid destination sequence header" );
if( !CV_IS_SEQ(from))
{
CvMat* mat = (CvMat*)from;
if( !CV_IS_MAT(mat))
CV_Error( CV_StsBadArg, "Source is not a sequence nor matrix" );
if( !CV_IS_MAT_CONT(mat->type) || (mat->rows != 1 && mat->cols != 1) )
CV_Error( CV_StsBadArg, "The source array must be 1d coninuous vector" );
from = cvMakeSeqHeaderForArray( CV_SEQ_KIND_GENERIC, sizeof(from_header),
CV_ELEM_SIZE(mat->type),
mat->data.ptr, mat->cols + mat->rows - 1,
&from_header, &block );
}
if( seq->elem_size != from->elem_size )
CV_Error( CV_StsUnmatchedSizes,
"Source and destination sequence element sizes are different." );
from_total = from->total;
if( from_total == 0 )
return;
total = seq->total;
index += index < 0 ? total : 0;
index -= index > total ? total : 0;
if( (unsigned)index > (unsigned)total )
CV_Error( CV_StsOutOfRange, "" );
elem_size = seq->elem_size;
if( index < (total >> 1) )
{
cvSeqPushMulti( seq, 0, from_total, 1 );
cvStartReadSeq( seq, &reader_to );
cvStartReadSeq( seq, &reader_from );
cvSetSeqReaderPos( &reader_from, from_total );
for( i = 0; i < index; i++ )
{
memcpy( reader_to.ptr, reader_from.ptr, elem_size );
CV_NEXT_SEQ_ELEM( elem_size, reader_to );
CV_NEXT_SEQ_ELEM( elem_size, reader_from );
}
}
else
{
cvSeqPushMulti( seq, 0, from_total );
cvStartReadSeq( seq, &reader_to );
cvStartReadSeq( seq, &reader_from );
cvSetSeqReaderPos( &reader_from, total );
cvSetSeqReaderPos( &reader_to, seq->total );
for( i = 0; i < total - index; i++ )
{
CV_PREV_SEQ_ELEM( elem_size, reader_to );
CV_PREV_SEQ_ELEM( elem_size, reader_from );
memcpy( reader_to.ptr, reader_from.ptr, elem_size );
}
}
cvStartReadSeq( from, &reader_from );
cvSetSeqReaderPos( &reader_to, index );
for( i = 0; i < from_total; i++ )
{
memcpy( reader_to.ptr, reader_from.ptr, elem_size );
CV_NEXT_SEQ_ELEM( elem_size, reader_to );
CV_NEXT_SEQ_ELEM( elem_size, reader_from );
}
}
typedef struct CvSeqReaderPos
{
CvSeqBlock* block;
schar* ptr;
schar* block_min;
schar* block_max;
}
CvSeqReaderPos;
#define CV_SAVE_READER_POS( reader, pos ) \
{ \
(pos).block = (reader).block; \
(pos).ptr = (reader).ptr; \
(pos).block_min = (reader).block_min; \
(pos).block_max = (reader).block_max; \
}
#define CV_RESTORE_READER_POS( reader, pos )\
{ \
(reader).block = (pos).block; \
(reader).ptr = (pos).ptr; \
(reader).block_min = (pos).block_min; \
(reader).block_max = (pos).block_max; \
}
inline schar*
icvMed3( schar* a, schar* b, schar* c, CvCmpFunc cmp_func, void* aux )
{
return cmp_func(a, b, aux) < 0 ?
(cmp_func(b, c, aux) < 0 ? b : cmp_func(a, c, aux) < 0 ? c : a)
:(cmp_func(b, c, aux) > 0 ? b : cmp_func(a, c, aux) < 0 ? a : c);
}
CV_IMPL void
cvSeqSort( CvSeq* seq, CvCmpFunc cmp_func, void* aux )
{
int elem_size;
int isort_thresh = 7;
CvSeqReader left, right;
int sp = 0;
struct
{
CvSeqReaderPos lb;
CvSeqReaderPos ub;
}
stack[48];
if( !CV_IS_SEQ(seq) )
CV_Error( !seq ? CV_StsNullPtr : CV_StsBadArg, "Bad input sequence" );
if( !cmp_func )
CV_Error( CV_StsNullPtr, "Null compare function" );
if( seq->total <= 1 )
return;
elem_size = seq->elem_size;
isort_thresh *= elem_size;
cvStartReadSeq( seq, &left, 0 );
right = left;
CV_SAVE_READER_POS( left, stack[0].lb );
CV_PREV_SEQ_ELEM( elem_size, right );
CV_SAVE_READER_POS( right, stack[0].ub );
while( sp >= 0 )
{
CV_RESTORE_READER_POS( left, stack[sp].lb );
CV_RESTORE_READER_POS( right, stack[sp].ub );
sp--;
for(;;)
{
int i, n, m;
CvSeqReader ptr, ptr2;
if( left.block == right.block )
n = (int)(right.ptr - left.ptr) + elem_size;
else
{
n = cvGetSeqReaderPos( &right );
n = (n - cvGetSeqReaderPos( &left ) + 1)*elem_size;
}
if( n <= isort_thresh )
{
insert_sort:
ptr = ptr2 = left;
CV_NEXT_SEQ_ELEM( elem_size, ptr );
CV_NEXT_SEQ_ELEM( elem_size, right );
while( ptr.ptr != right.ptr )
{
ptr2.ptr = ptr.ptr;
if( ptr2.block != ptr.block )
{
ptr2.block = ptr.block;
ptr2.block_min = ptr.block_min;
ptr2.block_max = ptr.block_max;
}
while( ptr2.ptr != left.ptr )
{
schar* cur = ptr2.ptr;
CV_PREV_SEQ_ELEM( elem_size, ptr2 );
if( cmp_func( ptr2.ptr, cur, aux ) <= 0 )
break;
CV_SWAP_ELEMS( ptr2.ptr, cur, elem_size );
}
CV_NEXT_SEQ_ELEM( elem_size, ptr );
}
break;
}
else
{
CvSeqReader left0, left1, right0, right1;
CvSeqReader tmp0, tmp1;
