root/modules/cudaimgproc/src/generalized_hough.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. createGeneralizedHoughBallard
  2. createGeneralizedHoughGuil
  3. calcEdges
  4. setTemplateImpl
  5. setTemplateImpl
  6. detectImpl
  7. detectImpl
  8. buildEdgePointList
  9. filterMinDist
  10. convertTo
  11. setTemplate
  12. setTemplate
  13. detect
  14. detect
  15. setCannyLowThresh
  16. getCannyLowThresh
  17. setCannyHighThresh
  18. getCannyHighThresh
  19. setMinDist
  20. getMinDist
  21. setDp
  22. getDp
  23. setMaxBufferSize
  24. getMaxBufferSize
  25. setLevels
  26. getLevels
  27. setVotesThreshold
  28. getVotesThreshold
  29. processTempl
  30. processImage
  31. calcHist
  32. findPosInHist
  33. createGeneralizedHoughBallard
  34. setTemplate
  35. setTemplate
  36. detect
  37. detect
  38. setCannyLowThresh
  39. getCannyLowThresh
  40. setCannyHighThresh
  41. getCannyHighThresh
  42. setMinDist
  43. getMinDist
  44. setDp
  45. getDp
  46. setMaxBufferSize
  47. getMaxBufferSize
  48. setXi
  49. getXi
  50. setLevels
  51. getLevels
  52. setAngleEpsilon
  53. getAngleEpsilon
  54. setMinAngle
  55. getMinAngle
  56. setMaxAngle
  57. getMaxAngle
  58. setAngleStep
  59. getAngleStep
  60. setAngleThresh
  61. getAngleThresh
  62. setMinScale
  63. getMinScale
  64. setMaxScale
  65. getMaxScale
  66. setScaleStep
  67. getScaleStep
  68. setScaleThresh
  69. getScaleThresh
  70. setPosThresh
  71. getPosThresh
  72. toRad
  73. clampAngle
  74. angleEq
  75. processTempl
  76. processImage
  77. create
  78. buildFeatureList
  79. calcOrientation
  80. calcScale
  81. calcPosition
  82. createGeneralizedHoughGuil

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || !defined(HAVE_OPENCV_CUDAARITHM)

Ptr<GeneralizedHoughBallard> cv::cuda::createGeneralizedHoughBallard() { throw_no_cuda(); return Ptr<GeneralizedHoughBallard>(); }

Ptr<GeneralizedHoughGuil> cv::cuda::createGeneralizedHoughGuil() { throw_no_cuda(); return Ptr<GeneralizedHoughGuil>(); }

#else /* !defined (HAVE_CUDA) */

namespace cv { namespace cuda { namespace device
{
    namespace ght
    {
        template <typename T>
        int buildEdgePointList_gpu(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
        void buildRTable_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
                             PtrStepSz<short2> r_table, int* r_sizes,
                             short2 templCenter, int levels);

        void Ballard_Pos_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
                                      PtrStepSz<short2> r_table, const int* r_sizes,
                                      PtrStepSzi hist,
                                      float dp, int levels);
        int Ballard_Pos_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int maxSize, float dp, int threshold);

        void Guil_Full_setTemplFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
        void Guil_Full_setImageFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
        void Guil_Full_buildTemplFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
                                                 int* sizes, int maxSize,
                                                 float xi, float angleEpsilon, int levels,
                                                 float2 center, float maxDist);
        void Guil_Full_buildImageFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
                                                 int* sizes, int maxSize,
                                                 float xi, float angleEpsilon, int levels,
                                                 float2 center, float maxDist);
        void Guil_Full_calcOHist_gpu(const int* templSizes, const int* imageSizes, int* OHist,
                                     float minAngle, float maxAngle, float angleStep, int angleRange,
                                     int levels, int tMaxSize);
        void Guil_Full_calcSHist_gpu(const int* templSizes, const int* imageSizes, int* SHist,
                                     float angle, float angleEpsilon,
                                     float minScale, float maxScale, float iScaleStep, int scaleRange,
                                     int levels, int tMaxSize);
        void Guil_Full_calcPHist_gpu(const int* templSizes, const int* imageSizes, PtrStepSzi PHist,
                                     float angle, float angleEpsilon, float scale,
                                     float dp,
                                     int levels, int tMaxSize);
        int Guil_Full_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int curSize, int maxSize,
                                        float angle, int angleVotes, float scale, int scaleVotes,
                                        float dp, int threshold);
    }
}}}

