This source file includes following definitions.
- calcHist
- equalizeHist
- createCLAHE
- evenLevels
- histEven
- histEven
- histRange
- histRange
- calcHist
- equalizeHist
- tilesY_
- apply
- apply
- setClipLimit
- getClipLimit
- setTilesGridSize
- getTilesGridSize
- collectGarbage
- createCLAHE
- hist
- hist
- hist
- hist
- evenLevels
- histEven8u
- histEven
- histEven
- histRange
- histRange
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
void cv::cuda::calcHist(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::equalizeHist(InputArray, OutputArray, Stream&) { throw_no_cuda(); }
cv::Ptr<cv::cuda::CLAHE> cv::cuda::createCLAHE(double, cv::Size) { throw_no_cuda(); return cv::Ptr<cv::cuda::CLAHE>(); }
void cv::cuda::evenLevels(OutputArray, int, int, int, Stream&) { throw_no_cuda(); }
void cv::cuda::histEven(InputArray, OutputArray, InputOutputArray, int, int, int, Stream&) { throw_no_cuda(); }
void cv::cuda::histEven(InputArray, GpuMat*, InputOutputArray, int*, int*, int*, Stream&) { throw_no_cuda(); }
void cv::cuda::histRange(InputArray, OutputArray, InputArray, InputOutputArray, Stream&) { throw_no_cuda(); }
void cv::cuda::histRange(InputArray, GpuMat*, const GpuMat*, InputOutputArray, Stream&) { throw_no_cuda(); }
#else
namespace hist
{
void histogram256(PtrStepSzb src, int* hist, cudaStream_t stream);
}
void cv::cuda::calcHist(InputArray _src, OutputArray _hist, Stream& stream)
{
GpuMat src = _src.getGpuMat();
CV_Assert( src.type() == CV_8UC1 );
_hist.create(1, 256, CV_32SC1);
GpuMat hist = _hist.getGpuMat();
hist.setTo(Scalar::all(0), stream);
hist::histogram256(src, hist.ptr<int>(), StreamAccessor::getStream(stream));
}
namespace hist
{
void equalizeHist(PtrStepSzb src, PtrStepSzb dst, const int* lut, cudaStream_t stream);
}
void cv::cuda::equalizeHist(InputArray _src, OutputArray _dst, Stream& _stream)
{
GpuMat src = _src.getGpuMat();
CV_Assert( src.type() == CV_8UC1 );
_dst.create(src.size(), src.type());
GpuMat dst = _dst.getGpuMat();
int intBufSize;
nppSafeCall( nppsIntegralGetBufferSize_32s(256, &intBufSize) );
size_t bufSize = intBufSize + 2 * 256 * sizeof(int);
BufferPool pool(_stream);
GpuMat buf = pool.getBuffer(1, static_cast<int>(bufSize), CV_8UC1);
GpuMat hist(1, 256, CV_32SC1, buf.data);
GpuMat lut(1, 256, CV_32SC1, buf.data + 256 * sizeof(int));
GpuMat intBuf(1, intBufSize, CV_8UC1, buf.data + 2 * 256 * sizeof(int));
cuda::calcHist(src, hist, _stream);
cudaStream_t stream = StreamAccessor::getStream(_stream);
NppStreamHandler h(stream);
nppSafeCall( nppsIntegral_32s(hist.ptr<Npp32s>(), lut.ptr<Npp32s>(), 256, intBuf.ptr<Npp8u>()) );
hist::equalizeHist(src, dst, lut.ptr<int>(), stream);
}
namespace clahe
{
void calcLut(PtrStepSzb src, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, int clipLimit, float lutScale, cudaStream_t stream);
void transform(PtrStepSzb src, PtrStepSzb dst, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, cudaStream_t stream);
}
namespace
{
class CLAHE_Impl : public cv::cuda::CLAHE
{
public:
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
void apply(cv::InputArray src, cv::OutputArray dst);
void apply(InputArray src, OutputArray dst, Stream& stream);
void setClipLimit(double clipLimit);
double getClipLimit() const;
void setTilesGridSize(cv::Size tileGridSize);
cv::Size getTilesGridSize() const;
void collectGarbage();
private:
double clipLimit_;
int tilesX_;
int tilesY_;
GpuMat srcExt_;
GpuMat lut_;
};
CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY)
{
}
void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst)
{
apply(_src, _dst, Stream::Null());
}
void CLAHE_Impl::apply(InputArray _src, OutputArray _dst, Stream& s)
{
GpuMat src = _src.getGpuMat();
CV_Assert( src.type() == CV_8UC1 );
_dst.create( src.size(), src.type() );
GpuMat dst = _dst.getGpuMat();