schar *m1, *m2, *m3, *pivot;
int swap_cnt = 0;
int l, l0, l1, r, r0, r1;
left0 = tmp0 = left;
right0 = right1 = right;
n /= elem_size;
if( n > 40 )
{
int d = n / 8;
schar *p1, *p2, *p3;
p1 = tmp0.ptr;
cvSetSeqReaderPos( &tmp0, d, 1 );
p2 = tmp0.ptr;
cvSetSeqReaderPos( &tmp0, d, 1 );
p3 = tmp0.ptr;
m1 = icvMed3( p1, p2, p3, cmp_func, aux );
cvSetSeqReaderPos( &tmp0, (n/2) - d*3, 1 );
p1 = tmp0.ptr;
cvSetSeqReaderPos( &tmp0, d, 1 );
p2 = tmp0.ptr;
cvSetSeqReaderPos( &tmp0, d, 1 );
p3 = tmp0.ptr;
m2 = icvMed3( p1, p2, p3, cmp_func, aux );
cvSetSeqReaderPos( &tmp0, n - 1 - d*3 - n/2, 1 );
p1 = tmp0.ptr;
cvSetSeqReaderPos( &tmp0, d, 1 );
p2 = tmp0.ptr;
cvSetSeqReaderPos( &tmp0, d, 1 );
p3 = tmp0.ptr;
m3 = icvMed3( p1, p2, p3, cmp_func, aux );
}
else
{
m1 = tmp0.ptr;
cvSetSeqReaderPos( &tmp0, n/2, 1 );
m2 = tmp0.ptr;
cvSetSeqReaderPos( &tmp0, n - 1 - n/2, 1 );
m3 = tmp0.ptr;
}
pivot = icvMed3( m1, m2, m3, cmp_func, aux );
left = left0;
if( pivot != left.ptr )
{
CV_SWAP_ELEMS( pivot, left.ptr, elem_size );
pivot = left.ptr;
}
CV_NEXT_SEQ_ELEM( elem_size, left );
left1 = left;
for(;;)
{
while( left.ptr != right.ptr && (r = cmp_func(left.ptr, pivot, aux)) <= 0 )
{
if( r == 0 )
{
if( left1.ptr != left.ptr )
CV_SWAP_ELEMS( left1.ptr, left.ptr, elem_size );
swap_cnt = 1;
CV_NEXT_SEQ_ELEM( elem_size, left1 );
}
CV_NEXT_SEQ_ELEM( elem_size, left );
}
while( left.ptr != right.ptr && (r = cmp_func(right.ptr,pivot, aux)) >= 0 )
{
if( r == 0 )
{
if( right1.ptr != right.ptr )
CV_SWAP_ELEMS( right1.ptr, right.ptr, elem_size );
swap_cnt = 1;
CV_PREV_SEQ_ELEM( elem_size, right1 );
}
CV_PREV_SEQ_ELEM( elem_size, right );
}
if( left.ptr == right.ptr )
{
r = cmp_func(left.ptr, pivot, aux);
if( r == 0 )
{
if( left1.ptr != left.ptr )
CV_SWAP_ELEMS( left1.ptr, left.ptr, elem_size );
swap_cnt = 1;
CV_NEXT_SEQ_ELEM( elem_size, left1 );
}
if( r <= 0 )
{
CV_NEXT_SEQ_ELEM( elem_size, left );
}
else
{
CV_PREV_SEQ_ELEM( elem_size, right );
}
break;
}
CV_SWAP_ELEMS( left.ptr, right.ptr, elem_size );
CV_NEXT_SEQ_ELEM( elem_size, left );
r = left.ptr == right.ptr;
CV_PREV_SEQ_ELEM( elem_size, right );
swap_cnt = 1;
if( r )
break;
}
if( swap_cnt == 0 )
{
left = left0, right = right0;
goto insert_sort;
}
l = cvGetSeqReaderPos( &left );
if( l == 0 )
l = seq->total;
l0 = cvGetSeqReaderPos( &left0 );
l1 = cvGetSeqReaderPos( &left1 );
if( l1 == 0 )
l1 = seq->total;
n = MIN( l - l1, l1 - l0 );
if( n > 0 )
{
tmp0 = left0;
tmp1 = left;
cvSetSeqReaderPos( &tmp1, 0-n, 1 );
for( i = 0; i < n; i++ )
{
CV_SWAP_ELEMS( tmp0.ptr, tmp1.ptr, elem_size );
CV_NEXT_SEQ_ELEM( elem_size, tmp0 );
CV_NEXT_SEQ_ELEM( elem_size, tmp1 );
}
}
r = cvGetSeqReaderPos( &right );
r0 = cvGetSeqReaderPos( &right0 );
r1 = cvGetSeqReaderPos( &right1 );
m = MIN( r0 - r1, r1 - r );
if( m > 0 )
{
tmp0 = left;
tmp1 = right0;
cvSetSeqReaderPos( &tmp1, 1-m, 1 );
for( i = 0; i < m; i++ )
{
CV_SWAP_ELEMS( tmp0.ptr, tmp1.ptr, elem_size );
CV_NEXT_SEQ_ELEM( elem_size, tmp0 );
CV_NEXT_SEQ_ELEM( elem_size, tmp1 );
}
}
n = l - l1;
m = r1 - r;
if( n > 1 )
{
if( m > 1 )
{
if( n > m )
{
sp++;
CV_SAVE_READER_POS( left0, stack[sp].lb );
cvSetSeqReaderPos( &left0, n - 1, 1 );
CV_SAVE_READER_POS( left0, stack[sp].ub );
left = right = right0;
cvSetSeqReaderPos( &left, 1 - m, 1 );
}
else
{
sp++;
CV_SAVE_READER_POS( right0, stack[sp].ub );
cvSetSeqReaderPos( &right0, 1 - m, 1 );
CV_SAVE_READER_POS( right0, stack[sp].lb );
left = right = left0;
cvSetSeqReaderPos( &right, n - 1, 1 );
}
}
else
{
left = right = left0;
cvSetSeqReaderPos( &right, n - 1, 1 );
}
}
else if( m > 1 )
{
left = right = right0;
cvSetSeqReaderPos( &left, 1 - m, 1 );
}
else
break;
}
}
}
}
CV_IMPL schar*
cvSeqSearch( CvSeq* seq, const void* _elem, CvCmpFunc cmp_func,
int is_sorted, int* _idx, void* userdata )
{
schar* result = 0;
const schar* elem = (const schar*)_elem;
int idx = -1;
int i, j;
if( _idx )
*_idx = idx;
if( !CV_IS_SEQ(seq) )
CV_Error( !seq ? CV_StsNullPtr : CV_StsBadArg, "Bad input sequence" );
if( !elem )
CV_Error( CV_StsNullPtr, "Null element pointer" );
int elem_size = seq->elem_size;
int total = seq->total;
if( total == 0 )
return 0;
if( !is_sorted )
{
CvSeqReader reader;
cvStartReadSeq( seq, &reader, 0 );
if( cmp_func )