// common

namespace
{
    class GeneralizedHoughBase
    {
    protected:
        GeneralizedHoughBase();
        virtual ~GeneralizedHoughBase() {}

        void setTemplateImpl(InputArray templ, Point templCenter);
        void setTemplateImpl(InputArray edges, InputArray dx, InputArray dy, Point templCenter);

        void detectImpl(InputArray image, OutputArray positions, OutputArray votes);
        void detectImpl(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes);

        void buildEdgePointList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy);

        virtual void processTempl() = 0;
        virtual void processImage() = 0;

        int cannyLowThresh_;
        int cannyHighThresh_;
        double minDist_;
        double dp_;
        int maxBufferSize_;

        Size templSize_;
        Point templCenter_;
        GpuMat templEdges_;
        GpuMat templDx_;
        GpuMat templDy_;

        Size imageSize_;
        GpuMat imageEdges_;
        GpuMat imageDx_;
        GpuMat imageDy_;

        GpuMat edgePointList_;

        GpuMat outBuf_;
        int posCount_;

    private:
#ifdef HAVE_OPENCV_CUDAFILTERS
        void calcEdges(InputArray src, GpuMat& edges, GpuMat& dx, GpuMat& dy);
#endif

        void filterMinDist();
        void convertTo(OutputArray positions, OutputArray votes);

#ifdef HAVE_OPENCV_CUDAFILTERS
        Ptr<cuda::CannyEdgeDetector> canny_;
        Ptr<cuda::Filter> filterDx_;
        Ptr<cuda::Filter> filterDy_;
#endif

        std::vector<float4> oldPosBuf_;
        std::vector<int3> oldVoteBuf_;
        std::vector<float4> newPosBuf_;
        std::vector<int3> newVoteBuf_;
        std::vector<int> indexies_;
    };

    GeneralizedHoughBase::GeneralizedHoughBase()
    {
        cannyLowThresh_ = 50;
        cannyHighThresh_ = 100;
        minDist_ = 1.0;
        dp_ = 1.0;

        maxBufferSize_ = 10000;

#ifdef HAVE_OPENCV_CUDAFILTERS
        canny_ = cuda::createCannyEdgeDetector(cannyLowThresh_, cannyHighThresh_);
        filterDx_ = cuda::createSobelFilter(CV_8UC1, CV_32S, 1, 0);
        filterDy_ = cuda::createSobelFilter(CV_8UC1, CV_32S, 0, 1);
#endif
    }

#ifdef HAVE_OPENCV_CUDAFILTERS
    void GeneralizedHoughBase::calcEdges(InputArray _src, GpuMat& edges, GpuMat& dx, GpuMat& dy)
    {
        GpuMat src = _src.getGpuMat();

        CV_Assert( src.type() == CV_8UC1 );
        CV_Assert( cannyLowThresh_ > 0 && cannyLowThresh_ < cannyHighThresh_ );

        ensureSizeIsEnough(src.size(), CV_32SC1, dx);
        ensureSizeIsEnough(src.size(), CV_32SC1, dy);

        filterDx_->apply(src, dx);
        filterDy_->apply(src, dy);

        ensureSizeIsEnough(src.size(), CV_8UC1, edges);

        canny_->setLowThreshold(cannyLowThresh_);
        canny_->setHighThreshold(cannyHighThresh_);
        canny_->detect(dx, dy, edges);
    }
#endif

    void GeneralizedHoughBase::setTemplateImpl(InputArray templ, Point templCenter)
    {
#ifndef HAVE_OPENCV_CUDAFILTERS
        (void) templ;
        (void) templCenter;
        throw_no_cuda();
#else
        calcEdges(templ, templEdges_, templDx_, templDy_);

        if (templCenter == Point(-1, -1))
            templCenter = Point(templEdges_.cols / 2, templEdges_.rows / 2);

        templSize_ = templEdges_.size();
        templCenter_ = templCenter;

        processTempl();
#endif
    }

    void GeneralizedHoughBase::setTemplateImpl(InputArray edges, InputArray dx, InputArray dy, Point templCenter)
    {
        edges.getGpuMat().copyTo(templEdges_);
        dx.getGpuMat().copyTo(templDx_);
        dy.getGpuMat().copyTo(templDy_);

