This source file includes following definitions.
- writeMatInBin
- readMatFromBin
- detector
- createDescriptorExtractor
- compareDescriptors
- emptyDataTest
- regressionTest
- run
- readDescriptors
- writeDescriptors
- TEST
- TEST
- TEST
- TEST
- TEST
- TEST
#include "test_precomp.hpp"
using namespace std;
using namespace cv;
const string FEATURES2D_DIR = "features2d";
const string IMAGE_FILENAME = "tsukuba.png";
const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors";
static void writeMatInBin( const Mat& mat, const string& filename )
{
FILE* f = fopen( filename.c_str(), "wb");
if( f )
{
int type = mat.type();
fwrite( (void*)&mat.rows, sizeof(int), 1, f );
fwrite( (void*)&mat.cols, sizeof(int), 1, f );
fwrite( (void*)&type, sizeof(int), 1, f );
int dataSize = (int)(mat.step * mat.rows * mat.channels());
fwrite( (void*)&dataSize, sizeof(int), 1, f );
fwrite( (void*)mat.ptr(), 1, dataSize, f );
fclose(f);
}
}
static Mat readMatFromBin( const string& filename )
{
FILE* f = fopen( filename.c_str(), "rb" );
if( f )
{
int rows, cols, type, dataSize;
size_t elements_read1 = fread( (void*)&rows, sizeof(int), 1, f );
size_t elements_read2 = fread( (void*)&cols, sizeof(int), 1, f );
size_t elements_read3 = fread( (void*)&type, sizeof(int), 1, f );
size_t elements_read4 = fread( (void*)&dataSize, sizeof(int), 1, f );
CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1);
int step = dataSize / rows / CV_ELEM_SIZE(type);
CV_Assert(step >= cols);
Mat m = Mat(rows, step, type).colRange(0, cols);
size_t elements_read = fread( m.ptr(), 1, dataSize, f );
CV_Assert(elements_read == (size_t)(dataSize));
fclose(f);
return m;
}
return Mat();
}
template<class Distance>
class CV_DescriptorExtractorTest : public cvtest::BaseTest
{
public:
typedef typename Distance::ValueType ValueType;
typedef typename Distance::ResultType DistanceType;
CV_DescriptorExtractorTest( const string _name, DistanceType _maxDist, const Ptr<DescriptorExtractor>& _dextractor,
Distance d = Distance(), Ptr<FeatureDetector> _detector = Ptr<FeatureDetector>()):
name(_name), maxDist(_maxDist), dextractor(_dextractor), distance(d) , detector(_detector) {}
~CV_DescriptorExtractorTest()
{
}
protected:
virtual void createDescriptorExtractor() {}
void compareDescriptors( const Mat& validDescriptors, const Mat& calcDescriptors )
{
if( validDescriptors.size != calcDescriptors.size || validDescriptors.type() != calcDescriptors.type() )
{
ts->printf(cvtest::TS::LOG, "Valid and computed descriptors matrices must have the same size and type.\n");
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
CV_Assert( DataType<ValueType>::type == validDescriptors.type() );
int dimension = validDescriptors.cols;
DistanceType curMaxDist = std::numeric_limits<DistanceType>::min();
for( int y = 0; y < validDescriptors.rows; y++ )
{
DistanceType dist = distance( validDescriptors.ptr<ValueType>(y), calcDescriptors.ptr<ValueType>(y), dimension );
if( dist > curMaxDist )
curMaxDist = dist;
}
stringstream ss;
ss << "Max distance between valid and computed descriptors " << curMaxDist;
if( curMaxDist <= maxDist )
ss << "." << endl;
else
{
ss << ">" << maxDist << " - bad accuracy!"<< endl;
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
}
ts->printf(cvtest::TS::LOG, ss.str().c_str() );
}
void emptyDataTest()
{
assert( dextractor );
Mat image;
vector<KeyPoint> keypoints;
Mat descriptors;
try
{
dextractor->compute( image, keypoints, descriptors );
}
catch(...)
{
ts->printf( cvtest::TS::LOG, "compute() on empty image and empty keypoints must not generate exception (1).\n");
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
}
image.create( 50, 50, CV_8UC3 );
try
{
dextractor->compute( image, keypoints, descriptors );
}
catch(...)
{
ts->printf( cvtest::TS::LOG, "compute() on nonempty image and empty keypoints must not generate exception (1).\n");
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
}
vector<Mat> images;
vector<vector<KeyPoint> > keypointsCollection;
vector<Mat> descriptorsCollection;
try
{
dextractor->compute( images, keypointsCollection, descriptorsCollection );
}
catch(...)