{
for( i = 0; i < total; i++ )
{
if( cmp_func( elem, reader.ptr, userdata ) == 0 )
break;
CV_NEXT_SEQ_ELEM( elem_size, reader );
}
}
else if( (elem_size & (sizeof(int)-1)) == 0 )
{
for( i = 0; i < total; i++ )
{
for( j = 0; j < elem_size; j += sizeof(int) )
{
if( *(const int*)(reader.ptr + j) != *(const int*)(elem + j) )
break;
}
if( j == elem_size )
break;
CV_NEXT_SEQ_ELEM( elem_size, reader );
}
}
else
{
for( i = 0; i < total; i++ )
{
for( j = 0; j < elem_size; j++ )
{
if( reader.ptr[j] != elem[j] )
break;
}
if( j == elem_size )
break;
CV_NEXT_SEQ_ELEM( elem_size, reader );
}
}
idx = i;
if( i < total )
result = reader.ptr;
}
else
{
if( !cmp_func )
CV_Error( CV_StsNullPtr, "Null compare function" );
i = 0, j = total;
while( j > i )
{
int k = (i+j)>>1, code;
schar* ptr = cvGetSeqElem( seq, k );
code = cmp_func( elem, ptr, userdata );
if( !code )
{
result = ptr;
idx = k;
if( _idx )
*_idx = idx;
return result;
}
if( code < 0 )
j = k;
else
i = k+1;
}
idx = j;
}
if( _idx )
*_idx = idx;
return result;
}
CV_IMPL void
cvSeqInvert( CvSeq* seq )
{
CvSeqReader left_reader, right_reader;
int elem_size;
int i, count;
cvStartReadSeq( seq, &left_reader, 0 );
cvStartReadSeq( seq, &right_reader, 1 );
elem_size = seq->elem_size;
count = seq->total >> 1;
for( i = 0; i < count; i++ )
{
CV_SWAP_ELEMS( left_reader.ptr, right_reader.ptr, elem_size );
CV_NEXT_SEQ_ELEM( elem_size, left_reader );
CV_PREV_SEQ_ELEM( elem_size, right_reader );
}
}
typedef struct CvPTreeNode
{
struct CvPTreeNode* parent;
schar* element;
int rank;
}
CvPTreeNode;
CV_IMPL int
cvSeqPartition( const CvSeq* seq, CvMemStorage* storage, CvSeq** labels,
CvCmpFunc is_equal, void* userdata )
{
CvSeq* result = 0;
CvMemStorage* temp_storage = 0;
int class_idx = 0;
CvSeqWriter writer;
CvSeqReader reader, reader0;
CvSeq* nodes;
int i, j;
int is_set;
if( !labels )
CV_Error( CV_StsNullPtr, "" );
if( !seq || !is_equal )
CV_Error( CV_StsNullPtr, "" );
if( !storage )
storage = seq->storage;
if( !storage )
CV_Error( CV_StsNullPtr, "" );
is_set = CV_IS_SET(seq);
temp_storage = cvCreateChildMemStorage( storage );
nodes = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPTreeNode), temp_storage );
cvStartReadSeq( seq, &reader );
memset( &writer, 0, sizeof(writer));
cvStartAppendToSeq( nodes, &writer );
for( i = 0; i < seq->total; i++ )
{
CvPTreeNode node = { 0, 0, 0 };
if( !is_set || CV_IS_SET_ELEM( reader.ptr ))
node.element = reader.ptr;
CV_WRITE_SEQ_ELEM( node, writer );
CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
}
cvEndWriteSeq( &writer );
cvStartReadSeq( nodes, &reader );
cvStartReadSeq( nodes, &reader0 );
for( i = 0; i < nodes->total; i++ )
{
CvPTreeNode* node = (CvPTreeNode*)(reader0.ptr);
CvPTreeNode* root = node;
CV_NEXT_SEQ_ELEM( nodes->elem_size, reader0 );
if( !node->element )
continue;
while( root->parent )
root = root->parent;
for( j = 0; j < nodes->total; j++ )
{
CvPTreeNode* node2 = (CvPTreeNode*)reader.ptr;
if( node2->element && node2 != node &&
is_equal( node->element, node2->element, userdata ))
{
CvPTreeNode* root2 = node2;
while( root2->parent )
root2 = root2->parent;
if( root2 != root )
{
if( root->rank > root2->rank )
root2->parent = root;
else
{
root->parent = root2;
root2->rank += root->rank == root2->rank;
root = root2;
}
assert( root->parent == 0 );
while( node2->parent )
{
CvPTreeNode* temp = node2;
node2 = node2->parent;
temp->parent = root;
}
node2 = node;
while( node2->parent )
{
CvPTreeNode* temp = node2;
node2 = node2->parent;
temp->parent = root;
}
}
}
CV_NEXT_SEQ_ELEM( sizeof(*node), reader );
}
}
result = cvCreateSeq( 0, sizeof(CvSeq), sizeof(int), storage );
cvStartAppendToSeq( result, &writer );
for( i = 0; i < nodes->total; i++ )
{
CvPTreeNode* node = (CvPTreeNode*)reader.ptr;
int idx = -1;
if( node->element )
{
while( node->parent )
node = node->parent;
if( node->rank >= 0 )
node->rank = ~class_idx++;
idx = ~node->rank;
}
CV_NEXT_SEQ_ELEM( sizeof(*node), reader );
CV_WRITE_SEQ_ELEM( idx, writer );
}
cvEndWriteSeq( &writer );
if( labels )
*labels = result;
cvReleaseMemStorage( &temp_storage );
return class_idx;
}
CV_IMPL CvSet*
cvCreateSet( int set_flags, int header_size, int elem_size, CvMemStorage * storage )
{