        CV_Assert( templEdges_.type() == CV_8UC1 );
        CV_Assert( templDx_.type() == CV_32FC1 && templDx_.size() == templEdges_.size() );
        CV_Assert( templDy_.type() == templDx_.type() && templDy_.size() == templEdges_.size() );

        if (templCenter == Point(-1, -1))
            templCenter = Point(templEdges_.cols / 2, templEdges_.rows / 2);

        templSize_ = templEdges_.size();
        templCenter_ = templCenter;

        processTempl();
    }

    void GeneralizedHoughBase::detectImpl(InputArray image, OutputArray positions, OutputArray votes)
    {
#ifndef HAVE_OPENCV_CUDAFILTERS
        (void) image;
        (void) positions;
        (void) votes;
        throw_no_cuda();
#else
        calcEdges(image, imageEdges_, imageDx_, imageDy_);

        imageSize_ = imageEdges_.size();

        posCount_ = 0;

        processImage();

        if (posCount_ == 0)
        {
            positions.release();
            if (votes.needed())
                votes.release();
        }
        else
        {
            if (minDist_ > 1)
                filterMinDist();
            convertTo(positions, votes);
        }
#endif
    }

    void GeneralizedHoughBase::detectImpl(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes)
    {
        edges.getGpuMat().copyTo(imageEdges_);
        dx.getGpuMat().copyTo(imageDx_);
        dy.getGpuMat().copyTo(imageDy_);

        CV_Assert( imageEdges_.type() == CV_8UC1 );
        CV_Assert( imageDx_.type() == CV_32FC1 && imageDx_.size() == imageEdges_.size() );
        CV_Assert( imageDy_.type() == imageDx_.type() && imageDy_.size() == imageEdges_.size() );

        imageSize_ = imageEdges_.size();

        posCount_ = 0;

        processImage();

        if (posCount_ == 0)
        {
            positions.release();
            if (votes.needed())
                votes.release();
        }
        else
        {
            if (minDist_ > 1)
                filterMinDist();
            convertTo(positions, votes);
        }
    }

    void GeneralizedHoughBase::buildEdgePointList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy)
    {
        using namespace cv::cuda::device::ght;

        typedef int (*func_t)(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
        static const func_t funcs[] =
        {
            0,
            0,
            0,
            buildEdgePointList_gpu<short>,
            buildEdgePointList_gpu<int>,
            buildEdgePointList_gpu<float>,
            0
        };

        CV_Assert( edges.type() == CV_8UC1 );
        CV_Assert( dx.size() == edges.size() );
        CV_Assert( dy.type() == dx.type() && dy.size() == edges.size() );

        const func_t func = funcs[dx.depth()];
        CV_Assert( func != 0 );

        edgePointList_.cols = (int) (edgePointList_.step / sizeof(int));
        ensureSizeIsEnough(2, edges.size().area(), CV_32SC1, edgePointList_);

        edgePointList_.cols = func(edges, dx, dy, edgePointList_.ptr<unsigned int>(0), edgePointList_.ptr<float>(1));
    }

    struct IndexCmp
    {
        const int3* aux;

        explicit IndexCmp(const int3* _aux) : aux(_aux) {}

        bool operator ()(int l1, int l2) const
        {
            return aux[l1].x > aux[l2].x;
        }
    };

    void GeneralizedHoughBase::filterMinDist()
    {
        oldPosBuf_.resize(posCount_);
        oldVoteBuf_.resize(posCount_);

        cudaSafeCall( cudaMemcpy(&oldPosBuf_[0], outBuf_.ptr(0), posCount_ * sizeof(float4), cudaMemcpyDeviceToHost) );
        cudaSafeCall( cudaMemcpy(&oldVoteBuf_[0], outBuf_.ptr(1), posCount_ * sizeof(int3), cudaMemcpyDeviceToHost) );