{
ts->printf( cvtest::TS::LOG, "compute() on empty images and empty keypoints collection must not generate exception (2).\n");
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
}
}
void regressionTest()
{
assert( dextractor );
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
Mat img = imread( imgFilename );
if( img.empty() )
{
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
vector<KeyPoint> keypoints;
FileStorage fs( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::READ );
if(!detector.empty()) {
detector->detect(img, keypoints);
} else {
read( fs.getFirstTopLevelNode(), keypoints );
}
if(!keypoints.empty())
{
Mat calcDescriptors;
double t = (double)getTickCount();
dextractor->compute( img, keypoints, calcDescriptors );
t = getTickCount() - t;
ts->printf(cvtest::TS::LOG, "\nAverage time of computing one descriptor = %g ms.\n", t/((double)getTickFrequency()*1000.)/calcDescriptors.rows);
if( calcDescriptors.rows != (int)keypoints.size() )
{
ts->printf( cvtest::TS::LOG, "Count of computed descriptors and keypoints count must be equal.\n" );
ts->printf( cvtest::TS::LOG, "Count of keypoints is %d.\n", (int)keypoints.size() );
ts->printf( cvtest::TS::LOG, "Count of computed descriptors is %d.\n", calcDescriptors.rows );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
if( calcDescriptors.cols != dextractor->descriptorSize() || calcDescriptors.type() != dextractor->descriptorType() )
{
ts->printf( cvtest::TS::LOG, "Incorrect descriptor size or descriptor type.\n" );
ts->printf( cvtest::TS::LOG, "Expected size is %d.\n", dextractor->descriptorSize() );
ts->printf( cvtest::TS::LOG, "Calculated size is %d.\n", calcDescriptors.cols );
ts->printf( cvtest::TS::LOG, "Expected type is %d.\n", dextractor->descriptorType() );
ts->printf( cvtest::TS::LOG, "Calculated type is %d.\n", calcDescriptors.type() );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
Mat validDescriptors = readDescriptors();
if( !validDescriptors.empty() )
compareDescriptors( validDescriptors, calcDescriptors );
else
{
if( !writeDescriptors( calcDescriptors ) )
{
ts->printf( cvtest::TS::LOG, "Descriptors can not be written.\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
}
}
if(!fs.isOpened())
{
ts->printf( cvtest::TS::LOG, "Compute and write keypoints.\n" );
fs.open( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::WRITE );
if( fs.isOpened() )
{
Ptr<ORB> fd = ORB::create();
fd->detect(img, keypoints);
write( fs, "keypoints", keypoints );
}
else
{
ts->printf(cvtest::TS::LOG, "File for writting keypoints can not be opened.\n");
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
}
}
void run(int)
{
createDescriptorExtractor();
if( !dextractor )
{
ts->printf(cvtest::TS::LOG, "Descriptor extractor is empty.\n");
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
return;
}
emptyDataTest();
regressionTest();
ts->set_failed_test_info( cvtest::TS::OK );
}
virtual Mat readDescriptors()
{
Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) );
return res;
}
virtual bool writeDescriptors( Mat& descs )
{
writeMatInBin( descs, string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) );
return true;
}
string name;
const DistanceType maxDist;
Ptr<DescriptorExtractor> dextractor;
Distance distance;
Ptr<FeatureDetector> detector;
private:
CV_DescriptorExtractorTest& operator=(const CV_DescriptorExtractorTest&) { return *this; }
};
TEST( Features2d_DescriptorExtractor_BRISK, regression )
{
CV_DescriptorExtractorTest<Hamming> test( "descriptor-brisk",
(CV_DescriptorExtractorTest<Hamming>::DistanceType)2.f,
BRISK::create() );
test.safe_run();
}
TEST( Features2d_DescriptorExtractor_ORB, regression )
{
CV_DescriptorExtractorTest<Hamming> test( "descriptor-orb",
#if CV_NEON
(CV_DescriptorExtractorTest<Hamming>::DistanceType)25.f,
#else
(CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f,
#endif
ORB::create() );
test.safe_run();
}
TEST( Features2d_DescriptorExtractor_KAZE, regression )
{
CV_DescriptorExtractorTest< L2<float> > test( "descriptor-kaze", 0.03f,
KAZE::create(),
L2<float>(), KAZE::create() );
test.safe_run();
}
TEST( Features2d_DescriptorExtractor_AKAZE, regression )
{
CV_DescriptorExtractorTest<Hamming> test( "descriptor-akaze",
(CV_DescriptorExtractorTest<Hamming>::DistanceType)12.f,
AKAZE::create(),
Hamming(), AKAZE::create());
test.safe_run();
}
TEST( Features2d_DescriptorExtractor, batch )
{
string path = string(cvtest::TS::ptr()->get_data_path() + "detectors_descriptors_evaluation/images_datasets/graf");
vector<Mat> imgs, descriptors;
vector<vector<KeyPoint> > keypoints;
int i, n = 6;
Ptr<ORB> orb = ORB::create();
for( i = 0; i < n; i++ )
{
string imgname = format("%s/img%d.png", path.c_str(), i+1);
Mat img = imread(imgname, 0);
imgs.push_back(img);
}
orb->detect(imgs, keypoints);
orb->compute(imgs, keypoints, descriptors);
ASSERT_EQ((int)keypoints.size(), n);
ASSERT_EQ((int)descriptors.size(), n);
for( i = 0; i < n; i++ )
{
EXPECT_GT((int)keypoints[i].size(), 100);
EXPECT_GT(descriptors[i].rows, 100);
}
}
TEST( Features2d_Feature2d, no_crash )
{
const String& pattern = string(cvtest::TS::ptr()->get_data_path() + "shared/*.png");
vector<String> fnames;
glob(pattern, fnames, false);
sort(fnames.begin(), fnames.end());
Ptr<AKAZE> akaze = AKAZE::create();
Ptr<ORB> orb = ORB::create();
Ptr<KAZE> kaze = KAZE::create();
Ptr<BRISK> brisk = BRISK::create();
size_t i, n = fnames.size();
vector<KeyPoint> keypoints;
Mat descriptors;
orb->setMaxFeatures(5000);
for( i = 0; i < n; i++ )
{
printf("%d. image: %s:\n", (int)i, fnames[i].c_str());
if( strstr(fnames[i].c_str(), "MP.png") != 0 )
continue;
bool checkCount = strstr(fnames[i].c_str(), "templ.png") == 0;
Mat img = imread(fnames[i], -1);
printf("\tAKAZE ... "); fflush(stdout);
akaze->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
printf("\tKAZE ... "); fflush(stdout);
kaze->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
printf("\tORB ... "); fflush(stdout);
orb->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
printf("\tBRISK ... "); fflush(stdout);
brisk->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
}
}