if( !storage )
CV_Error( CV_StsNullPtr, "" );
if( header_size < (int)sizeof( CvSet ) ||
elem_size < (int)sizeof(void*)*2 ||
(elem_size & (sizeof(void*)-1)) != 0 )
CV_Error( CV_StsBadSize, "" );
CvSet* set = (CvSet*) cvCreateSeq( set_flags, header_size, elem_size, storage );
set->flags = (set->flags & ~CV_MAGIC_MASK) | CV_SET_MAGIC_VAL;
return set;
}
CV_IMPL int
cvSetAdd( CvSet* set, CvSetElem* element, CvSetElem** inserted_element )
{
int id = -1;
CvSetElem *free_elem;
if( !set )
CV_Error( CV_StsNullPtr, "" );
if( !(set->free_elems) )
{
int count = set->total;
int elem_size = set->elem_size;
schar *ptr;
icvGrowSeq( (CvSeq *) set, 0 );
set->free_elems = (CvSetElem*) (ptr = set->ptr);
for( ; ptr + elem_size <= set->block_max; ptr += elem_size, count++ )
{
((CvSetElem*)ptr)->flags = count | CV_SET_ELEM_FREE_FLAG;
((CvSetElem*)ptr)->next_free = (CvSetElem*)(ptr + elem_size);
}
assert( count <= CV_SET_ELEM_IDX_MASK+1 );
((CvSetElem*)(ptr - elem_size))->next_free = 0;
set->first->prev->count += count - set->total;
set->total = count;
set->ptr = set->block_max;
}
free_elem = set->free_elems;
set->free_elems = free_elem->next_free;
id = free_elem->flags & CV_SET_ELEM_IDX_MASK;
if( element )
memcpy( free_elem, element, set->elem_size );
free_elem->flags = id;
set->active_count++;
if( inserted_element )
*inserted_element = free_elem;
return id;
}
CV_IMPL void
cvSetRemove( CvSet* set, int index )
{
CvSetElem* elem = cvGetSetElem( set, index );
if( elem )
cvSetRemoveByPtr( set, elem );
else if( !set )
CV_Error( CV_StsNullPtr, "" );
}
CV_IMPL void
cvClearSet( CvSet* set )
{
cvClearSeq( (CvSeq*)set );
set->free_elems = 0;
set->active_count = 0;
}
CV_IMPL CvGraph *
cvCreateGraph( int graph_type, int header_size,
int vtx_size, int edge_size, CvMemStorage * storage )
{
CvGraph *graph = 0;
CvSet *edges = 0;
CvSet *vertices = 0;
if( header_size < (int) sizeof( CvGraph )
|| edge_size < (int) sizeof( CvGraphEdge )
|| vtx_size < (int) sizeof( CvGraphVtx )
){
CV_Error( CV_StsBadSize, "" );
}
vertices = cvCreateSet( graph_type, header_size, vtx_size, storage );
edges = cvCreateSet( CV_SEQ_KIND_GENERIC | CV_SEQ_ELTYPE_GRAPH_EDGE,
sizeof( CvSet ), edge_size, storage );
graph = (CvGraph*)vertices;
graph->edges = edges;
return graph;
}
CV_IMPL void
cvClearGraph( CvGraph * graph )
{
if( !graph )
CV_Error( CV_StsNullPtr, "" );
cvClearSet( graph->edges );
cvClearSet( (CvSet*)graph );
}
CV_IMPL int
cvGraphAddVtx( CvGraph* graph, const CvGraphVtx* _vertex, CvGraphVtx** _inserted_vertex )
{
CvGraphVtx *vertex = 0;
int index = -1;
if( !graph )
CV_Error( CV_StsNullPtr, "" );
vertex = (CvGraphVtx*)cvSetNew((CvSet*)graph);
if( vertex )
{
if( _vertex )
memcpy( vertex + 1, _vertex + 1, graph->elem_size - sizeof(CvGraphVtx) );
vertex->first = 0;
index = vertex->flags;
}
if( _inserted_vertex )
*_inserted_vertex = vertex;
return index;
}
CV_IMPL int
cvGraphRemoveVtxByPtr( CvGraph* graph, CvGraphVtx* vtx )
{
int count = -1;
if( !graph || !vtx )
CV_Error( CV_StsNullPtr, "" );
if( !CV_IS_SET_ELEM(vtx))
CV_Error( CV_StsBadArg, "The vertex does not belong to the graph" );
count = graph->edges->active_count;
for( ;; )
{
CvGraphEdge *edge = vtx->first;
if( !edge )
break;
cvGraphRemoveEdgeByPtr( graph, edge->vtx[0], edge->vtx[1] );
}
count -= graph->edges->active_count;
cvSetRemoveByPtr( (CvSet*)graph, vtx );
return count;
}
CV_IMPL int
cvGraphRemoveVtx( CvGraph* graph, int index )
{
int count = -1;
CvGraphVtx *vtx = 0;
if( !graph )
CV_Error( CV_StsNullPtr, "" );
vtx = cvGetGraphVtx( graph, index );
if( !vtx )
CV_Error( CV_StsBadArg, "The vertex is not found" );
count = graph->edges->active_count;
for( ;; )
{
CvGraphEdge *edge = vtx->first;
count++;
if( !edge )
break;
cvGraphRemoveEdgeByPtr( graph, edge->vtx[0], edge->vtx[1] );
}
count -= graph->edges->active_count;
cvSetRemoveByPtr( (CvSet*)graph, vtx );
return count;
}
CV_IMPL CvGraphEdge*
cvFindGraphEdgeByPtr( const CvGraph* graph,
const CvGraphVtx* start_vtx,
const CvGraphVtx* end_vtx )
{
int ofs = 0;
if( !graph || !start_vtx || !end_vtx )
CV_Error( CV_StsNullPtr, "" );
if( start_vtx == end_vtx )
return 0;
if( !CV_IS_GRAPH_ORIENTED( graph ) &&
(start_vtx->flags & CV_SET_ELEM_IDX_MASK) > (end_vtx->flags & CV_SET_ELEM_IDX_MASK) )