        indexies_.resize(posCount_);
        for (int i = 0; i < posCount_; ++i)
            indexies_[i] = i;
        std::sort(indexies_.begin(), indexies_.end(), IndexCmp(&oldVoteBuf_[0]));

        newPosBuf_.clear();
        newVoteBuf_.clear();
        newPosBuf_.reserve(posCount_);
        newVoteBuf_.reserve(posCount_);

        const int cellSize = cvRound(minDist_);
        const int gridWidth = (imageSize_.width + cellSize - 1) / cellSize;
        const int gridHeight = (imageSize_.height + cellSize - 1) / cellSize;

        std::vector< std::vector<Point2f> > grid(gridWidth * gridHeight);

        const double minDist2 = minDist_ * minDist_;

        for (int i = 0; i < posCount_; ++i)
        {
            const int ind = indexies_[i];

            Point2f p(oldPosBuf_[ind].x, oldPosBuf_[ind].y);

            bool good = true;

            const int xCell = static_cast<int>(p.x / cellSize);
            const int yCell = static_cast<int>(p.y / cellSize);

            int x1 = xCell - 1;
            int y1 = yCell - 1;
            int x2 = xCell + 1;
            int y2 = yCell + 1;

            // boundary check
            x1 = std::max(0, x1);
            y1 = std::max(0, y1);
            x2 = std::min(gridWidth - 1, x2);
            y2 = std::min(gridHeight - 1, y2);

            for (int yy = y1; yy <= y2; ++yy)
            {
                for (int xx = x1; xx <= x2; ++xx)
                {
                    const std::vector<Point2f>& m = grid[yy * gridWidth + xx];

                    for(size_t j = 0; j < m.size(); ++j)
                    {
                        const Point2f d = p - m[j];

                        if (d.ddot(d) < minDist2)
                        {
                            good = false;
                            goto break_out;
                        }
                    }
                }
            }

            break_out:

            if(good)
            {
                grid[yCell * gridWidth + xCell].push_back(p);

                newPosBuf_.push_back(oldPosBuf_[ind]);
                newVoteBuf_.push_back(oldVoteBuf_[ind]);
            }
        }

        posCount_ = static_cast<int>(newPosBuf_.size());
        cudaSafeCall( cudaMemcpy(outBuf_.ptr(0), &newPosBuf_[0], posCount_ * sizeof(float4), cudaMemcpyHostToDevice) );
        cudaSafeCall( cudaMemcpy(outBuf_.ptr(1), &newVoteBuf_[0], posCount_ * sizeof(int3), cudaMemcpyHostToDevice) );
    }

    void GeneralizedHoughBase::convertTo(OutputArray positions, OutputArray votes)
    {
        ensureSizeIsEnough(1, posCount_, CV_32FC4, positions);
        GpuMat(1, posCount_, CV_32FC4, outBuf_.ptr(0), outBuf_.step).copyTo(positions);

        if (votes.needed())
        {
            ensureSizeIsEnough(1, posCount_, CV_32FC3, votes);
            GpuMat(1, posCount_, CV_32FC4, outBuf_.ptr(1), outBuf_.step).copyTo(votes);
        }
    }
}

// GeneralizedHoughBallard

namespace
{
    class GeneralizedHoughBallardImpl : public GeneralizedHoughBallard, private GeneralizedHoughBase
    {
    public:
        GeneralizedHoughBallardImpl();

        void setTemplate(InputArray templ, Point templCenter) { setTemplateImpl(templ, templCenter); }
        void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter) { setTemplateImpl(edges, dx, dy, templCenter); }

        void detect(InputArray image, OutputArray positions, OutputArray votes) { detectImpl(image, positions, votes); }
        void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes) { detectImpl(edges, dx, dy, positions, votes); }

        void setCannyLowThresh(int cannyLowThresh) { cannyLowThresh_ = cannyLowThresh; }
        int getCannyLowThresh() const { return cannyLowThresh_; }

        void setCannyHighThresh(int cannyHighThresh) { cannyHighThresh_ = cannyHighThresh; }
        int getCannyHighThresh() const { return cannyHighThresh_; }

        void setMinDist(double minDist) { minDist_ = minDist; }
        double getMinDist() const { return minDist_; }

