root/modules/cudaoptflow/src/tvl1flow.cpp

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. create
  2. useInitialFlow_
  3. getTau
  4. setTau
  5. getLambda
  6. setLambda
  7. getGamma
  8. setGamma
  9. getTheta
  10. setTheta
  11. getNumScales
  12. setNumScales
  13. getNumWarps
  14. setNumWarps
  15. getEpsilon
  16. setEpsilon
  17. getNumIterations
  18. setNumIterations
  19. getScaleStep
  20. setScaleStep
  21. getUseInitialFlow
  22. setUseInitialFlow
  23. calc
  24. calcImpl
  25. procOneScale
  26. create

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

#if !defined HAVE_CUDA || defined(CUDA_DISABLER)

Ptr<OpticalFlowDual_TVL1> cv::cuda::OpticalFlowDual_TVL1::create(double, double, double, int, int, double, int, double, double, bool) { throw_no_cuda(); return Ptr<OpticalFlowDual_TVL1>(); }

#else

using namespace cv;
using namespace cv::cuda;

namespace tvl1flow
{
    void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy, cudaStream_t stream);
    void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y,
                      PtrStepSzf u1, PtrStepSzf u2,
                      PtrStepSzf I1w, PtrStepSzf I1wx, PtrStepSzf I1wy,
                      PtrStepSzf grad, PtrStepSzf rho,
                      cudaStream_t stream);
    void estimateU(PtrStepSzf I1wx, PtrStepSzf I1wy,
                   PtrStepSzf grad, PtrStepSzf rho_c,
                   PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32,
                   PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3, PtrStepSzf error,
                   float l_t, float theta, float gamma, bool calcError,
                   cudaStream_t stream);
    void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf u3,
                               PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, PtrStepSzf p31, PtrStepSzf p32,
                               float taut, float gamma,
                               cudaStream_t stream);
}

namespace
{
    class OpticalFlowDual_TVL1_Impl : public OpticalFlowDual_TVL1
    {
    public:
        OpticalFlowDual_TVL1_Impl(double tau, double lambda, double theta, int nscales, int warps, double epsilon,
                                  int iterations, double scaleStep, double gamma, bool useInitialFlow) :
            tau_(tau), lambda_(lambda), gamma_(gamma), theta_(theta), nscales_(nscales), warps_(warps),
            epsilon_(epsilon), iterations_(iterations), scaleStep_(scaleStep), useInitialFlow_(useInitialFlow)
        {
        }

        virtual double getTau() const { return tau_; }
        virtual void setTau(double tau) { tau_ = tau; }

        virtual double getLambda() const { return lambda_; }
        virtual void setLambda(double lambda) { lambda_ = lambda; }

        virtual double getGamma() const { return gamma_; }
        virtual void setGamma(double gamma) { gamma_ = gamma; }

        virtual double getTheta() const { return theta_; }
        virtual void setTheta(double theta) { theta_ = theta; }

        virtual int getNumScales() const { return nscales_; }
        virtual void setNumScales(int nscales) { nscales_ = nscales; }

        virtual int getNumWarps() const { return warps_; }
        virtual void setNumWarps(int warps) { warps_ = warps; }

        virtual double getEpsilon() const { return epsilon_; }
        virtual void setEpsilon(double epsilon) { epsilon_ = epsilon; }

        virtual int getNumIterations() const { return iterations_; }
        virtual void setNumIterations(int iterations) { iterations_ = iterations; }

        virtual double getScaleStep() const { return scaleStep_; }
        virtual void setScaleStep(double scaleStep) { scaleStep_ = scaleStep; }

        virtual bool getUseInitialFlow() const { return useInitialFlow_; }
        virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; }

        virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream);

    private:
        double tau_;
        double lambda_;
        double gamma_;
        double theta_;
        int nscales_;
        int warps_;
        double epsilon_;
        int iterations_;
        double scaleStep_;
        bool useInitialFlow_;

    private:
        void calcImpl(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, Stream& stream);
        void procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2, GpuMat& u3, Stream& stream);

        std::vector<GpuMat> I0s;
        std::vector<GpuMat> I1s;
        std::vector<GpuMat> u1s;
        std::vector<GpuMat> u2s;
        std::vector<GpuMat> u3s;

        GpuMat I1x_buf;
        GpuMat I1y_buf;

        GpuMat I1w_buf;
        GpuMat I1wx_buf;
        GpuMat I1wy_buf;

        GpuMat grad_buf;
        GpuMat rho_c_buf;

