root/modules/cudaimgproc/src/histogram.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. calcHist
  2. equalizeHist
  3. createCLAHE
  4. evenLevels
  5. histEven
  6. histEven
  7. histRange
  8. histRange
  9. calcHist
  10. equalizeHist
  11. tilesY_
  12. apply
  13. apply
  14. setClipLimit
  15. getClipLimit
  16. setTilesGridSize
  17. getTilesGridSize
  18. collectGarbage
  19. createCLAHE
  20. hist
  21. hist
  22. hist
  23. hist
  24. evenLevels
  25. histEven8u
  26. histEven
  27. histEven
  28. histRange
  29. histRange

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)

void cv::cuda::calcHist(InputArray, OutputArray, Stream&) { throw_no_cuda(); }

void cv::cuda::equalizeHist(InputArray, OutputArray, Stream&) { throw_no_cuda(); }

cv::Ptr<cv::cuda::CLAHE> cv::cuda::createCLAHE(double, cv::Size) { throw_no_cuda(); return cv::Ptr<cv::cuda::CLAHE>(); }

void cv::cuda::evenLevels(OutputArray, int, int, int, Stream&) { throw_no_cuda(); }

void cv::cuda::histEven(InputArray, OutputArray, InputOutputArray, int, int, int, Stream&) { throw_no_cuda(); }
void cv::cuda::histEven(InputArray, GpuMat*, InputOutputArray, int*, int*, int*, Stream&) { throw_no_cuda(); }

void cv::cuda::histRange(InputArray, OutputArray, InputArray, InputOutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::histRange(InputArray, GpuMat*, const GpuMat*, InputOutputArray, Stream&) { throw_no_cuda(); }

#else /* !defined (HAVE_CUDA) */

////////////////////////////////////////////////////////////////////////
// calcHist

namespace hist
{
    void histogram256(PtrStepSzb src, int* hist, cudaStream_t stream);
}

void cv::cuda::calcHist(InputArray _src, OutputArray _hist, Stream& stream)
{
    GpuMat src = _src.getGpuMat();

    CV_Assert( src.type() == CV_8UC1 );

    _hist.create(1, 256, CV_32SC1);
    GpuMat hist = _hist.getGpuMat();

    hist.setTo(Scalar::all(0), stream);

    hist::histogram256(src, hist.ptr<int>(), StreamAccessor::getStream(stream));
}

////////////////////////////////////////////////////////////////////////
// equalizeHist

namespace hist
{
    void equalizeHist(PtrStepSzb src, PtrStepSzb dst, const int* lut, cudaStream_t stream);
}

void cv::cuda::equalizeHist(InputArray _src, OutputArray _dst, Stream& _stream)
{
    GpuMat src = _src.getGpuMat();

    CV_Assert( src.type() == CV_8UC1 );

    _dst.create(src.size(), src.type());
    GpuMat dst = _dst.getGpuMat();

    int intBufSize;
    nppSafeCall( nppsIntegralGetBufferSize_32s(256, &intBufSize) );

    size_t bufSize = intBufSize + 2 * 256 * sizeof(int);

    BufferPool pool(_stream);
    GpuMat buf = pool.getBuffer(1, static_cast<int>(bufSize), CV_8UC1);

    GpuMat hist(1, 256, CV_32SC1, buf.data);
    GpuMat lut(1, 256, CV_32SC1, buf.data + 256 * sizeof(int));
    GpuMat intBuf(1, intBufSize, CV_8UC1, buf.data + 2 * 256 * sizeof(int));

    cuda::calcHist(src, hist, _stream);

    cudaStream_t stream = StreamAccessor::getStream(_stream);
    NppStreamHandler h(stream);

    nppSafeCall( nppsIntegral_32s(hist.ptr<Npp32s>(), lut.ptr<Npp32s>(), 256, intBuf.ptr<Npp8u>()) );

    hist::equalizeHist(src, dst, lut.ptr<int>(), stream);
}

////////////////////////////////////////////////////////////////////////
// CLAHE

namespace clahe
{
    void calcLut(PtrStepSzb src, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, int clipLimit, float lutScale, cudaStream_t stream);
    void transform(PtrStepSzb src, PtrStepSzb dst, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, cudaStream_t stream);
}

namespace
{
    class CLAHE_Impl : public cv::cuda::CLAHE
    {
    public:
        CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);

        void apply(cv::InputArray src, cv::OutputArray dst);
        void apply(InputArray src, OutputArray dst, Stream& stream);

        void setClipLimit(double clipLimit);
        double getClipLimit() const;

        void setTilesGridSize(cv::Size tileGridSize);
        cv::Size getTilesGridSize() const;

        void collectGarbage();

    private:
        double clipLimit_;
        int tilesX_;
        int tilesY_;