        void setDp(double dp) { dp_ = dp; }
        double getDp() const { return dp_; }

        void setMaxBufferSize(int maxBufferSize) { maxBufferSize_ = maxBufferSize; }
        int getMaxBufferSize() const { return maxBufferSize_; }

        void setLevels(int levels) { levels_ = levels; }
        int getLevels() const { return levels_; }

        void setVotesThreshold(int votesThreshold) { votesThreshold_ = votesThreshold; }
        int getVotesThreshold() const { return votesThreshold_; }

    private:
        void processTempl();
        void processImage();

        void calcHist();
        void findPosInHist();

        int levels_;
        int votesThreshold_;

        GpuMat r_table_;
        GpuMat r_sizes_;

        GpuMat hist_;
    };

    GeneralizedHoughBallardImpl::GeneralizedHoughBallardImpl()
    {
        levels_ = 360;
        votesThreshold_ = 100;
    }

    void GeneralizedHoughBallardImpl::processTempl()
    {
        using namespace cv::cuda::device::ght;

        CV_Assert( levels_ > 0 );

        buildEdgePointList(templEdges_, templDx_, templDy_);

        ensureSizeIsEnough(levels_ + 1, maxBufferSize_, CV_16SC2, r_table_);
        ensureSizeIsEnough(1, levels_ + 1, CV_32SC1, r_sizes_);
        r_sizes_.setTo(Scalar::all(0));

        if (edgePointList_.cols > 0)
        {
            buildRTable_gpu(edgePointList_.ptr<unsigned int>(0), edgePointList_.ptr<float>(1), edgePointList_.cols,
                            r_table_, r_sizes_.ptr<int>(), make_short2(templCenter_.x, templCenter_.y), levels_);
            cuda::min(r_sizes_, maxBufferSize_, r_sizes_);
        }
    }

    void GeneralizedHoughBallardImpl::processImage()
    {
        calcHist();
        findPosInHist();
    }

    void GeneralizedHoughBallardImpl::calcHist()
    {
        using namespace cv::cuda::device::ght;

        CV_Assert( levels_ > 0 && r_table_.rows == (levels_ + 1) && r_sizes_.cols == (levels_ + 1) );
        CV_Assert( dp_ > 0.0);

        const double idp = 1.0 / dp_;

        buildEdgePointList(imageEdges_, imageDx_, imageDy_);

        ensureSizeIsEnough(cvCeil(imageSize_.height * idp) + 2, cvCeil(imageSize_.width * idp) + 2, CV_32SC1, hist_);
        hist_.setTo(Scalar::all(0));

        if (edgePointList_.cols > 0)
        {
            Ballard_Pos_calcHist_gpu(edgePointList_.ptr<unsigned int>(0), edgePointList_.ptr<float>(1), edgePointList_.cols,
                                     r_table_, r_sizes_.ptr<int>(),
                                     hist_,
                                     (float)dp_, levels_);
        }
    }

    void GeneralizedHoughBallardImpl::findPosInHist()
    {
        using namespace cv::cuda::device::ght;

        CV_Assert( votesThreshold_ > 0 );

        ensureSizeIsEnough(2, maxBufferSize_, CV_32FC4, outBuf_);

        posCount_ = Ballard_Pos_findPosInHist_gpu(hist_, outBuf_.ptr<float4>(0), outBuf_.ptr<int3>(1), maxBufferSize_, (float)dp_, votesThreshold_);
    }
}

Ptr<GeneralizedHoughBallard> cv::cuda::createGeneralizedHoughBallard()
{
    return makePtr<GeneralizedHoughBallardImpl>();
}