{
const CvGraphVtx* t;
CV_SWAP( start_vtx, end_vtx, t );
}
CvGraphEdge* edge = start_vtx->first;
for( ; edge; edge = edge->next[ofs] )
{
ofs = start_vtx == edge->vtx[1];
assert( ofs == 1 || start_vtx == edge->vtx[0] );
if( edge->vtx[1] == end_vtx )
break;
}
return edge;
}
CV_IMPL CvGraphEdge *
cvFindGraphEdge( const CvGraph* graph, int start_idx, int end_idx )
{
CvGraphVtx *start_vtx;
CvGraphVtx *end_vtx;
if( !graph )
CV_Error( CV_StsNullPtr, "graph pointer is NULL" );
start_vtx = cvGetGraphVtx( graph, start_idx );
end_vtx = cvGetGraphVtx( graph, end_idx );
return cvFindGraphEdgeByPtr( graph, start_vtx, end_vtx );
}
CV_IMPL int
cvGraphAddEdgeByPtr( CvGraph* graph,
CvGraphVtx* start_vtx, CvGraphVtx* end_vtx,
const CvGraphEdge* _edge,
CvGraphEdge ** _inserted_edge )
{
CvGraphEdge *edge = 0;
int result = -1;
int delta;
if( !graph )
CV_Error( CV_StsNullPtr, "graph pointer is NULL" );
if( !CV_IS_GRAPH_ORIENTED( graph ) &&
(start_vtx->flags & CV_SET_ELEM_IDX_MASK) > (end_vtx->flags & CV_SET_ELEM_IDX_MASK) )
{
CvGraphVtx* t;
CV_SWAP( start_vtx, end_vtx, t );
}
edge = cvFindGraphEdgeByPtr( graph, start_vtx, end_vtx );
if( edge )
{
result = 0;
if( _inserted_edge )
*_inserted_edge = edge;
return result;
}
if( start_vtx == end_vtx )
CV_Error( start_vtx ? CV_StsBadArg : CV_StsNullPtr,
"vertex pointers coinside (or set to NULL)" );
edge = (CvGraphEdge*)cvSetNew( (CvSet*)(graph->edges) );
assert( edge->flags >= 0 );
edge->vtx[0] = start_vtx;
edge->vtx[1] = end_vtx;
edge->next[0] = start_vtx->first;
edge->next[1] = end_vtx->first;
start_vtx->first = end_vtx->first = edge;
delta = graph->edges->elem_size - sizeof(*edge);
if( _edge )
{
if( delta > 0 )
memcpy( edge + 1, _edge + 1, delta );
edge->weight = _edge->weight;
}
else
{
if( delta > 0 )
memset( edge + 1, 0, delta );
edge->weight = 1.f;
}
result = 1;
if( _inserted_edge )
*_inserted_edge = edge;
return result;
}
CV_IMPL int
cvGraphAddEdge( CvGraph* graph,
int start_idx, int end_idx,
const CvGraphEdge* _edge,
CvGraphEdge ** _inserted_edge )
{
CvGraphVtx *start_vtx;
CvGraphVtx *end_vtx;
if( !graph )
CV_Error( CV_StsNullPtr, "" );
start_vtx = cvGetGraphVtx( graph, start_idx );
end_vtx = cvGetGraphVtx( graph, end_idx );
return cvGraphAddEdgeByPtr( graph, start_vtx, end_vtx, _edge, _inserted_edge );
}
CV_IMPL void
cvGraphRemoveEdgeByPtr( CvGraph* graph, CvGraphVtx* start_vtx, CvGraphVtx* end_vtx )
{
int ofs, prev_ofs;
CvGraphEdge *edge, *next_edge, *prev_edge;
if( !graph || !start_vtx || !end_vtx )
CV_Error( CV_StsNullPtr, "" );
if( start_vtx == end_vtx )
return;
if( !CV_IS_GRAPH_ORIENTED( graph ) &&
(start_vtx->flags & CV_SET_ELEM_IDX_MASK) > (end_vtx->flags & CV_SET_ELEM_IDX_MASK) )
{
CvGraphVtx* t;
CV_SWAP( start_vtx, end_vtx, t );
}
for( ofs = prev_ofs = 0, prev_edge = 0, edge = start_vtx->first; edge != 0;
prev_ofs = ofs, prev_edge = edge, edge = edge->next[ofs] )
{
ofs = start_vtx == edge->vtx[1];
assert( ofs == 1 || start_vtx == edge->vtx[0] );
if( edge->vtx[1] == end_vtx )
break;
}
if( !edge )
return;
next_edge = edge->next[ofs];
if( prev_edge )
prev_edge->next[prev_ofs] = next_edge;
else
start_vtx->first = next_edge;
for( ofs = prev_ofs = 0, prev_edge = 0, edge = end_vtx->first; edge != 0;
prev_ofs = ofs, prev_edge = edge, edge = edge->next[ofs] )
{
ofs = end_vtx == edge->vtx[1];
assert( ofs == 1 || end_vtx == edge->vtx[0] );
if( edge->vtx[0] == start_vtx )
break;
}
assert( edge != 0 );
next_edge = edge->next[ofs];
if( prev_edge )
prev_edge->next[prev_ofs] = next_edge;
else
end_vtx->first = next_edge;
cvSetRemoveByPtr( graph->edges, edge );
}
CV_IMPL void
cvGraphRemoveEdge( CvGraph* graph, int start_idx, int end_idx )
{
CvGraphVtx *start_vtx;
CvGraphVtx *end_vtx;
if( !graph )
CV_Error( CV_StsNullPtr, "" );
start_vtx = cvGetGraphVtx( graph, start_idx );
end_vtx = cvGetGraphVtx( graph, end_idx );
cvGraphRemoveEdgeByPtr( graph, start_vtx, end_vtx );
}
CV_IMPL int
cvGraphVtxDegreeByPtr( const CvGraph* graph, const CvGraphVtx* vertex )
{
CvGraphEdge *edge;
int count;
if( !graph || !vertex )
CV_Error( CV_StsNullPtr, "" );
for( edge = vertex->first, count = 0; edge; )
{
count++;
edge = CV_NEXT_GRAPH_EDGE( edge, vertex );
}
return count;
}
CV_IMPL int