        GpuMat srcExt_;
        GpuMat lut_;
    };

    CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
        clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY)
    {
    }

    void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst)
    {
        apply(_src, _dst, Stream::Null());
    }

    void CLAHE_Impl::apply(InputArray _src, OutputArray _dst, Stream& s)
    {
        GpuMat src = _src.getGpuMat();

        CV_Assert( src.type() == CV_8UC1 );

        _dst.create( src.size(), src.type() );
        GpuMat dst = _dst.getGpuMat();

        const int histSize = 256;

        ensureSizeIsEnough(tilesX_ * tilesY_, histSize, CV_8UC1, lut_);

        cudaStream_t stream = StreamAccessor::getStream(s);

        cv::Size tileSize;
        GpuMat srcForLut;

        if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0)
        {
            tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_);
            srcForLut = src;
        }
        else
        {
#ifndef HAVE_OPENCV_CUDAARITHM
            throw_no_cuda();
#else
            cv::cuda::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101, cv::Scalar(), s);
#endif

            tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
            srcForLut = srcExt_;
        }

        const int tileSizeTotal = tileSize.area();
        const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal;

        int clipLimit = 0;
        if (clipLimit_ > 0.0)
        {
            clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize);
            clipLimit = std::max(clipLimit, 1);
        }

        clahe::calcLut(srcForLut, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), clipLimit, lutScale, stream);

        clahe::transform(src, dst, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), stream);
    }

    void CLAHE_Impl::setClipLimit(double clipLimit)
    {
        clipLimit_ = clipLimit;
    }

    double CLAHE_Impl::getClipLimit() const
    {
        return clipLimit_;
    }

    void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize)
    {
        tilesX_ = tileGridSize.width;
        tilesY_ = tileGridSize.height;
    }

    cv::Size CLAHE_Impl::getTilesGridSize() const
    {
        return cv::Size(tilesX_, tilesY_);
    }

    void CLAHE_Impl::collectGarbage()
    {
        srcExt_.release();
        lut_.release();
    }
}

cv::Ptr<cv::cuda::CLAHE> cv::cuda::createCLAHE(double clipLimit, cv::Size tileGridSize)
{
    return makePtr<CLAHE_Impl>(clipLimit, tileGridSize.width, tileGridSize.height);
}

////////////////////////////////////////////////////////////////////////
// NPP Histogram

namespace
{
    typedef NppStatus (*get_buf_size_c1_t)(NppiSize oSizeROI, int nLevels, int* hpBufferSize);
    typedef NppStatus (*get_buf_size_c4_t)(NppiSize oSizeROI, int nLevels[], int* hpBufferSize);

    template<int SDEPTH> struct NppHistogramEvenFuncC1
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;

    typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist,
            int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer);
    };
    template<int SDEPTH> struct NppHistogramEvenFuncC4
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;

        typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI,
            Npp32s * pHist[4], int nLevels[4], Npp32s nLowerLevel[4], Npp32s nUpperLevel[4], Npp8u * pBuffer);
    };

    template<int SDEPTH, typename NppHistogramEvenFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
    struct NppHistogramEvenC1
    {
        typedef typename NppHistogramEvenFuncC1<SDEPTH>::src_t src_t;

        static void hist(const GpuMat& src, OutputArray _hist, int histSize, int lowerLevel, int upperLevel, Stream& stream)
        {
            const int levels = histSize + 1;

            _hist.create(1, histSize, CV_32S);
            GpuMat hist = _hist.getGpuMat();

            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            int buf_size;
            get_buf_size(sz, levels, &buf_size);

            BufferPool pool(stream);
            GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);

            NppStreamHandler h(stream);

            nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels,
                lowerLevel, upperLevel, buf.ptr<Npp8u>()) );

            if (!stream)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
    template<int SDEPTH, typename NppHistogramEvenFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
    struct NppHistogramEvenC4
    {
        typedef typename NppHistogramEvenFuncC4<SDEPTH>::src_t src_t;

        static void hist(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
        {
            int levels[] = {histSize[0] + 1, histSize[1] + 1, histSize[2] + 1, histSize[3] + 1};
            hist[0].create(1, histSize[0], CV_32S);
            hist[1].create(1, histSize[1], CV_32S);
            hist[2].create(1, histSize[2], CV_32S);
            hist[3].create(1, histSize[3], CV_32S);

            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};

            int buf_size;
            get_buf_size(sz, levels, &buf_size);

            BufferPool pool(stream);
            GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);