        GpuMat p11_buf;
        GpuMat p12_buf;
        GpuMat p21_buf;
        GpuMat p22_buf;
        GpuMat p31_buf;
        GpuMat p32_buf;

        GpuMat diff_buf;
        GpuMat norm_buf;
    };

    void OpticalFlowDual_TVL1_Impl::calc(InputArray _frame0, InputArray _frame1, InputOutputArray _flow, Stream& stream)
    {
        const GpuMat frame0 = _frame0.getGpuMat();
        const GpuMat frame1 = _frame1.getGpuMat();

        BufferPool pool(stream);
        GpuMat flowx = pool.getBuffer(frame0.size(), CV_32FC1);
        GpuMat flowy = pool.getBuffer(frame0.size(), CV_32FC1);

        calcImpl(frame0, frame1, flowx, flowy, stream);

        GpuMat flows[] = {flowx, flowy};
        cuda::merge(flows, 2, _flow, stream);
    }

    void OpticalFlowDual_TVL1_Impl::calcImpl(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, Stream& stream)
    {
        CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 );
        CV_Assert( I0.size() == I1.size() );
        CV_Assert( I0.type() == I1.type() );
        CV_Assert( !useInitialFlow_ || (flowx.size() == I0.size() && flowx.type() == CV_32FC1 && flowy.size() == flowx.size() && flowy.type() == flowx.type()) );
        CV_Assert( nscales_ > 0 );

        // allocate memory for the pyramid structure
        I0s.resize(nscales_);
        I1s.resize(nscales_);
        u1s.resize(nscales_);
        u2s.resize(nscales_);
        u3s.resize(nscales_);

        I0.convertTo(I0s[0], CV_32F, I0.depth() == CV_8U ? 1.0 : 255.0, stream);
        I1.convertTo(I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0, stream);

        if (!useInitialFlow_)
        {
            flowx.create(I0.size(), CV_32FC1);
            flowy.create(I0.size(), CV_32FC1);
        }

        u1s[0] = flowx;
        u2s[0] = flowy;
        if (gamma_)
        {
            u3s[0].create(I0.size(), CV_32FC1);
        }

        I1x_buf.create(I0.size(), CV_32FC1);
        I1y_buf.create(I0.size(), CV_32FC1);

        I1w_buf.create(I0.size(), CV_32FC1);
        I1wx_buf.create(I0.size(), CV_32FC1);
        I1wy_buf.create(I0.size(), CV_32FC1);

        grad_buf.create(I0.size(), CV_32FC1);
        rho_c_buf.create(I0.size(), CV_32FC1);

        p11_buf.create(I0.size(), CV_32FC1);
        p12_buf.create(I0.size(), CV_32FC1);
        p21_buf.create(I0.size(), CV_32FC1);
        p22_buf.create(I0.size(), CV_32FC1);
        if (gamma_)
        {
            p31_buf.create(I0.size(), CV_32FC1);
            p32_buf.create(I0.size(), CV_32FC1);
        }
        diff_buf.create(I0.size(), CV_32FC1);

        // create the scales
        for (int s = 1; s < nscales_; ++s)
        {
            cuda::resize(I0s[s-1], I0s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream);
            cuda::resize(I1s[s-1], I1s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream);

            if (I0s[s].cols < 16 || I0s[s].rows < 16)
            {
                nscales_ = s;
                break;
            }

            if (useInitialFlow_)
            {
                cuda::resize(u1s[s-1], u1s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream);
                cuda::resize(u2s[s-1], u2s[s], Size(), scaleStep_, scaleStep_, INTER_LINEAR, stream);

                cuda::multiply(u1s[s], Scalar::all(scaleStep_), u1s[s], 1, -1, stream);
                cuda::multiply(u2s[s], Scalar::all(scaleStep_), u2s[s], 1, -1, stream);
            }
            else
            {
                u1s[s].create(I0s[s].size(), CV_32FC1);
                u2s[s].create(I0s[s].size(), CV_32FC1);
            }
            if (gamma_)
            {
                u3s[s].create(I0s[s].size(), CV_32FC1);
            }
        }

        if (!useInitialFlow_)
        {
            u1s[nscales_-1].setTo(Scalar::all(0), stream);
            u2s[nscales_-1].setTo(Scalar::all(0), stream);
        }
        if (gamma_)
        {
            u3s[nscales_ - 1].setTo(Scalar::all(0), stream);
        }

