root/modules/cudaimgproc/src/hough_circles.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. createHoughCirclesDetector
  2. setDp
  3. getDp
  4. setMinDist
  5. getMinDist
  6. setCannyThreshold
  7. getCannyThreshold
  8. setVotesThreshold
  9. getVotesThreshold
  10. setMinRadius
  11. getMinRadius
  12. setMaxRadius
  13. getMaxRadius
  14. setMaxCircles
  15. getMaxCircles
  16. write
  17. read
  18. centersCompare
  19. maxCircles_
  20. detect
  21. createHoughCirclesDetector

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::cuda;

#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || !defined(HAVE_OPENCV_CUDAFILTERS)

Ptr<cuda::HoughCirclesDetector> cv::cuda::createHoughCirclesDetector(float, float, int, int, int, int, int) { throw_no_cuda(); return Ptr<HoughCirclesDetector>(); }

#else /* !defined (HAVE_CUDA) */

namespace cv { namespace cuda { namespace device
{
    namespace hough
    {
        int buildPointList_gpu(PtrStepSzb src, unsigned int* list);
    }

    namespace hough_circles
    {
        void circlesAccumCenters_gpu(const unsigned int* list, int count, PtrStepi dx, PtrStepi dy, PtrStepSzi accum, int minRadius, int maxRadius, float idp);
        int buildCentersList_gpu(PtrStepSzi accum, unsigned int* centers, int threshold);
        int circlesAccumRadius_gpu(const unsigned int* centers, int centersCount, const unsigned int* list, int count,
                                   float3* circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold, bool has20);
    }
}}}

namespace
{
    class HoughCirclesDetectorImpl : public HoughCirclesDetector
    {
    public:
        HoughCirclesDetectorImpl(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles);

        void detect(InputArray src, OutputArray circles, Stream& stream);

        void setDp(float dp) { dp_ = dp; }
        float getDp() const { return dp_; }

        void setMinDist(float minDist) { minDist_ = minDist; }
        float getMinDist() const { return minDist_; }

        void setCannyThreshold(int cannyThreshold) { cannyThreshold_ = cannyThreshold; }
        int getCannyThreshold() const { return cannyThreshold_; }

        void setVotesThreshold(int votesThreshold) { votesThreshold_ = votesThreshold; }
        int getVotesThreshold() const { return votesThreshold_; }

        void setMinRadius(int minRadius) { minRadius_ = minRadius; }
        int getMinRadius() const { return minRadius_; }

        void setMaxRadius(int maxRadius) { maxRadius_ = maxRadius; }
        int getMaxRadius() const { return maxRadius_; }

        void setMaxCircles(int maxCircles) { maxCircles_ = maxCircles; }
        int getMaxCircles() const { return maxCircles_; }

        void write(FileStorage& fs) const
        {
            fs << "name" << "HoughCirclesDetector_CUDA"
            << "dp" << dp_
            << "minDist" << minDist_
            << "cannyThreshold" << cannyThreshold_
            << "votesThreshold" << votesThreshold_
            << "minRadius" << minRadius_
            << "maxRadius" << maxRadius_
            << "maxCircles" << maxCircles_;
        }

        void read(const FileNode& fn)
        {
            CV_Assert( String(fn["name"]) == "HoughCirclesDetector_CUDA" );
            dp_ = (float)fn["dp"];
            minDist_ = (float)fn["minDist"];
            cannyThreshold_ = (int)fn["cannyThreshold"];
            votesThreshold_ = (int)fn["votesThreshold"];
            minRadius_ = (int)fn["minRadius"];
            maxRadius_ = (int)fn["maxRadius"];
            maxCircles_ = (int)fn["maxCircles"];
        }

    private:
        float dp_;
        float minDist_;
        int cannyThreshold_;
        int votesThreshold_;
        int minRadius_;
        int maxRadius_;
        int maxCircles_;

        GpuMat dx_, dy_;
        GpuMat edges_;
        GpuMat accum_;
        Mat tt; //CPU copy of accum_
        GpuMat list_;
        GpuMat result_;
        Ptr<cuda::Filter> filterDx_;
        Ptr<cuda::Filter> filterDy_;
        Ptr<cuda::CannyEdgeDetector> canny_;
    };

    bool centersCompare(Vec3f a, Vec3f b) {return (a[2] > b[2]);}

    HoughCirclesDetectorImpl::HoughCirclesDetectorImpl(float dp, float minDist, int cannyThreshold, int votesThreshold,
                                                       int minRadius, int maxRadius, int maxCircles) :
        dp_(dp), minDist_(minDist), cannyThreshold_(cannyThreshold), votesThreshold_(votesThreshold),
        minRadius_(minRadius), maxRadius_(maxRadius), maxCircles_(maxCircles)
    {
        canny_ = cuda::createCannyEdgeDetector(std::max(cannyThreshold_ / 2, 1), cannyThreshold_);

        filterDx_ = cuda::createSobelFilter(CV_8UC1, CV_32S, 1, 0);
        filterDy_ = cuda::createSobelFilter(CV_8UC1, CV_32S, 0, 1);
    }

    void HoughCirclesDetectorImpl::detect(InputArray _src, OutputArray circles, Stream& stream)
    {
        // TODO : implement async version
        (void) stream;

        using namespace cv::cuda::device::hough;
        using namespace cv::cuda::device::hough_circles;