            NppStreamHandler h(stream);

            nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, levels, lowerLevel, upperLevel, buf.ptr<Npp8u>()) );

            if (!stream)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };

    template<int SDEPTH> struct NppHistogramRangeFuncC1
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
        typedef Npp32s level_t;
        enum {LEVEL_TYPE_CODE=CV_32SC1};

        typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
            const Npp32s* pLevels, int nLevels, Npp8u* pBuffer);
    };
    template<> struct NppHistogramRangeFuncC1<CV_32F>
    {
        typedef Npp32f src_t;
        typedef Npp32f level_t;
        enum {LEVEL_TYPE_CODE=CV_32FC1};

        typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
            const Npp32f* pLevels, int nLevels, Npp8u* pBuffer);
    };
    template<int SDEPTH> struct NppHistogramRangeFuncC4
    {
        typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
        typedef Npp32s level_t;
        enum {LEVEL_TYPE_CODE=CV_32SC1};

        typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
            const Npp32s* pLevels[4], int nLevels[4], Npp8u* pBuffer);
    };
    template<> struct NppHistogramRangeFuncC4<CV_32F>
    {
        typedef Npp32f src_t;
        typedef Npp32f level_t;
        enum {LEVEL_TYPE_CODE=CV_32FC1};

        typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
            const Npp32f* pLevels[4], int nLevels[4], Npp8u* pBuffer);
    };

    template<int SDEPTH, typename NppHistogramRangeFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
    struct NppHistogramRangeC1
    {
        typedef typename NppHistogramRangeFuncC1<SDEPTH>::src_t src_t;
        typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
        enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};

        static void hist(const GpuMat& src, OutputArray _hist, const GpuMat& levels, Stream& stream)
        {
            CV_Assert( levels.type() == LEVEL_TYPE_CODE && levels.rows == 1 );

            _hist.create(1, levels.cols - 1, CV_32S);
            GpuMat hist = _hist.getGpuMat();

            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            int buf_size;
            get_buf_size(sz, levels.cols, &buf_size);

            BufferPool pool(stream);
            GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);

            NppStreamHandler h(stream);

            nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels.ptr<level_t>(), levels.cols, buf.ptr<Npp8u>()) );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
    template<int SDEPTH, typename NppHistogramRangeFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
    struct NppHistogramRangeC4
    {
        typedef typename NppHistogramRangeFuncC4<SDEPTH>::src_t src_t;
        typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
        enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};

        static void hist(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream)
        {
            CV_Assert( levels[0].type() == LEVEL_TYPE_CODE && levels[0].rows == 1 );
            CV_Assert( levels[1].type() == LEVEL_TYPE_CODE && levels[1].rows == 1 );
            CV_Assert( levels[2].type() == LEVEL_TYPE_CODE && levels[2].rows == 1 );
            CV_Assert( levels[3].type() == LEVEL_TYPE_CODE && levels[3].rows == 1 );

            hist[0].create(1, levels[0].cols - 1, CV_32S);
            hist[1].create(1, levels[1].cols - 1, CV_32S);
            hist[2].create(1, levels[2].cols - 1, CV_32S);
            hist[3].create(1, levels[3].cols - 1, CV_32S);

            Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
            int nLevels[] = {levels[0].cols, levels[1].cols, levels[2].cols, levels[3].cols};
            const level_t* pLevels[] = {levels[0].ptr<level_t>(), levels[1].ptr<level_t>(), levels[2].ptr<level_t>(), levels[3].ptr<level_t>()};

            NppiSize sz;
            sz.width = src.cols;
            sz.height = src.rows;

            int buf_size;
            get_buf_size(sz, nLevels, &buf_size);

            BufferPool pool(stream);
            GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);

            NppStreamHandler h(stream);

            nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, pLevels, nLevels, buf.ptr<Npp8u>()) );

            if (stream == 0)
                cudaSafeCall( cudaDeviceSynchronize() );
        }
    };
}

void cv::cuda::evenLevels(OutputArray _levels, int nLevels, int lowerLevel, int upperLevel, Stream& stream)
{
    const int kind = _levels.kind();

    _levels.create(1, nLevels, CV_32SC1);

    Mat host_levels;
    if (kind == _InputArray::CUDA_GPU_MAT)
        host_levels.create(1, nLevels, CV_32SC1);
    else
        host_levels = _levels.getMat();

    nppSafeCall( nppiEvenLevelsHost_32s(host_levels.ptr<Npp32s>(), nLevels, lowerLevel, upperLevel) );

    if (kind == _InputArray::CUDA_GPU_MAT)
        _levels.getGpuMatRef().upload(host_levels, stream);
}

namespace hist
{
    void histEven8u(PtrStepSzb src, int* hist, int binCount, int lowerLevel, int upperLevel, cudaStream_t stream);
}