        // pyramidal structure for computing the optical flow
        for (int s = nscales_ - 1; s >= 0; --s)
        {
            // compute the optical flow at the current scale
            procOneScale(I0s[s], I1s[s], u1s[s], u2s[s], u3s[s], stream);

            // if this was the last scale, finish now
            if (s == 0)
                break;

            // otherwise, upsample the optical flow

            // zoom the optical flow for the next finer scale
            cuda::resize(u1s[s], u1s[s - 1], I0s[s - 1].size(), 0, 0, INTER_LINEAR, stream);
            cuda::resize(u2s[s], u2s[s - 1], I0s[s - 1].size(), 0, 0, INTER_LINEAR, stream);
            if (gamma_)
            {
                cuda::resize(u3s[s], u3s[s - 1], I0s[s - 1].size(), 0, 0, INTER_LINEAR, stream);
            }

            // scale the optical flow with the appropriate zoom factor
            cuda::multiply(u1s[s - 1], Scalar::all(1/scaleStep_), u1s[s - 1], 1, -1, stream);
            cuda::multiply(u2s[s - 1], Scalar::all(1/scaleStep_), u2s[s - 1], 1, -1, stream);
        }
    }

    void OpticalFlowDual_TVL1_Impl::procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2, GpuMat& u3, Stream& _stream)
    {
        using namespace tvl1flow;

        cudaStream_t stream = StreamAccessor::getStream(_stream);

        const double scaledEpsilon = epsilon_ * epsilon_ * I0.size().area();

        CV_DbgAssert( I1.size() == I0.size() );
        CV_DbgAssert( I1.type() == I0.type() );
        CV_DbgAssert( u1.size() == I0.size() );
        CV_DbgAssert( u2.size() == u1.size() );

        GpuMat I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows));
        GpuMat I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows));
        centeredGradient(I1, I1x, I1y, stream);

        GpuMat I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows));
        GpuMat I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows));
        GpuMat I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows));

        GpuMat grad = grad_buf(Rect(0, 0, I0.cols, I0.rows));
        GpuMat rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows));

        GpuMat p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows));
        GpuMat p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows));
        GpuMat p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows));
        GpuMat p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows));
        GpuMat p31, p32;
        if (gamma_)
        {
            p31 = p31_buf(Rect(0, 0, I0.cols, I0.rows));
            p32 = p32_buf(Rect(0, 0, I0.cols, I0.rows));
        }
        p11.setTo(Scalar::all(0), _stream);
        p12.setTo(Scalar::all(0), _stream);
        p21.setTo(Scalar::all(0), _stream);
        p22.setTo(Scalar::all(0), _stream);
        if (gamma_)
        {
            p31.setTo(Scalar::all(0), _stream);
            p32.setTo(Scalar::all(0), _stream);
        }

        GpuMat diff = diff_buf(Rect(0, 0, I0.cols, I0.rows));

        const float l_t = static_cast<float>(lambda_ * theta_);
        const float taut = static_cast<float>(tau_ / theta_);

        for (int warpings = 0; warpings < warps_; ++warpings)
        {
            warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c, stream);

            double error = std::numeric_limits<double>::max();
            double prevError = 0.0;
            for (int n = 0; error > scaledEpsilon && n < iterations_; ++n)
            {
                // some tweaks to make sum operation less frequently
                bool calcError = (epsilon_ > 0) && (n & 0x1) && (prevError < scaledEpsilon);
                estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, p31, p32, u1, u2, u3, diff, l_t, static_cast<float>(theta_), gamma_, calcError, stream);
                if (calcError)
                {
                    _stream.waitForCompletion();
                    error = cuda::sum(diff, norm_buf)[0];
                    prevError = error;
                }
                else
                {
                    error = std::numeric_limits<double>::max();
                    prevError -= scaledEpsilon;
                }

                estimateDualVariables(u1, u2, u3, p11, p12, p21, p22, p31, p32, taut, gamma_, stream);
            }
        }
    }
}

Ptr<OpticalFlowDual_TVL1> cv::cuda::OpticalFlowDual_TVL1::create(
            double tau, double lambda, double theta, int nscales, int warps,
            double epsilon, int iterations, double scaleStep, double gamma, bool useInitialFlow)
{
    return makePtr<OpticalFlowDual_TVL1_Impl>(tau, lambda, theta, nscales, warps,
                                              epsilon, iterations, scaleStep, gamma, useInitialFlow);
}

#endif // !defined HAVE_CUDA || defined(CUDA_DISABLER)

/* [<][>][^][v][top][bottom][index][help] */