// GeneralizedHoughGuil

namespace
{
    class GeneralizedHoughGuilImpl : public GeneralizedHoughGuil, private GeneralizedHoughBase
    {
    public:
        GeneralizedHoughGuilImpl();

        void setTemplate(InputArray templ, Point templCenter) { setTemplateImpl(templ, templCenter); }
        void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter) { setTemplateImpl(edges, dx, dy, templCenter); }

        void detect(InputArray image, OutputArray positions, OutputArray votes) { detectImpl(image, positions, votes); }
        void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes) { detectImpl(edges, dx, dy, positions, votes); }

        void setCannyLowThresh(int cannyLowThresh) { cannyLowThresh_ = cannyLowThresh; }
        int getCannyLowThresh() const { return cannyLowThresh_; }

        void setCannyHighThresh(int cannyHighThresh) { cannyHighThresh_ = cannyHighThresh; }
        int getCannyHighThresh() const { return cannyHighThresh_; }

        void setMinDist(double minDist) { minDist_ = minDist; }
        double getMinDist() const { return minDist_; }

        void setDp(double dp) { dp_ = dp; }
        double getDp() const { return dp_; }

        void setMaxBufferSize(int maxBufferSize) { maxBufferSize_ = maxBufferSize; }
        int getMaxBufferSize() const { return maxBufferSize_; }

        void setXi(double xi) { xi_ = xi; }
        double getXi() const { return xi_; }

        void setLevels(int levels) { levels_ = levels; }
        int getLevels() const { return levels_; }

        void setAngleEpsilon(double angleEpsilon) { angleEpsilon_ = angleEpsilon; }
        double getAngleEpsilon() const { return angleEpsilon_; }

        void setMinAngle(double minAngle) { minAngle_ = minAngle; }
        double getMinAngle() const { return minAngle_; }

        void setMaxAngle(double maxAngle) { maxAngle_ = maxAngle; }
        double getMaxAngle() const { return maxAngle_; }

        void setAngleStep(double angleStep) { angleStep_ = angleStep; }
        double getAngleStep() const { return angleStep_; }

        void setAngleThresh(int angleThresh) { angleThresh_ = angleThresh; }
        int getAngleThresh() const { return angleThresh_; }

        void setMinScale(double minScale) { minScale_ = minScale; }
        double getMinScale() const { return minScale_; }

        void setMaxScale(double maxScale) { maxScale_ = maxScale; }
        double getMaxScale() const { return maxScale_; }

        void setScaleStep(double scaleStep) { scaleStep_ = scaleStep; }
        double getScaleStep() const { return scaleStep_; }

        void setScaleThresh(int scaleThresh) { scaleThresh_ = scaleThresh; }
        int getScaleThresh() const { return scaleThresh_; }

        void setPosThresh(int posThresh) { posThresh_ = posThresh; }
        int getPosThresh() const { return posThresh_; }

    private:
        void processTempl();
        void processImage();

        double xi_;
        int levels_;
        double angleEpsilon_;

        double minAngle_;
        double maxAngle_;
        double angleStep_;
        int angleThresh_;

        double minScale_;
        double maxScale_;
        double scaleStep_;
        int scaleThresh_;

        int posThresh_;

        struct Feature
        {
            GpuMat p1_pos;
            GpuMat p1_theta;
            GpuMat p2_pos;

            GpuMat d12;

            GpuMat r1;
            GpuMat r2;

            GpuMat sizes;
            int maxSize;

            void create(int levels, int maxCapacity, bool isTempl);
        };

        typedef void (*set_func_t)(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
        typedef void (*build_func_t)(const unsigned int* coordList, const float* thetaList, int pointsCount,
                                     int* sizes, int maxSize,
                                     float xi, float angleEpsilon, int levels,
                                     float2 center, float maxDist);

        void buildFeatureList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Feature& features,
                              set_func_t set_func, build_func_t build_func, bool isTempl, Point2d center = Point2d());

        void calcOrientation();
        void calcScale(double angle);
        void calcPosition(double angle, int angleVotes, double scale, int scaleVotes);

        Feature templFeatures_;
        Feature imageFeatures_;

        std::vector< std::pair<double, int> > angles_;
        std::vector< std::pair<double, int> > scales_;

        GpuMat hist_;
        std::vector<int> h_buf_;
    };

    double toRad(double a)
    {
        return a * CV_PI / 180.0;
    }

    double clampAngle(double a)
    {
        double res = a;

        while (res > 360.0)
            res -= 360.0;
        while (res < 0)
            res += 360.0;

        return res;
    }

    bool angleEq(double a, double b, double eps = 1.0)
    {
        return (fabs(clampAngle(a - b)) <= eps);
    }