namespace
{
    void histEven8u(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, cudaStream_t stream)
    {
        hist.create(1, histSize, CV_32S);
        cudaSafeCall( cudaMemsetAsync(hist.data, 0, histSize * sizeof(int), stream) );
        hist::histEven8u(src, hist.ptr<int>(), histSize, lowerLevel, upperLevel, stream);
    }
}

void cv::cuda::histEven(InputArray _src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream)
{
    typedef void (*hist_t)(const GpuMat& src, OutputArray hist, int levels, int lowerLevel, int upperLevel, Stream& stream);
    static const hist_t hist_callers[] =
    {
        NppHistogramEvenC1<CV_8U , nppiHistogramEven_8u_C1R , nppiHistogramEvenGetBufferSize_8u_C1R >::hist,
        0,
        NppHistogramEvenC1<CV_16U, nppiHistogramEven_16u_C1R, nppiHistogramEvenGetBufferSize_16u_C1R>::hist,
        NppHistogramEvenC1<CV_16S, nppiHistogramEven_16s_C1R, nppiHistogramEvenGetBufferSize_16s_C1R>::hist
    };

    GpuMat src = _src.getGpuMat();

    if (src.depth() == CV_8U && deviceSupports(FEATURE_SET_COMPUTE_30))
    {
        histEven8u(src, hist.getGpuMatRef(), histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream));
        return;
    }

    CV_Assert( src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 );

    hist_callers[src.depth()](src, hist, histSize, lowerLevel, upperLevel, stream);
}

void cv::cuda::histEven(InputArray _src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
{
    typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], int levels[4], int lowerLevel[4], int upperLevel[4], Stream& stream);
    static const hist_t hist_callers[] =
    {
        NppHistogramEvenC4<CV_8U , nppiHistogramEven_8u_C4R , nppiHistogramEvenGetBufferSize_8u_C4R >::hist,
        0,
        NppHistogramEvenC4<CV_16U, nppiHistogramEven_16u_C4R, nppiHistogramEvenGetBufferSize_16u_C4R>::hist,
        NppHistogramEvenC4<CV_16S, nppiHistogramEven_16s_C4R, nppiHistogramEvenGetBufferSize_16s_C4R>::hist
    };

    GpuMat src = _src.getGpuMat();

    CV_Assert( src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 );

    hist_callers[src.depth()](src, hist, histSize, lowerLevel, upperLevel, stream);
}

void cv::cuda::histRange(InputArray _src, OutputArray hist, InputArray _levels, Stream& stream)
{
    typedef void (*hist_t)(const GpuMat& src, OutputArray hist, const GpuMat& levels, Stream& stream);
    static const hist_t hist_callers[] =
    {
        NppHistogramRangeC1<CV_8U , nppiHistogramRange_8u_C1R , nppiHistogramRangeGetBufferSize_8u_C1R >::hist,
        0,
        NppHistogramRangeC1<CV_16U, nppiHistogramRange_16u_C1R, nppiHistogramRangeGetBufferSize_16u_C1R>::hist,
        NppHistogramRangeC1<CV_16S, nppiHistogramRange_16s_C1R, nppiHistogramRangeGetBufferSize_16s_C1R>::hist,
        0,
        NppHistogramRangeC1<CV_32F, nppiHistogramRange_32f_C1R, nppiHistogramRangeGetBufferSize_32f_C1R>::hist
    };

    GpuMat src = _src.getGpuMat();
    GpuMat levels = _levels.getGpuMat();

    CV_Assert( src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 || src.type() == CV_32FC1 );

    hist_callers[src.depth()](src, hist, levels, stream);
}

void cv::cuda::histRange(InputArray _src, GpuMat hist[4], const GpuMat levels[4], Stream& stream)
{
    typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream);
    static const hist_t hist_callers[] =
    {
        NppHistogramRangeC4<CV_8U , nppiHistogramRange_8u_C4R , nppiHistogramRangeGetBufferSize_8u_C4R >::hist,
        0,
        NppHistogramRangeC4<CV_16U, nppiHistogramRange_16u_C4R, nppiHistogramRangeGetBufferSize_16u_C4R>::hist,
        NppHistogramRangeC4<CV_16S, nppiHistogramRange_16s_C4R, nppiHistogramRangeGetBufferSize_16s_C4R>::hist,
        0,
        NppHistogramRangeC4<CV_32F, nppiHistogramRange_32f_C4R, nppiHistogramRangeGetBufferSize_32f_C4R>::hist
    };

    GpuMat src = _src.getGpuMat();

    CV_Assert( src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 || src.type() == CV_32FC4 );

    hist_callers[src.depth()](src, hist, levels, stream);
}

#endif /* !defined (HAVE_CUDA) */

/* [<][>][^][v][top][bottom][index][help] */