const int histSize = 256;
ensureSizeIsEnough(tilesX_ * tilesY_, histSize, CV_8UC1, lut_);
cudaStream_t stream = StreamAccessor::getStream(s);
cv::Size tileSize;
GpuMat srcForLut;
if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0)
{
tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_);
srcForLut = src;
}
else
{
#ifndef HAVE_OPENCV_CUDAARITHM
throw_no_cuda();
#else
cv::cuda::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101, cv::Scalar(), s);
#endif
tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
srcForLut = srcExt_;
}
const int tileSizeTotal = tileSize.area();
const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal;
int clipLimit = 0;
if (clipLimit_ > 0.0)
{
clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize);
clipLimit = std::max(clipLimit, 1);
}
clahe::calcLut(srcForLut, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), clipLimit, lutScale, stream);
clahe::transform(src, dst, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), stream);
}
void CLAHE_Impl::setClipLimit(double clipLimit)
{
clipLimit_ = clipLimit;
}
double CLAHE_Impl::getClipLimit() const
{
return clipLimit_;
}
void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize)
{
tilesX_ = tileGridSize.width;
tilesY_ = tileGridSize.height;
}
cv::Size CLAHE_Impl::getTilesGridSize() const
{
return cv::Size(tilesX_, tilesY_);
}
void CLAHE_Impl::collectGarbage()
{
srcExt_.release();
lut_.release();
}
}
cv::Ptr<cv::cuda::CLAHE> cv::cuda::createCLAHE(double clipLimit, cv::Size tileGridSize)
{
return makePtr<CLAHE_Impl>(clipLimit, tileGridSize.width, tileGridSize.height);
}
namespace
{
typedef NppStatus (*get_buf_size_c1_t)(NppiSize oSizeROI, int nLevels, int* hpBufferSize);
typedef NppStatus (*get_buf_size_c4_t)(NppiSize oSizeROI, int nLevels[], int* hpBufferSize);
template<int SDEPTH> struct NppHistogramEvenFuncC1
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist,
int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer);
};
template<int SDEPTH> struct NppHistogramEvenFuncC4
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI,
Npp32s * pHist[4], int nLevels[4], Npp32s nLowerLevel[4], Npp32s nUpperLevel[4], Npp8u * pBuffer);
};
template<int SDEPTH, typename NppHistogramEvenFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
struct NppHistogramEvenC1
{
typedef typename NppHistogramEvenFuncC1<SDEPTH>::src_t src_t;
static void hist(const GpuMat& src, OutputArray _hist, int histSize, int lowerLevel, int upperLevel, Stream& stream)
{
const int levels = histSize + 1;
_hist.create(1, histSize, CV_32S);
GpuMat hist = _hist.getGpuMat();
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
int buf_size;
get_buf_size(sz, levels, &buf_size);
BufferPool pool(stream);
GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels,
lowerLevel, upperLevel, buf.ptr<Npp8u>()) );
if (!stream)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, typename NppHistogramEvenFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
struct NppHistogramEvenC4
{
typedef typename NppHistogramEvenFuncC4<SDEPTH>::src_t src_t;
static void hist(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
{
int levels[] = {histSize[0] + 1, histSize[1] + 1, histSize[2] + 1, histSize[3] + 1};
hist[0].create(1, histSize[0], CV_32S);
hist[1].create(1, histSize[1], CV_32S);
hist[2].create(1, histSize[2], CV_32S);
hist[3].create(1, histSize[3], CV_32S);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
int buf_size;
get_buf_size(sz, levels, &buf_size);
BufferPool pool(stream);
GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, levels, lowerLevel, upperLevel, buf.ptr<Npp8u>()) );
if (!stream)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH> struct NppHistogramRangeFuncC1
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef Npp32s level_t;
enum {LEVEL_TYPE_CODE=CV_32SC1};