    GeneralizedHoughGuilImpl::GeneralizedHoughGuilImpl()
    {
        maxBufferSize_ = 1000;

        xi_ = 90.0;
        levels_ = 360;
        angleEpsilon_ = 1.0;

        minAngle_ = 0.0;
        maxAngle_ = 360.0;
        angleStep_ = 1.0;
        angleThresh_ = 15000;

        minScale_ = 0.5;
        maxScale_ = 2.0;
        scaleStep_ = 0.05;
        scaleThresh_ = 1000;

        posThresh_ = 100;
    }

    void GeneralizedHoughGuilImpl::processTempl()
    {
        using namespace cv::cuda::device::ght;

        buildFeatureList(templEdges_, templDx_, templDy_, templFeatures_,
            Guil_Full_setTemplFeatures, Guil_Full_buildTemplFeatureList_gpu,
            true, templCenter_);

        h_buf_.resize(templFeatures_.sizes.cols);
        cudaSafeCall( cudaMemcpy(&h_buf_[0], templFeatures_.sizes.data, h_buf_.size() * sizeof(int), cudaMemcpyDeviceToHost) );
        templFeatures_.maxSize = *std::max_element(h_buf_.begin(), h_buf_.end());
    }

    void GeneralizedHoughGuilImpl::processImage()
    {
        using namespace cv::cuda::device::ght;

        CV_Assert( levels_ > 0 );
        CV_Assert( templFeatures_.sizes.cols == levels_ + 1 );
        CV_Assert( minAngle_ >= 0.0 && minAngle_ < maxAngle_ && maxAngle_ <= 360.0 );
        CV_Assert( angleStep_ > 0.0 && angleStep_ < 360.0 );
        CV_Assert( angleThresh_ > 0 );
        CV_Assert( minScale_ > 0.0 && minScale_ < maxScale_ );
        CV_Assert( scaleStep_ > 0.0 );
        CV_Assert( scaleThresh_ > 0 );
        CV_Assert( dp_ > 0.0 );
        CV_Assert( posThresh_ > 0 );

        const double iAngleStep = 1.0 / angleStep_;
        const int angleRange = cvCeil((maxAngle_ - minAngle_) * iAngleStep);

        const double iScaleStep = 1.0 / scaleStep_;
        const int scaleRange = cvCeil((maxScale_ - minScale_) * iScaleStep);

        const double idp = 1.0 / dp_;
        const int histRows = cvCeil(imageSize_.height * idp);
        const int histCols = cvCeil(imageSize_.width * idp);

        ensureSizeIsEnough(histRows + 2, std::max(angleRange + 1, std::max(scaleRange + 1, histCols + 2)), CV_32SC1, hist_);
        h_buf_.resize(std::max(angleRange + 1, scaleRange + 1));

        ensureSizeIsEnough(2, maxBufferSize_, CV_32FC4, outBuf_);

        buildFeatureList(imageEdges_, imageDx_, imageDy_, imageFeatures_,
            Guil_Full_setImageFeatures, Guil_Full_buildImageFeatureList_gpu,
            false);

        calcOrientation();

        for (size_t i = 0; i < angles_.size(); ++i)
        {
            const double angle = angles_[i].first;
            const int angleVotes = angles_[i].second;

            calcScale(angle);

            for (size_t j = 0; j < scales_.size(); ++j)
            {
                const double scale = scales_[j].first;
                const int scaleVotes = scales_[j].second;

                calcPosition(angle, angleVotes, scale, scaleVotes);
            }
        }
    }

    void GeneralizedHoughGuilImpl::Feature::create(int levels, int maxCapacity, bool isTempl)
    {
        if (!isTempl)
        {
            ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, p1_pos);
            ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, p2_pos);
        }

        ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC1, p1_theta);

        ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC1, d12);

        if (isTempl)
        {
            ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, r1);
            ensureSizeIsEnough(levels + 1, maxCapacity, CV_32FC2, r2);
        }

        ensureSizeIsEnough(1, levels + 1, CV_32SC1, sizes);
        sizes.setTo(Scalar::all(0));

        maxSize = 0;
    }

    void GeneralizedHoughGuilImpl::buildFeatureList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Feature& features,
                                                    set_func_t set_func, build_func_t build_func, bool isTempl, Point2d center)
    {
        CV_Assert( levels_ > 0 );

        const double maxDist = sqrt((double) templSize_.width * templSize_.width + templSize_.height * templSize_.height) * maxScale_;

        features.create(levels_, maxBufferSize_, isTempl);
        set_func(features.p1_pos, features.p1_theta, features.p2_pos, features.d12, features.r1, features.r2);

        buildEdgePointList(edges, dx, dy);

        if (edgePointList_.cols > 0)
        {
            build_func(edgePointList_.ptr<unsigned int>(0), edgePointList_.ptr<float>(1), edgePointList_.cols,
                features.sizes.ptr<int>(), maxBufferSize_, (float)xi_, (float)angleEpsilon_, levels_, make_float2((float)center.x, (float)center.y), (float)maxDist);
        }
    }

    void GeneralizedHoughGuilImpl::calcOrientation()
    {
        using namespace cv::cuda::device::ght;

        const double iAngleStep = 1.0 / angleStep_;
        const int angleRange = cvCeil((maxAngle_ - minAngle_) * iAngleStep);

        hist_.setTo(Scalar::all(0));
        Guil_Full_calcOHist_gpu(templFeatures_.sizes.ptr<int>(), imageFeatures_.sizes.ptr<int>(0), hist_.ptr<int>(),
                                (float)minAngle_, (float)maxAngle_, (float)angleStep_, angleRange, levels_, templFeatures_.maxSize);
        cudaSafeCall( cudaMemcpy(&h_buf_[0], hist_.data, h_buf_.size() * sizeof(int), cudaMemcpyDeviceToHost) );

        angles_.clear();

        for (int n = 0; n < angleRange; ++n)
        {
            if (h_buf_[n] >= angleThresh_)
            {
                const double angle = minAngle_ + n * angleStep_;
                angles_.push_back(std::make_pair(angle, h_buf_[n]));
            }
        }
    }

    void GeneralizedHoughGuilImpl::calcScale(double angle)
    {
        using namespace cv::cuda::device::ght;

        const double iScaleStep = 1.0 / scaleStep_;
        const int scaleRange = cvCeil((maxScale_ - minScale_) * iScaleStep);

        hist_.setTo(Scalar::all(0));
        Guil_Full_calcSHist_gpu(templFeatures_.sizes.ptr<int>(), imageFeatures_.sizes.ptr<int>(0), hist_.ptr<int>(),
                                (float)angle, (float)angleEpsilon_, (float)minScale_, (float)maxScale_,
                                (float)iScaleStep, scaleRange, levels_, templFeatures_.maxSize);
        cudaSafeCall( cudaMemcpy(&h_buf_[0], hist_.data, h_buf_.size() * sizeof(int), cudaMemcpyDeviceToHost) );

        scales_.clear();

        for (int s = 0; s < scaleRange; ++s)
        {
            if (h_buf_[s] >= scaleThresh_)
            {
                const double scale = minScale_ + s * scaleStep_;
                scales_.push_back(std::make_pair(scale, h_buf_[s]));
            }
        }
    }

    void GeneralizedHoughGuilImpl::calcPosition(double angle, int angleVotes, double scale, int scaleVotes)
    {
        using namespace cv::cuda::device::ght;

        hist_.setTo(Scalar::all(0));
        Guil_Full_calcPHist_gpu(templFeatures_.sizes.ptr<int>(), imageFeatures_.sizes.ptr<int>(0), hist_,
                                (float)angle, (float)angleEpsilon_, (float)scale, (float)dp_, levels_, templFeatures_.maxSize);

        posCount_ = Guil_Full_findPosInHist_gpu(hist_, outBuf_.ptr<float4>(0), outBuf_.ptr<int3>(1),
                                                posCount_, maxBufferSize_, (float)angle, angleVotes,
                                                (float)scale, scaleVotes, (float)dp_, posThresh_);
    }
}

Ptr<GeneralizedHoughGuil> cv::cuda::createGeneralizedHoughGuil()
{
    return makePtr<GeneralizedHoughGuilImpl>();
}

#endif /* !defined (HAVE_CUDA) */

/* [<][>][^][v][top][bottom][index][help] */