cvGraphVtxDegree( const CvGraph* graph, int vtx_idx )
{
CvGraphVtx *vertex;
CvGraphEdge *edge;
int count;
if( !graph )
CV_Error( CV_StsNullPtr, "" );
vertex = cvGetGraphVtx( graph, vtx_idx );
if( !vertex )
CV_Error( CV_StsObjectNotFound, "" );
for( edge = vertex->first, count = 0; edge; )
{
count++;
edge = CV_NEXT_GRAPH_EDGE( edge, vertex );
}
return count;
}
typedef struct CvGraphItem
{
CvGraphVtx* vtx;
CvGraphEdge* edge;
}
CvGraphItem;
static void
icvSeqElemsClearFlags( CvSeq* seq, int offset, int clear_mask )
{
CvSeqReader reader;
int i, total, elem_size;
if( !seq )
CV_Error( CV_StsNullPtr, "" );
elem_size = seq->elem_size;
total = seq->total;
if( (unsigned)offset > (unsigned)elem_size )
CV_Error( CV_StsBadArg, "" );
cvStartReadSeq( seq, &reader );
for( i = 0; i < total; i++ )
{
int* flag_ptr = (int*)(reader.ptr + offset);
*flag_ptr &= ~clear_mask;
CV_NEXT_SEQ_ELEM( elem_size, reader );
}
}
static schar*
icvSeqFindNextElem( CvSeq* seq, int offset, int mask,
int value, int* start_index )
{
schar* elem_ptr = 0;
CvSeqReader reader;
int total, elem_size, index;
if( !seq || !start_index )
CV_Error( CV_StsNullPtr, "" );
elem_size = seq->elem_size;
total = seq->total;
index = *start_index;
if( (unsigned)offset > (unsigned)elem_size )
CV_Error( CV_StsBadArg, "" );
if( total == 0 )
return 0;
if( (unsigned)index >= (unsigned)total )
{
index %= total;
index += index < 0 ? total : 0;
}
cvStartReadSeq( seq, &reader );
if( index != 0 )
cvSetSeqReaderPos( &reader, index );
for( index = 0; index < total; index++ )
{
int* flag_ptr = (int*)(reader.ptr + offset);
if( (*flag_ptr & mask) == value )
break;
CV_NEXT_SEQ_ELEM( elem_size, reader );
}
if( index < total )
{
elem_ptr = reader.ptr;
*start_index = index;
}
return elem_ptr;
}
#define CV_FIELD_OFFSET( field, structtype ) ((int)(size_t)&((structtype*)0)->field)
CV_IMPL CvGraphScanner*
cvCreateGraphScanner( CvGraph* graph, CvGraphVtx* vtx, int mask )
{
if( !graph )
CV_Error( CV_StsNullPtr, "Null graph pointer" );
CV_Assert( graph->storage != 0 );
CvGraphScanner* scanner = (CvGraphScanner*)cvAlloc( sizeof(*scanner) );
memset( scanner, 0, sizeof(*scanner));
scanner->graph = graph;
scanner->mask = mask;
scanner->vtx = vtx;
scanner->index = vtx == 0 ? 0 : -1;
CvMemStorage* child_storage = cvCreateChildMemStorage( graph->storage );
scanner->stack = cvCreateSeq( 0, sizeof(CvSet),
sizeof(CvGraphItem), child_storage );
icvSeqElemsClearFlags( (CvSeq*)graph,
CV_FIELD_OFFSET( flags, CvGraphVtx),
CV_GRAPH_ITEM_VISITED_FLAG|
CV_GRAPH_SEARCH_TREE_NODE_FLAG );
icvSeqElemsClearFlags( (CvSeq*)(graph->edges),
CV_FIELD_OFFSET( flags, CvGraphEdge),
CV_GRAPH_ITEM_VISITED_FLAG );
return scanner;
}
CV_IMPL void
cvReleaseGraphScanner( CvGraphScanner** scanner )
{
if( !scanner )
CV_Error( CV_StsNullPtr, "Null double pointer to graph scanner" );
if( *scanner )
{
if( (*scanner)->stack )
cvReleaseMemStorage( &((*scanner)->stack->storage));
cvFree( scanner );
}
}
CV_IMPL int
cvNextGraphItem( CvGraphScanner* scanner )
{
int code = -1;
CvGraphVtx* vtx;
CvGraphVtx* dst;
CvGraphEdge* edge;
CvGraphItem item;
if( !scanner || !(scanner->stack))
CV_Error( CV_StsNullPtr, "Null graph scanner" );
dst = scanner->dst;
vtx = scanner->vtx;
edge = scanner->edge;
for(;;)
{
for(;;)
{
if( dst && !CV_IS_GRAPH_VERTEX_VISITED(dst) )
{
scanner->vtx = vtx = dst;
edge = vtx->first;
dst->flags |= CV_GRAPH_ITEM_VISITED_FLAG;
if((scanner->mask & CV_GRAPH_VERTEX))
{
scanner->vtx = vtx;
scanner->edge = vtx->first;
scanner->dst = 0;
code = CV_GRAPH_VERTEX;
return code;
}
}
while( edge )
{
dst = edge->vtx[vtx == edge->vtx[0]];
if( !CV_IS_GRAPH_EDGE_VISITED(edge) )
{
if( !CV_IS_GRAPH_ORIENTED( scanner->graph ) || dst != edge->vtx[0] )
{
edge->flags |= CV_GRAPH_ITEM_VISITED_FLAG;
if( !CV_IS_GRAPH_VERTEX_VISITED(dst) )
{
item.vtx = vtx;
item.edge = edge;
vtx->flags |= CV_GRAPH_SEARCH_TREE_NODE_FLAG;
cvSeqPush( scanner->stack, &item );
if( scanner->mask & CV_GRAPH_TREE_EDGE )
{
code = CV_GRAPH_TREE_EDGE;
scanner->vtx = vtx;
scanner->dst = dst;
scanner->edge = edge;
return code;
}
break;
}
else
{
if( scanner->mask & (CV_GRAPH_BACK_EDGE|
CV_GRAPH_CROSS_EDGE|
CV_GRAPH_FORWARD_EDGE) )
{
code = (dst->flags & CV_GRAPH_SEARCH_TREE_NODE_FLAG) ?