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
const Npp32s* pLevels, int nLevels, Npp8u* pBuffer);
};
template<> struct NppHistogramRangeFuncC1<CV_32F>
{
typedef Npp32f src_t;
typedef Npp32f level_t;
enum {LEVEL_TYPE_CODE=CV_32FC1};
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist,
const Npp32f* pLevels, int nLevels, Npp8u* pBuffer);
};
template<int SDEPTH> struct NppHistogramRangeFuncC4
{
typedef typename NPPTypeTraits<SDEPTH>::npp_type src_t;
typedef Npp32s level_t;
enum {LEVEL_TYPE_CODE=CV_32SC1};
typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
const Npp32s* pLevels[4], int nLevels[4], Npp8u* pBuffer);
};
template<> struct NppHistogramRangeFuncC4<CV_32F>
{
typedef Npp32f src_t;
typedef Npp32f level_t;
enum {LEVEL_TYPE_CODE=CV_32FC1};
typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4],
const Npp32f* pLevels[4], int nLevels[4], Npp8u* pBuffer);
};
template<int SDEPTH, typename NppHistogramRangeFuncC1<SDEPTH>::func_ptr func, get_buf_size_c1_t get_buf_size>
struct NppHistogramRangeC1
{
typedef typename NppHistogramRangeFuncC1<SDEPTH>::src_t src_t;
typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};
static void hist(const GpuMat& src, OutputArray _hist, const GpuMat& levels, Stream& stream)
{
CV_Assert( levels.type() == LEVEL_TYPE_CODE && levels.rows == 1 );
_hist.create(1, levels.cols - 1, CV_32S);
GpuMat hist = _hist.getGpuMat();
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
int buf_size;
get_buf_size(sz, levels.cols, &buf_size);
BufferPool pool(stream);
GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, hist.ptr<Npp32s>(), levels.ptr<level_t>(), levels.cols, buf.ptr<Npp8u>()) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<int SDEPTH, typename NppHistogramRangeFuncC4<SDEPTH>::func_ptr func, get_buf_size_c4_t get_buf_size>
struct NppHistogramRangeC4
{
typedef typename NppHistogramRangeFuncC4<SDEPTH>::src_t src_t;
typedef typename NppHistogramRangeFuncC1<SDEPTH>::level_t level_t;
enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1<SDEPTH>::LEVEL_TYPE_CODE};
static void hist(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream)
{
CV_Assert( levels[0].type() == LEVEL_TYPE_CODE && levels[0].rows == 1 );
CV_Assert( levels[1].type() == LEVEL_TYPE_CODE && levels[1].rows == 1 );
CV_Assert( levels[2].type() == LEVEL_TYPE_CODE && levels[2].rows == 1 );
CV_Assert( levels[3].type() == LEVEL_TYPE_CODE && levels[3].rows == 1 );
hist[0].create(1, levels[0].cols - 1, CV_32S);
hist[1].create(1, levels[1].cols - 1, CV_32S);
hist[2].create(1, levels[2].cols - 1, CV_32S);
hist[3].create(1, levels[3].cols - 1, CV_32S);
Npp32s* pHist[] = {hist[0].ptr<Npp32s>(), hist[1].ptr<Npp32s>(), hist[2].ptr<Npp32s>(), hist[3].ptr<Npp32s>()};
int nLevels[] = {levels[0].cols, levels[1].cols, levels[2].cols, levels[3].cols};
const level_t* pLevels[] = {levels[0].ptr<level_t>(), levels[1].ptr<level_t>(), levels[2].ptr<level_t>(), levels[3].ptr<level_t>()};
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
int buf_size;
get_buf_size(sz, nLevels, &buf_size);
BufferPool pool(stream);
GpuMat buf = pool.getBuffer(1, buf_size, CV_8UC1);
NppStreamHandler h(stream);
nppSafeCall( func(src.ptr<src_t>(), static_cast<int>(src.step), sz, pHist, pLevels, nLevels, buf.ptr<Npp8u>()) );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
}
void cv::cuda::evenLevels(OutputArray _levels, int nLevels, int lowerLevel, int upperLevel, Stream& stream)
{
const int kind = _levels.kind();
_levels.create(1, nLevels, CV_32SC1);
Mat host_levels;
if (kind == _InputArray::CUDA_GPU_MAT)
host_levels.create(1, nLevels, CV_32SC1);
else
host_levels = _levels.getMat();
nppSafeCall( nppiEvenLevelsHost_32s(host_levels.ptr<Npp32s>(), nLevels, lowerLevel, upperLevel) );
if (kind == _InputArray::CUDA_GPU_MAT)
_levels.getGpuMatRef().upload(host_levels, stream);