        GpuMat src = _src.getGpuMat();

        CV_Assert( src.type() == CV_8UC1 );
        CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
        CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
        CV_Assert( dp_ > 0 );
        CV_Assert( minRadius_ > 0 && maxRadius_ > minRadius_ );
        CV_Assert( cannyThreshold_ > 0 );
        CV_Assert( votesThreshold_ > 0 );
        CV_Assert( maxCircles_ > 0 );

        const float idp = 1.0f / dp_;

        filterDx_->apply(src, dx_);
        filterDy_->apply(src, dy_);

        canny_->setLowThreshold(std::max(cannyThreshold_ / 2, 1));
        canny_->setHighThreshold(cannyThreshold_);

        canny_->detect(dx_, dy_, edges_);

        ensureSizeIsEnough(2, src.size().area(), CV_32SC1, list_);
        unsigned int* srcPoints = list_.ptr<unsigned int>(0);
        unsigned int* centers = list_.ptr<unsigned int>(1);

        const int pointsCount = buildPointList_gpu(edges_, srcPoints);
        if (pointsCount == 0)
        {
            circles.release();
            return;
        }

        ensureSizeIsEnough(cvCeil(src.rows * idp) + 2, cvCeil(src.cols * idp) + 2, CV_32SC1, accum_);
        accum_.setTo(Scalar::all(0));

        circlesAccumCenters_gpu(srcPoints, pointsCount, dx_, dy_, accum_, minRadius_, maxRadius_, idp);

        accum_.download(tt);

        int centersCount = buildCentersList_gpu(accum_, centers, votesThreshold_);
        if (centersCount == 0)
        {
            circles.release();
            return;
        }

        if (minDist_ > 1)
        {
            AutoBuffer<ushort2> oldBuf_(centersCount);
            AutoBuffer<ushort2> newBuf_(centersCount);
            int newCount = 0;

            ushort2* oldBuf = oldBuf_;
            ushort2* newBuf = newBuf_;

            cudaSafeCall( cudaMemcpy(oldBuf, centers, centersCount * sizeof(ushort2), cudaMemcpyDeviceToHost) );

            const int cellSize = cvRound(minDist_);
            const int gridWidth = (src.cols + cellSize - 1) / cellSize;
            const int gridHeight = (src.rows + cellSize - 1) / cellSize;

            std::vector< std::vector<ushort2> > grid(gridWidth * gridHeight);

            const float minDist2 = minDist_ * minDist_;

            std::vector<Vec3f> sortBuf;
            for(int i=0; i<centersCount; i++){
                Vec3f temp;
                temp[0] = oldBuf[i].x;
                temp[1] = oldBuf[i].y;
                temp[2] = tt.at<int>(temp[1]+1, temp[0]+1);
                sortBuf.push_back(temp);
            }
            std::sort(sortBuf.begin(), sortBuf.end(), centersCompare);

            for (int i = 0; i < centersCount; ++i)
            {
                ushort2 p;
                p.x = sortBuf[i][0];
                p.y = sortBuf[i][1];

                bool good = true;

                int xCell = static_cast<int>(p.x / cellSize);
                int yCell = static_cast<int>(p.y / cellSize);

                int x1 = xCell - 1;
                int y1 = yCell - 1;
                int x2 = xCell + 1;
                int y2 = yCell + 1;

                // boundary check
                x1 = std::max(0, x1);
                y1 = std::max(0, y1);
                x2 = std::min(gridWidth - 1, x2);
                y2 = std::min(gridHeight - 1, y2);

                for (int yy = y1; yy <= y2; ++yy)
                {
                    for (int xx = x1; xx <= x2; ++xx)
                    {
                        std::vector<ushort2>& m = grid[yy * gridWidth + xx];

                        for(size_t j = 0; j < m.size(); ++j)
                        {
                            float dx = (float)(p.x - m[j].x);
                            float dy = (float)(p.y - m[j].y);

                            if (dx * dx + dy * dy < minDist2)
                            {
                                good = false;
                                goto break_out;
                            }
                        }
                    }
                }

                break_out:

                if(good)
                {
                    grid[yCell * gridWidth + xCell].push_back(p);

                    newBuf[newCount++] = p;
                }
            }

            cudaSafeCall( cudaMemcpy(centers, newBuf, newCount * sizeof(unsigned int), cudaMemcpyHostToDevice) );
            centersCount = newCount;
        }

        ensureSizeIsEnough(1, maxCircles_, CV_32FC3, result_);

        int circlesCount = circlesAccumRadius_gpu(centers, centersCount, srcPoints, pointsCount, result_.ptr<float3>(), maxCircles_,
                                                  dp_, minRadius_, maxRadius_, votesThreshold_, deviceSupports(FEATURE_SET_COMPUTE_20));

        if (circlesCount == 0)
        {
            circles.release();
            return;
        }

        result_.cols = circlesCount;
        result_.copyTo(circles);
    }
}

Ptr<HoughCirclesDetector> cv::cuda::createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
{
    return makePtr<HoughCirclesDetectorImpl>(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles);
}

#endif /* !defined (HAVE_CUDA) */

/* [<][>][^][v][top][bottom][index][help] */