CV_GRAPH_BACK_EDGE :
(edge->flags & CV_GRAPH_FORWARD_EDGE_FLAG) ?
CV_GRAPH_FORWARD_EDGE : CV_GRAPH_CROSS_EDGE;
edge->flags &= ~CV_GRAPH_FORWARD_EDGE_FLAG;
if( scanner->mask & code )
{
scanner->vtx = vtx;
scanner->dst = dst;
scanner->edge = edge;
return code;
}
}
}
}
else if( (dst->flags & (CV_GRAPH_ITEM_VISITED_FLAG|
CV_GRAPH_SEARCH_TREE_NODE_FLAG)) ==
(CV_GRAPH_ITEM_VISITED_FLAG|
CV_GRAPH_SEARCH_TREE_NODE_FLAG))
{
edge->flags |= CV_GRAPH_FORWARD_EDGE_FLAG;
}
}
edge = CV_NEXT_GRAPH_EDGE( edge, vtx );
}
if( !edge )
{
if( scanner->stack->total == 0 )
{
if( scanner->index >= 0 )
vtx = 0;
else
scanner->index = 0;
break;
}
cvSeqPop( scanner->stack, &item );
vtx = item.vtx;
vtx->flags &= ~CV_GRAPH_SEARCH_TREE_NODE_FLAG;
edge = item.edge;
dst = 0;
if( scanner->mask & CV_GRAPH_BACKTRACKING )
{
scanner->vtx = vtx;
scanner->edge = edge;
scanner->dst = edge->vtx[vtx == edge->vtx[0]];
code = CV_GRAPH_BACKTRACKING;
return code;
}
}
}
if( !vtx )
{
vtx = (CvGraphVtx*)icvSeqFindNextElem( (CvSeq*)(scanner->graph),
CV_FIELD_OFFSET( flags, CvGraphVtx ), CV_GRAPH_ITEM_VISITED_FLAG|INT_MIN,
0, &(scanner->index) );
if( !vtx )
{
code = CV_GRAPH_OVER;
break;
}
}
dst = vtx;
if( scanner->mask & CV_GRAPH_NEW_TREE )
{
scanner->dst = dst;
scanner->edge = 0;
scanner->vtx = 0;
code = CV_GRAPH_NEW_TREE;
break;
}
}
return code;
}
CV_IMPL CvGraph*
cvCloneGraph( const CvGraph* graph, CvMemStorage* storage )
{
int* flag_buffer = 0;
CvGraphVtx** ptr_buffer = 0;
CvGraph* result = 0;
int i, k;
int vtx_size, edge_size;
CvSeqReader reader;
if( !CV_IS_GRAPH(graph))
CV_Error( CV_StsBadArg, "Invalid graph pointer" );
if( !storage )
storage = graph->storage;
if( !storage )
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
vtx_size = graph->elem_size;
edge_size = graph->edges->elem_size;
flag_buffer = (int*)cvAlloc( graph->total*sizeof(flag_buffer[0]));
ptr_buffer = (CvGraphVtx**)cvAlloc( graph->total*sizeof(ptr_buffer[0]));
result = cvCreateGraph( graph->flags, graph->header_size,
vtx_size, edge_size, storage );
memcpy( result + sizeof(CvGraph), graph + sizeof(CvGraph),
graph->header_size - sizeof(CvGraph));
cvStartReadSeq( (CvSeq*)graph, &reader );
for( i = 0, k = 0; i < graph->total; i++ )
{
if( CV_IS_SET_ELEM( reader.ptr ))
{
CvGraphVtx* vtx = (CvGraphVtx*)reader.ptr;
CvGraphVtx* dstvtx = 0;
cvGraphAddVtx( result, vtx, &dstvtx );
flag_buffer[k] = dstvtx->flags = vtx->flags;
vtx->flags = k;
ptr_buffer[k++] = dstvtx;
}
CV_NEXT_SEQ_ELEM( vtx_size, reader );
}
cvStartReadSeq( (CvSeq*)graph->edges, &reader );
for( i = 0; i < graph->edges->total; i++ )
{
if( CV_IS_SET_ELEM( reader.ptr ))
{
CvGraphEdge* edge = (CvGraphEdge*)reader.ptr;
CvGraphEdge* dstedge = 0;
CvGraphVtx* new_org = ptr_buffer[edge->vtx[0]->flags];
CvGraphVtx* new_dst = ptr_buffer[edge->vtx[1]->flags];
cvGraphAddEdgeByPtr( result, new_org, new_dst, edge, &dstedge );
dstedge->flags = edge->flags;
}
CV_NEXT_SEQ_ELEM( edge_size, reader );
}
cvStartReadSeq( (CvSeq*)graph, &reader );
for( i = 0, k = 0; i < graph->edges->total; i++ )
{
if( CV_IS_SET_ELEM( reader.ptr ))
{
CvGraphVtx* vtx = (CvGraphVtx*)reader.ptr;
vtx->flags = flag_buffer[k++];
}
CV_NEXT_SEQ_ELEM( vtx_size, reader );
}
cvFree( &flag_buffer );
cvFree( &ptr_buffer );
if( cvGetErrStatus() < 0 )
result = 0;
return result;
}
CV_IMPL CvSeq*
cvTreeToNodeSeq( const void* first, int header_size, CvMemStorage* storage )
{
CvSeq* allseq = 0;
CvTreeNodeIterator iterator;
if( !storage )
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
allseq = cvCreateSeq( 0, header_size, sizeof(first), storage );
if( first )
{