}
namespace hist
{
void histEven8u(PtrStepSzb src, int* hist, int binCount, int lowerLevel, int upperLevel, cudaStream_t stream);
}
namespace
{
void histEven8u(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, cudaStream_t stream)
{
hist.create(1, histSize, CV_32S);
cudaSafeCall( cudaMemsetAsync(hist.data, 0, histSize * sizeof(int), stream) );
hist::histEven8u(src, hist.ptr<int>(), histSize, lowerLevel, upperLevel, stream);
}
}
void cv::cuda::histEven(InputArray _src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream)
{
typedef void (*hist_t)(const GpuMat& src, OutputArray hist, int levels, int lowerLevel, int upperLevel, Stream& stream);
static const hist_t hist_callers[] =
{
NppHistogramEvenC1<CV_8U , nppiHistogramEven_8u_C1R , nppiHistogramEvenGetBufferSize_8u_C1R >::hist,
0,
NppHistogramEvenC1<CV_16U, nppiHistogramEven_16u_C1R, nppiHistogramEvenGetBufferSize_16u_C1R>::hist,
NppHistogramEvenC1<CV_16S, nppiHistogramEven_16s_C1R, nppiHistogramEvenGetBufferSize_16s_C1R>::hist
};
GpuMat src = _src.getGpuMat();
if (src.depth() == CV_8U && deviceSupports(FEATURE_SET_COMPUTE_30))
{
histEven8u(src, hist.getGpuMatRef(), histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream));
return;
}
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 );
hist_callers[src.depth()](src, hist, histSize, lowerLevel, upperLevel, stream);
}
void cv::cuda::histEven(InputArray _src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream)
{
typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], int levels[4], int lowerLevel[4], int upperLevel[4], Stream& stream);
static const hist_t hist_callers[] =
{
NppHistogramEvenC4<CV_8U , nppiHistogramEven_8u_C4R , nppiHistogramEvenGetBufferSize_8u_C4R >::hist,
0,
NppHistogramEvenC4<CV_16U, nppiHistogramEven_16u_C4R, nppiHistogramEvenGetBufferSize_16u_C4R>::hist,
NppHistogramEvenC4<CV_16S, nppiHistogramEven_16s_C4R, nppiHistogramEvenGetBufferSize_16s_C4R>::hist
};
GpuMat src = _src.getGpuMat();
CV_Assert( src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 );
hist_callers[src.depth()](src, hist, histSize, lowerLevel, upperLevel, stream);
}
void cv::cuda::histRange(InputArray _src, OutputArray hist, InputArray _levels, Stream& stream)
{
typedef void (*hist_t)(const GpuMat& src, OutputArray hist, const GpuMat& levels, Stream& stream);
static const hist_t hist_callers[] =
{
NppHistogramRangeC1<CV_8U , nppiHistogramRange_8u_C1R , nppiHistogramRangeGetBufferSize_8u_C1R >::hist,
0,
NppHistogramRangeC1<CV_16U, nppiHistogramRange_16u_C1R, nppiHistogramRangeGetBufferSize_16u_C1R>::hist,
NppHistogramRangeC1<CV_16S, nppiHistogramRange_16s_C1R, nppiHistogramRangeGetBufferSize_16s_C1R>::hist,
0,
NppHistogramRangeC1<CV_32F, nppiHistogramRange_32f_C1R, nppiHistogramRangeGetBufferSize_32f_C1R>::hist
};
GpuMat src = _src.getGpuMat();
GpuMat levels = _levels.getGpuMat();
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 || src.type() == CV_32FC1 );
hist_callers[src.depth()](src, hist, levels, stream);
}
void cv::cuda::histRange(InputArray _src, GpuMat hist[4], const GpuMat levels[4], Stream& stream)
{
typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream);
static const hist_t hist_callers[] =
{
NppHistogramRangeC4<CV_8U , nppiHistogramRange_8u_C4R , nppiHistogramRangeGetBufferSize_8u_C4R >::hist,
0,
NppHistogramRangeC4<CV_16U, nppiHistogramRange_16u_C4R, nppiHistogramRangeGetBufferSize_16u_C4R>::hist,
NppHistogramRangeC4<CV_16S, nppiHistogramRange_16s_C4R, nppiHistogramRangeGetBufferSize_16s_C4R>::hist,
0,
NppHistogramRangeC4<CV_32F, nppiHistogramRange_32f_C4R, nppiHistogramRangeGetBufferSize_32f_C4R>::hist
};
GpuMat src = _src.getGpuMat();
CV_Assert( src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 || src.type() == CV_32FC4 );
hist_callers[src.depth()](src, hist, levels, stream);
}
#endif