cvInitTreeNodeIterator( &iterator, first, INT_MAX );
for(;;)
{
void* node = cvNextTreeNode( &iterator );
if( !node )
break;
cvSeqPush( allseq, &node );
}
}
return allseq;
}
typedef struct CvTreeNode
{
int flags;
int header_size;
struct CvTreeNode* h_prev;
struct CvTreeNode* h_next;
struct CvTreeNode* v_prev;
struct CvTreeNode* v_next;
}
CvTreeNode;
CV_IMPL void
cvInsertNodeIntoTree( void* _node, void* _parent, void* _frame )
{
CvTreeNode* node = (CvTreeNode*)_node;
CvTreeNode* parent = (CvTreeNode*)_parent;
if( !node || !parent )
CV_Error( CV_StsNullPtr, "" );
node->v_prev = _parent != _frame ? parent : 0;
node->h_next = parent->v_next;
assert( parent->v_next != node );
if( parent->v_next )
parent->v_next->h_prev = node;
parent->v_next = node;
}
CV_IMPL void
cvRemoveNodeFromTree( void* _node, void* _frame )
{
CvTreeNode* node = (CvTreeNode*)_node;
CvTreeNode* frame = (CvTreeNode*)_frame;
if( !node )
CV_Error( CV_StsNullPtr, "" );
if( node == frame )
CV_Error( CV_StsBadArg, "frame node could not be deleted" );
if( node->h_next )
node->h_next->h_prev = node->h_prev;
if( node->h_prev )
node->h_prev->h_next = node->h_next;
else
{
CvTreeNode* parent = node->v_prev;
if( !parent )
parent = frame;
if( parent )
{
assert( parent->v_next == node );
parent->v_next = node->h_next;
}
}
}
CV_IMPL void
cvInitTreeNodeIterator( CvTreeNodeIterator* treeIterator,
const void* first, int max_level )
{
if( !treeIterator || !first )
CV_Error( CV_StsNullPtr, "" );
if( max_level < 0 )
CV_Error( CV_StsOutOfRange, "" );
treeIterator->node = (void*)first;
treeIterator->level = 0;
treeIterator->max_level = max_level;
}
CV_IMPL void*
cvNextTreeNode( CvTreeNodeIterator* treeIterator )
{
CvTreeNode* prevNode = 0;
CvTreeNode* node;
int level;
if( !treeIterator )
CV_Error( CV_StsNullPtr, "NULL iterator pointer" );
prevNode = node = (CvTreeNode*)treeIterator->node;
level = treeIterator->level;
if( node )
{
if( node->v_next && level+1 < treeIterator->max_level )
{
node = node->v_next;
level++;
}
else
{
while( node->h_next == 0 )
{
node = node->v_prev;
if( --level < 0 )
{
node = 0;
break;
}
}
node = node && treeIterator->max_level != 0 ? node->h_next : 0;
}
}
treeIterator->node = node;
treeIterator->level = level;
return prevNode;
}
CV_IMPL void*
cvPrevTreeNode( CvTreeNodeIterator* treeIterator )
{
CvTreeNode* prevNode = 0;
CvTreeNode* node;
int level;
if( !treeIterator )
CV_Error( CV_StsNullPtr, "" );
prevNode = node = (CvTreeNode*)treeIterator->node;
level = treeIterator->level;
if( node )
{
if( !node->h_prev )
{
node = node->v_prev;
if( --level < 0 )
node = 0;
}
else
{
node = node->h_prev;
while( node->v_next && level < treeIterator->max_level )
{
node = node->v_next;
level++;
while( node->h_next )
node = node->h_next;
}
}
}
treeIterator->node = node;
treeIterator->level = level;
return prevNode;
}
namespace cv
{
schar* seqPush( CvSeq* seq, const void* element )
{
return cvSeqPush(seq, element);
}
schar* seqPushFront( CvSeq* seq, const void* element )
{
return cvSeqPushFront(seq, element);
}
void seqPop( CvSeq* seq, void* element )
{
cvSeqPop(seq, element);
}
void seqPopFront( CvSeq* seq, void* element )
{
cvSeqPopFront(seq, element);
}
void seqRemove( CvSeq* seq, int index )
{
cvSeqRemove(seq, index);
}
void clearSeq( CvSeq* seq )
{
cvClearSeq(seq);
}
schar* getSeqElem( const CvSeq* seq, int index )
{
return cvGetSeqElem(seq, index);
}
void seqRemoveSlice( CvSeq* seq, CvSlice slice )
{
return cvSeqRemoveSlice(seq, slice);
}
void seqInsertSlice( CvSeq* seq, int before_index, const CvArr* from_arr )
{
cvSeqInsertSlice(seq, before_index, from_arr);
}
}